AANPAK VAN MILTTRAUMA IN HET UZ GENT: WAT LEERT DE PRAKTIJK ONS?

Robin Colenbier
Studentennummer: 01207139

Promotor: Prof. dr. Frederik Berrevoet

Masterproef voorgelegd voor het behalen van de graad Master of Medicine in de richting Geneeskunde

Academiejaar: 2017 – 2018
AANPAK VAN MILTTRAUMA IN HET UZ GENT: WAT LEERT DE PRAKTIJK ONS?

Robin Colenbier
Studentennummer: 01207139

Promotor: Prof. dr. Frederik Berrevoet

Masterproef voorgelegd voor het behalen van de graad Master of Medicine in de richting Geneeskunde

Academiejaar: 2017 – 2018
Inhoudsopgave

Abstract .. 1

1. Inleiding... 3
 1.1 Achtergrond ... 3
 1.1.1 Voorkomen milttrauma ... 3
 1.1.2 Classificatie milttrauma ... 3
 1.1.3 Huidige aanpak .. 5
 1.1.4 Therapie .. 8
 1.1.5 Conclusies uit de huidige literatuur .. 13
 1.1.6 Huidige problemen .. 14
 1.2 Doel .. 14

2. Methoden .. 15
 2.1 Studie design ... 15
 2.2 Setting ... 15
 2.3 Deelnemers .. 15
 2.4 Variabelen .. 16
 2.4.1 Uitkomstvariabelen .. 16
 2.4.2 Voorspellende variabelen .. 16
 2.4.3 Confounding variabelen ... 17
 2.5 Databronnen .. 17
 2.6 Bias .. 17
 2.7 Statistische methoden .. 18

3. Resultaten .. 19
 3.1 Deelnemers .. 19
 3.2 Outcome data .. 20
 3.2.1 Begeleidende letseis .. 20
 3.2.2 Leeftijd en geslacht ... 21
 3.2.3 Tijdstip van opname ... 21
 3.2.4 Oorzaak van milttrauma .. 21
 3.2.5 Hemodynamische parameters bij aanmelding .. 22
 3.2.6 Beeldvorming .. 22
 3.2.7 Bijkomende onderzoeken ... 23
 3.2.8 AAST-Classificatie ... 23
 3.2.9 Soort trauma ... 24
 3.2.10 Vrij vocht ... 24
“De auteur en de promotor geven de toelating deze masterproef voor consultatie beschikbaar te stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit deze masterproef.”

Datum

(handtekening student) (handtekening promotor)

(Naam student) (Naam promotor)
Abstract

Inleiding
Milttrauma is een vrij frequent voorkomende aandoening bij personen met een abdominaal trauma. De keuze van behandeling baseert zich voornamelijk op de hemodynamische toestand van de patiënt en de ernst van het letsel, gescoord via CT. Deze behandeling kan dan bestaan uit heelkunde, embolisatietherapie/splenic artery embolisation (SAE) of observatie.

Doel
Deze studie heeft als doel te onderzoeken of de huidige behandelingsstrategie voor personen met een milttrauma een goede outcome biedt. Er wordt onderzocht of onder andere de indicatiestelling om over te gaan tot een bepaalde behandeling correct is; m.a.w. of deze behandeling dan een hoge kans op slagen heeft. Ook zal getracht worden nieuwe risicofactoren te identificeren die een hoger risico geven op een negatieve afloop voor de patiënt.

Methoden

Resultaten
Er werd gevonden dat de aanwezigheid van een blush op CT ter hoogte van de milt een verhoogd risico geeft van 8.12 op het falen van de initiële. Ook is aanwezigheid van deze blush negatief voorspellend voor het optreden van SS (OR = 3.33 op het niet redden van de milt). Hiernaast werd bevonden dat SS afhankelijk is van de HD-stabiliteit van de patiënt (p < 0.001) en dat falen van initieel niet-operatief beleid een hogere kans op het verliezen van de milt met zich meebrengt (OR = 105). De voornaamste geassocieerde variabele met het overlijden van een milttraumapatiënt is de HD stabiliteit; HD instabiele patiënten hebben een 12-maal groter risico op overlijden dan HD stabiele patiënten.
Falen van SAE leidt tot gemiddeld 4 dagen langere verblijfsduur op een ICU en falen van heelkunde leidt tot een gemiddeld langer verblijf van 11 dagen ten opzichte van een observationeel beleid.

Discussie
In het algemeen kent milttrauma een relatief goede outcome; slechts 4 van de 108 (4%) beschouwde personen overleden uiteindelijk aan hun trauma, waarvan 3 personen polytraumapatiënten waren en 1 persoon aan een solitair milttrauma leed. Het is belangrijk om de initiële behandeling correct in te stellen, zodat de kans op falen minimaal is, zelfs indien dit betekent bij een relatief mineur trauma tot heelkunde over te gaan. Dit omdat falen van de initiële behandeling tot een groter risico op verliezen van de milt, langere ligduur en mortaliteit leidt. In deze studie wordt voorgesteld om vlugger over te gaan tot heelkunde in gevallen waarbij men oorspronkelijk tot SAE zou overgaan, ten koste van het uitvoeren van deze laatste. Uiteraard moet dan gepoogd worden deze heelkunde zo minimaal invasief mogelijk uit te voeren (laparoscopisch). De belangrijkste parameters om de behandelingskeuze te bepalen zijn de HD stabiliteit van de patiënt en de aanwezigheid van een blush op CT. De gradering van het trauma via een classificatie (AAST) heeft geen voorspellende waarde. Hoewel SAE laatste jaren aan populariteit gewonnen heeft blijft nog onduidelijk of er goede criteria zijn om te beslissen tot SAE over te gaan, ook is weinig gekend over risicofactoren die het falen van een SAE voorspellen.
1. Inleiding

1.1 Achtergrond

De aanpak van milttrauma is een dynamisch gegeven: vroeger ging men praktisch steeds over tot het uitvoeren van een splenectomie. Heden bestaat echter de tendens om steeds meer orgaansparende en minimaal invasieve behandelingen uit te voeren, bijvoorbeeld selectieve arteriële embolisatie (SAE) en het aannemen van een conservatieve houding waarbij men de patiënt nauwkeurig observeert. Heelkunde krijgt vooral een belangrijke functie in het kader van de behandeling van de patiënt die er ernstiger aan toe is.

De uitdaging bij het hanteren van deze minder ingrijpende technieken bestaat erin een goede patiëntenselectie te maken; men moet de juiste patiënten uitkiezen dewelke in aanmerking komen voor deze behandelingen om het risico op falen zo laag mogelijk te houden. Dit vergt een goede initiële inschatting van de ernst van het trauma. Deze inschatting wordt onder meer mogelijk gemaakt door gebruik van beeldvormingstechnieken als echografie en CT.

Een observationele aanpak bij minder ernstige milttraumata is ondertussen al gevalideerd. Bij ernstige traumata is deze evaluatie echter moeilijker uit te voeren omdat in deze populatie falen van therapie een grotere impact heeft op de overleving van de patiënt.

1.1.1 Voorkomen milttrauma

De milt is het meest frequent beschadigde solide orgaan bij patiënten die lijden aan een abdominaal trauma, dit is zo bij 31-50% van de patiënten. (1)

1.1.2 Classificatie milttrauma

Allereerst kan schade aan de milt ingedeeld worden volgens ontstaansmechanisme: men onderscheidt stompe milttrauma’s en penetrerende milttrauma’s. In de meerderheid van de gevallen van milttrauma betreft het een stomp trauma.

Ook de oorzaak van het trauma kan richtinggevend zijn naar de ernst; een persoon betrokken in een verkeersongeval (high velocity impact trauma) zal meer kans hebben op een zwaarder miltletsel en bijkomende letsels dan een persoon die uitglijdt en op de grond terechtkomt.

1.1.2.1 Stomp trauma

Stompe milttrauma’s maken zoals eerder vermeld het grootste deel uit van alle milttrauma’s en deze ontstaan praktisch altijd accidenteel; bijvoorbeeld bij motorvoertuigongevallen, een val van grote hoogte, val op het stuur van de fiets…
Er zijn 3 grote mechanismen waardoor een abdominaal orgaan (waaronder de milt) kan beschadigd raken:

- **Deceleratie**: door een abrupte snelheidswijziging (zoals bij een auto-ongeluk) kunnen tussen verschillende intra-abdominale organen schuifkrachten (shear forces) ontstaan. Dit omdat de afname in snelheid van verschillende organen onderling verschilt. Deze krachten hebben het potentieel om organen en bloedvaten te scheuren en treden vooral op op plaatsen waar organen relatief goed gefixeerd zijn.

- **Crushing**: bij dit mechanisme worden de intra-abdominale organen onder invloed van een uitwendige kracht geplet tussen de anterieure abdominale wand en de vertebrale kolom of de posterieure thoraxwand. Solide organen, zoals de milt, zijn hier zeer gevoelig aan.

- **Externe compressie**: door de compressie van het lichaam tegen een gefixeerd voorwerp kan de intra-abdominale druk een snelle stijging vertonen die aanleiding kan geven tot beschadiging van intra-abdominale organen.

De ernst van een stomp milttrauma kan op verschillende manieren worden weergegeven: de hierna besproken classificaties baseren zich op CT-beeldvorming om de schade aan de milt vast te stellen en in te schatten.

De meest gebruikte classificatie is deze volgens de American Association for the Surgery of Trauma Injury Scale volgens Moore et al. (2) (zie tabel 1):

Tabel 1. Classificatie van milttrauma volgens de American Association for the Surgery of Trauma Organ Injury Scale

<table>
<thead>
<tr>
<th>Graad</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Subcapsulair hematoom, <10% oppervlakte; laceratie, <1cm parenchymale diepte</td>
</tr>
<tr>
<td>II</td>
<td>Subcapsulair hematoom, 10-50% oppervlakte, <5cm diameter; laceratie, 1-3cm diepte</td>
</tr>
<tr>
<td>III</td>
<td>Subcapsulair hematoom, >50% oppervlakte of uitbreidend; laceratie >5cm diepte of uitbreidend; intraparenchymaal hematoom, >3cm of uitbreidend</td>
</tr>
<tr>
<td>IV</td>
<td>Laceratie met betrekking segmentale of hilaire vaten met majeure devascularisatie tot gevolg</td>
</tr>
<tr>
<td>V</td>
<td>Volledig gefragmenteerde milt; hilaire schade dewelke de volledige milt devasculariseert</td>
</tr>
</tbody>
</table>

a. score 1 graad hoger voor meerdere verwondingen tot aan graad III

Een tweede classificatie is deze volgens Mirvis et al. (3) (zie tabel 2):

Tabel 2. Classificatie van milttrauma volgens Mirvis et al.

<table>
<thead>
<tr>
<th>Graad</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capsulaire avulsie, laceratie of subcapsulair hematoom <1cm diameter</td>
</tr>
<tr>
<td>2</td>
<td>Laceratie 1-3cm diepte, centraal/subcapsulair hematoom 1-3cm diameter</td>
</tr>
<tr>
<td>3</td>
<td>Laceratie 3-10cm diep, centraal/subcapsulair hematoom 3-10cm diameter</td>
</tr>
<tr>
<td>4</td>
<td>Laceratie >10cm, centraal/subcapsulair hematoom >10cm diameter, massieve lobaire maceratie of devascularisatie</td>
</tr>
<tr>
<td>5</td>
<td>Bilobaire weefselmaceratie of devitalisering</td>
</tr>
</tbody>
</table>
Een derde classificatie is deze volgens Marmery et al. (4) (zie tabel 3)

Tabel 3. Classificatie van milttrauma volgens Marmery en Shanmuganathan.

<table>
<thead>
<tr>
<th>Graad</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Subcapsulair/parenchymaal hematoom of laceratie <1cm</td>
</tr>
<tr>
<td>II</td>
<td>Subcapsulair/parenchymaal hematoom of laceratie 1-3cm</td>
</tr>
<tr>
<td>III</td>
<td>Capsulaire onderbreking OF hematoom of laceratie >3cm</td>
</tr>
<tr>
<td>IV_a</td>
<td>Actieve intra-parenchymale of subcapsulaire bloeding OF splenisch pseudoaneurysma of AV fistula OF gefragmenteerde milt</td>
</tr>
<tr>
<td>IV_b</td>
<td>Actieve intra-peritoneale bloeding</td>
</tr>
</tbody>
</table>

De Marmery-classificatie, ook wel 'CT Severity Index genoemd' (CTSI), vertoont gelijkenissen met die van Mirvis et al. maar beschrijft ook de aanwezigheid van vasculaire schade en actieve bloeding. Deze aanwezigheid van vasculaire schade en actieve bloeding zouden nuttig zijn bij de beslissing om tot embolisatietherapie (zie 1.4.2 SAE) over te gaan. Er wordt dan ook gesuggereerd dat deze ‘CT Severity Index’ superieur is aan de routineus gebruikte AAST-classificatie wat betreft het identificeren van die patiënten met een stomp milttrauma die bijkomend een arteriografie of een dringende interventie nodig hebben. (5,6) Indien verder in deze tekst een graad of classificatie wordt vermeld, zal dit de AAST-classificatie betreffen.

1.1.2.2 Penetrerend trauma

Penetrerende milttrauma’s ziet men meestal in de context van geweldpleging. Over het algemeen zijn deze trauma’s het gevolg van steekwonden of schotwonden. In België is het voorkomen van penetrerende milttrauma’s zeer laag in vergelijking met stompe milttrauma’s.

1.1.3 Huidige aanpak

De meeste patiënten met een milttrauma komen het ziekenhuis binnen via de spoedopname. De aanpak bestaat erin eerst in te schatten of de patiënt hemodynamisch stabiel is. Indien een patiënt stabiel is kan gerichte beeldvorming gebeuren en een optimale therapiekeuze bepaald worden. Indien een patiënt niet stabiel is zal een snelle doorverwijzing naar het operatiekwartier nodig zijn. Uiteraard moeten begeleidende letsels opgespoord worden en indien nodig behandeld worden. Hierbij is het ook de rationale dat levensbedreigende letsels eerst behandeld worden tot de patiënt stabiel is, waarna men de begeleidende letsels kan behandelen. De bepaling van hemodynamische stabilitéit gebeurt aan de hand van het klinisch onderzoek, na deze beoordeling kan overgegaan worden tot beeldvorming indien nodig geacht.
1.1.3.1 Beeldvorming

Het doel van beeldvorming in de aanpak van milttrauma is drievoudig: het wordt gebruikt om de ernst van het letsel in te schatten, geassocieerde letsels vast te stellen, en om de mate van bloeding vast te stellen. Om dit te verwezenlijken zijn twee courante opties voorhanden die elk hun eigen sterktjes en zwaktes hebben, namelijk computed tomography (CT) en echografie.

Echografie

De rol van echografie bij het inschatten van een abdominaal trauma/milttrauma bestaat vooral uit het uitvoeren van een gestandaardiseerd protocol genaamd: focused abdominal sonography in trauma (FAST). Een FAST is het eerste keuze-onderzoek bij hemodynamisch instabiele patiënten met stomp abdominaal trauma.

Met dit onderzoek kan vrij vocht in het abdomen opgespoord worden, alsook de toestand van de solide abdominale organen beoordeeld worden. Het voordeel van echografie is dat het een snelle (5-10 minuten) techniek is. Een positieve FAST (aanwezigheid van vrij abdominaal vocht) bij een hemodynamisch instabiele patiënt is een indicatie om over te gaan tot urgente exploratieve laparotomie. (7)

De sensitiviteit van FAST bij het zoeken naar vrij abdominaal vocht ligt rond de 86,5-96%. De waarde van de specificiteit ligt rond de 67-96%. Deze waarden zijn afhankelijk van de uitvoerder van het onderzoek. Vooral laaggradige letsels kunnen gemist worden en men moet ook bij een negatieve FAST bedacht zijn op gemiste letsels. (8)

Een FAST kent een lage sensitiviteit bij hypotensieve patiënten met een stomp trauma. De sensitiviteit daalt tot slechts 26% indien ook sprake is van een bekken-of niertrauma. (7,9,10)

De rol van FAST bij een penetrerend abdominaal trauma is veel beperker aangezien men hier vlugger zal overgaan tot heelkunde, zeker bij een HD instabiele patiënt. Bij een HD stabiele patiënt met een penetrerend abdominaal trauma bedraagt de specificiteit van een FAST 98%, de sensitiviteit zou echter slechts 48% bedragen. Ook schade aan holle organen of diafragmaschade worden tot in 67% in van de gevallen gemist. (7)

Naast FAST bestaat ook e-FAST, wat staat voor extended FAST. Hierbij wordt ook de thorax geëvalueerd op een aanwezige pneumothorax. Schade aan de long (vooral de linker) kan bij verdenking van milttrauma ook verwacht worden gezien de ligging van beide organen. (7,9–11)
Computed tomography (CT)
CT-onderzoek met contrast is de eerste keuze diagnostische beeldvorming bij stomp abdominaal trauma bij een hemodynamisch stabiele patiënt. Hierbij zouden een sensitiviteit van 92-97.6% en een specificiteit van 98.7% verkregen worden. (12) De negatief voorspellende waarde zou bij een negatief CT-onderzoek 99.63% bedragen, wat volgens Livingston et al. voldoende is om bij een negatief abdominaal CT-onderzoek een hospitalisatie niet noodzakelijk te achten bij een persoon met een vermoed stomp abdominaal trauma. (13)
Indien men schade aan de milt opspoort zou de sensitiviteit van een CT-scan 100% bedragen en de specificiteit 96.8%. (14)

De rol van CT-onderzoek bij abdominaal trauma/milttrauma bestaat er dus in schade vast te stellen aan de abdominale organen en de ernst van de schade in te schatten. Ook kan men via CT de aanwezigheid van een hemoperitoneum indentificeren en kwantificeren.

Het protocol wordt uitgevoerd tijdens de portale veneuze fase om zo solide organen zoals de milt optimaal in beeld te brengen. Recent werd ook gesuggereerd dat beeldvorming tijdens de arteriële fase zou bijdragen tot detectie van pseudoaneurysmata en arterioveneuze fistels bij trauma.

De aanwezigheid van een intraparenchymale blush (contrast blush) zou ook een negatieve prognostische factor zijn indien men over zou gaan tot observationele behandeling. (15)
Hoewel een zeer goede techniek om schade aan de milt aan te tonen/uit te sluiten blijft nog steeds de vraag wat de relevantie is van een classificering met betrekking tot de keuze van de nodige behandeling. (14)

1.1.3.2 Bijkomende onderzoeken
Diagnostische peritoneale lavage/diagnostische peritoneale aspiratie (DPL/DPA)
Bij een diagnostische peritoneale lavage wordt gezocht naar intra-abdominale orgaanschade (op basis van bloed, bloedcellen e.d. in het lavagevocht). Door de enorme vooruitgang in beeldvormingstechnieken is DPL een minder gebruikte techniek bij de inschatting van abdominaal trauma.
Voordelen van DPL zijn:
- Positieve DPL bij een HD instabiele patiënt is altijd indicatief voor een intra-abdominale bloeding
- Interpretatie is niet observatorafhankelijk
De nadelen van een DPL zijn:

- Voor cytologie is enige tijd nodig door het labo
- Deze techniek is weinig orgaanspecifiek

De ATLS-handleiding stelt echter voor om de voorkeur te geven aan FAST ten opzichte van een DPL indien echografische beeldvorming snel beschikbaar is. (16)

Bloedonderzoek

Bloedafname bij personen met een abdominaal trauma is nuttig om onder andere volgende parameters bij elke patiënt te evalueren: hematocriet/hemoglobine (één van beide volstaat), thrombocyten, AST/ALT, amylase, lipase, bloedgroepytering, arteriële bloedgassen.

1.1.4 Therapie

De keuze van therapie hangt in eerste instantie af van de hemodynamische (in)stabiliteit van de patiënt. Zoals eerder vermeld zal een hemodynamisch instabiele patiënt, zeker als deze tekenen heeft van abdominale vrij vocht op de FAST, doorverwezen worden voor urgente heilkundige behandeling. (17) Indien tijdens de exploratieve laparotomie een beschadigde milt wordt gevonden wordt klassiek een splenectomie uitgevoerd.

Indien de patiënt hemodynamisch stabiel is/blijft, kan overgegaan worden tot de beslissing om conservatief te handelen of om tot een non-operatief management (NOM) over te gaan. Onder de noemer NOM vallen zowel het uitvoeren van een selectieve arteriële embolisatie (SAE) alsook het aannemen van een observationele houding waarbij de patiënt gemonitord wordt en voor de milt specifiek geen invasieve behandelingen worden opgestart. (18,19)

Men is dus afgestapt van het denkpatroon waarbij men bij elk milttrauma tot splenectomie overgaat; aan een splenectomie hangt namelijk een risico op het ontwikkelen van een overwhelming post-splenectomy infection (OPSI) vast. Dit is een ernstige complicatie met mogelijks de dood tot gevolg (zie 1.1.4.1). Ook door betere inzichten in de werking van de milt is gebleken dat deze, in tegenstelling tot vroeger gedacht, steeds een belangrijke functie blijft uitoefenen in het lichaam en ook een regeneratiecapaciteit heeft. (20) De tendens die er is, is dus om zoveel mogelijk miltsparend te werk te gaan.
Ook eventuele bijkomende letsels die de patiënt heeft spelen een rol in bij de keuze van de therapie. Zo zal men bij een patiënt met multipel of ernstige trauma's het concept van de ‘damage control surgery’ toepassen. Het doel is hierbij om in eerste instantie een snelle controle te krijgen over bloedingen, het infectierisico zo klein mogelijk te houden en verdere schade te voorkomen. Hierdoor kan de patiënt gestabiliseerd worden en kunnen in tweede tijd bijkomende ingrepen plaatsvinden voor minder levensbedreigende aandoeningen.

Bij de aanpak van penetrerend abdominaal trauma is er minder ruimte om over te gaan tot een observationeel beleid. Patiënten die tekenen van peritonitis of hemodynamische instabiliteit vertonen, of dewelke klinisch niet te evalueren zijn ondergaan best een urgente laparotomie of een laparoscopische exploratie. Deze laatste zou best uitgevoerd worden indien er verdenking is van een diafragmatisch letsel. Indien toch gepoogd wordt om een NOM op te starten bestaat deze best uit observatie voor 12-24 uur met een aanvullende diagnostische laparoscopie om occulte duodenale beschadiging op te sporen. (21)

1.1.4.1 Heelkunde

Heelkundige benadering van milttrauma gebeurt meestal via laparotomie, hoewel ook geprobeerd wordt deze benadering via laparoscopische weg uit te voeren. Men gaat over tot heelkunde bij milttrauma indien men te maken heeft met een hemodynamisch instabiele patiënt met een positieve FAST en/of een positieve DPL/DPA. Het doel van de heelkunde is hier de aanwezige bloeding op te sporen en te stoppen.

Indicaties om tot heelkunde over te gaan bij de hemodynamisch stabiele patiënt zijn:
- Falen van NOM
- Tekenen van andere intra-abdominale verwondingen zoals peritonitis, vrije lucht

Er zijn verschillende heelkundige opties om een milttrauma te benaderen. Allereerst is er de splenectomie via laparotomie. In traumasetting wordt deze techniek nog zo weinig mogelijk toegepast omwille van de vele nadelen voor de patiënt en mogelijke complicaties. In principe kan deze splenectomie ook via laparoscopie uitgevoerd worden, doch dit wordt in een traumasetting nog maar weinig uitgevoerd.
Als alternatief voor een volledige splenectomie kan men indien de milt dit toelaat, bijvoorbeeld bij een diepe laceratie dewelke enkel de superieure/inferieure helft van de milt treft, een partiële splenectomie uitvoeren. (22)

Naast het uitvoeren van een splenectomie bestaat ook nog een andere optie, welke kan beschreven worden als miltsparende heelkunde. Hierbij wordt de schade aan de milt gesloten via hechtingen (splenorrhaphy), eventueel aangevuld met andere hemostatische technieken waaronder stapling en high intensity ultrasound.

Bijkomend kan men bij een splenorrhaphy gebruik maken van een topisch hemostaticum en/of een mesh of een omentumslip. De haalbaarheid van splenorrhaphy beperkt zich voornamelijk tot een graad I-III trauma volgens de AAST-classificatie. Het voordeel bij een splenorrhaphy is dat het een lage kans geeft op herbloeding en de milt grotendeels gespaard blijft. Het nadeel is dat deze slechts haalbaar als men te maken heeft met een minder gekwetste milt en dat deze patiënten ook in aanmerking komen voor een conservatief beleid, wat dan de voorkeur krijgt. (23)

Bij de heelkundige aanpak van milttrauma moet men ook de mogelijke complicaties beschouwen: allereerst is er bij een heelkundige benadering de kans op "klassieke complicaties" waaronder surgical site infection (SSI). Om SSI te voorkomen kan bij traumachirurgie gekozen worden om profylactisch een eerste generatie cefalosporine toe te dienen. Een heelkundige aanpak gaat ook steeds gepaard met een mortaliteits-en morbiditeitsrisico. Dit is ook van belang wanneer men de afweging maakt om tot NOM versus heelkunde over te gaan.

Men moet in gedachten houden dat bij een heelkundige benadering van het miltletsel, meer specifiek bij splenectomie, er een risico op een OPSI bestaat, welke vroeg of laat kan optreden. Een OPSI wordt geschat op te treden bij 0.1-9% van de patiënten die een splenectomie ondergaan. Indien een OPSI optreedt, is dit meestal binnen de 2 jaar na een splenectomie. De verantwoordelijke pathogenen zijn meestal gekapselde bacteriën zoals S. pneumoniae, N. Meningitidis en H. Influenzae type b. De mortaliteit van OPSI varieert van 35-80% naargelang de studie. (24)

Om deze reden worden asplenische personen bij voorkeur gevaccineerd: PCV13 gevolgd door PPSV23 na 8 weken. Deze volgorde van vaccinatie geeft hogere antilichaamconcentraties dan indien het PPSV23 alleen wordt toegediend. Hierbij moet ook vermeld worden dat de respons op de vaccinatie in de 2 weken volgend op een splenectomie zeer variabel is tussen personen onderling. (25)
Hoewel deze patiënten na vaccinatie voldoende aantallen circulerend IgG hebben is nog niet gekend of deze daadwerkelijk volstaan om de patiënt tegen een OPSI te beschermen. (26)
Naast vaccinatie tegen pneumokokken kan het ook aangeraden zijn om de patiënten een quadrivalent meningokokken conjugaat vaccin aan te bieden (MenACWY) en deze jaarlijks te laten vaccineren tegen het influenza-virus. Dit laatste omwille van het feit dat een infectie met influenza de patiënt meer vatbaar maakt voor een bacteriële pneumonie met daaropvolgende sepsis. (25)

De milt heeft ook een functie bij het verwijderen van thrombocyten uit het bloed. Er is vastgesteld dat er na het uitvoeren van een splenectomie bij de patiënt een reactieve thrombocytose ontstaat. Deze personen hebben vanaf 48 uur tot 5 dagen na de procedure een significant verhoogd risico op het ontwikkelen van (veneze) thrombo-embolisme events volgens Pommerening et al. (27)
Deze vaststelling wordt bijgetreden door een andere studie van Lin et al. die eenzelfde trend vond: bij lange-termijnopvolging van personen die een milttrauma hadden doorgemaakt zag men dat deze personen een 1.97-maal hogere incidentie vertoonden op het ontwikkelen van een veneus thrombo-embolisch event. (28)

Na heelkunde kunnen ook laattijdige complicaties optreden. Deze hangen af van de aard van de ingreep; splenectomie versus miltsparende heelkunde. Daar de milt geen kritische vitale functie uitoefent zullen de laattijdige complicaties na splenectomie, vooral een immunologisch en hematologisch karakter hebben. Om de weerslag van de therapie op de immuunfunctie van de patiënt te kunnen vaststellen moet er een zekere tijdspanne zijn tussen het uitvoeren van de behandeling en het onderzoek. Trauma op zich leidt tot immunosuppressie en heeft dus invloed op de onderzochte parameters.

Als laatste bestaat er ook nog een fenomeen genoemd ‘splenosis’. Dit houdt in dat tijdens een milttrauma heterotopische autotransplantatie van miltweefsel plaatsvindt op peritoneaal weefsel. Deze afzettingen kunnen uiteindelijk uitgroeiën tot volledig gedifferentieerde nodules. Weinig is nog gekend over dit fenomeen, al zou dit in de toekomst mogelijkheden kunnen bieden om bij patiënten die een splenectomie ondergaan toch nog functioneel miltweefsel te behouden op lange termijn. (20)
1.1.4.2 Selectieve arteriële embolisatie (SAE)

Dit is een techniek waarbij men via katheterisatie de a. splenica opzoekt en onder begeleiding van contrastonderzoek de plaats van bloeding opzoekt om vervolgens de gewenste vaten te emboliseren. Deze embolisatie kan gebeuren aan de hand van plaatsing van een of meerdere spoelen in de a. splenica en/of vertrakkingen ervan. Bij de behandeling van een hemodynamisch instabiele patiënt is er geen plaats voor SAE.

Het doel bij het uitvoeren van een SAE is de bloedflow naar de milt en de beschadigde vloedvaten te verminderen teneinde de potentiële levensbedreigende bloeding te stoppen. (29)

Indicaties om over te gaan tot SAE verschillen tussen centra onderling. Imbrogno et al. (30) stellen voor dat best volgende criteria worden gehanteerd bij een hemodynamisch stabiele patiënt (1 van volgende):

- Actieve contrastextravasatie op CT
- AAST graad III of hoger en dalende Hct-spiegels
- Vasculaire schade op CT en dalende Hct-spiegels

In plaats van zich enkel op CT-beeldvorming te baseren voor de indicatiestelling van SAE stellen Imbrogno et al. ook voor dat de beslissing om al dan niet over te gaan tot het uitvoeren van een embolisatie best kan genomen worden op basis van de vaststellingen tijdens een angiografie. (30)

Indien beslist wordt om tot emboliseren over te gaan heeft men verschillende opties: de embolisatie kan proximaal, distaal of zowel proximaal en distaal uitgevoerd worden, met voorkeur voor deze laatste vanwege een lager risico op complicaties. (31)

Er zijn verschillende complicaties die kunnen optreden bij het uitvoeren van een SAE, de frequentste zijn mineure complicaties zoals een partiële miltinfarct of coil migratie. De majeure geven noodzaak tot heelkunde en zijn complicaties zoals abcesvorming, iatogene vasculaire schade enz.

Het is belangrijk op te merken dat de mineure complicaties frequenter voorkomen dan de majeure en dat het optreden van complicaties op zich bij SAE niet frequent is. De meest frequenten majeure complicaties zijn herbloeding en het optreden van een miltinfarct.

Tot op heden is er nog geen evidentie dat de immunfunctie in het gedrang zou komen na het ondergaan van een SAE voor milttrauma, bestaande studies suggereren dat deze bewaard zou blijven. Preventieve vaccinatie bij deze patiënten zou voorlopig dus niet aan de orde zijn. (24)
1.1.4.3 Observationeel management

Men kan overwegen een patiënt niet invasief te behandelen, maar observationeel indien deze hemodynamisch stabiel is. Observationeel management houdt in: frequent klinisch onderzoek van de patiënt, frequente hematocrietbepaling, bedrust, gelimiteerde orale voedsel- en vochtinname en opvolging d.m.v. CT-beeldvorming. Indien een patiënt onder observationeel management een dalend hematocriet vertoont kan dit een indicatie zijn om een angiografie uit te voeren om te onderzoeken of er geen actieve bloeding in de milt aanwezig is. (32)

Er is ook een tendens om bij penetrerend milttrauma na te gaan of een NOM mogelijk is. Dit is te overwegen bij geselecteerde hemodynamisch stabiele patiënten zonder peritonitis. Zo zou men bij steekwonden tot 40% en bij anterieure abdominale schotwonden tot 1/3 van de patiënten initieel non-operatief kunnen behandelen. (21)

Als complicaties bij een observationeel management komt voornamelijk een persisterende bloeding voor. Indien deze significant is betekent dit meestal ook falen van de behandeling en moet ingegrepen worden. Hierbij gaat men over tot ofwel een SAE of heelkunde.

1.1.5 Conclusies uit de huidige literatuur

Besluitend kan gesteld worden dat een initiële inschatting van de hemodynamische stabiliteit van de patiënt van groot belang is. Hierna komt beeldvorming naar voor, de rol van CT is hierbij drievoudig: de schade aan de milt graderen, indicatie stellen voor behandeling (observationeel vs. SAE vs. heelkunde) en het opsporen van geassocieerde letsels. Een positieve FAST is bij hemodynamisch stabiele patiënten een indicatie om over te gaan tot heelkunde. Een conservatieve aanpak bij hemodynamisch stabiele patiënten is de eerste keuze-behandeling. Hierbij is frequente monitoring noodzakelijk om eventueel noodzakelijk invasief ingrijpen niet onnodig lang uit te stellen. SAE heeft een meer beperkte plaats en kan uitgevoerd worden bij een falen van conservatieve therapie of onmiddellijk indien hiervoor indicatie kan worden gesteld via beeldvorming. De rol van heelkunde situeert zich in de setting van de hemodynamisch instabiele traumapatiënt en in geval van falen van voorgaande, meer conservatieve therapieën.
1.1.6 Huidige problemen
Uitgaande van de bestaande literatuur wordt men met een aantal vragen geconfronteerd. Door de evolutie waarbij heelkunde niet meer de eerste keuze behandeling is voor alle milttraumata is er weinig recente literatuur over heelkundige benadering. Er zijn nog maar weinig gegronde klinische parameters voor de indicatiestelling van patiënten die in aanmerking komen voor de verschillende behandelingsmodaliteiten. Er is nood aan voorspellende parameters dwelke kunnen helpen de juiste groep patiënten te selecteren bij wie een NOM zo weinig mogelijk kans heeft op falen, een zo laag mogelijke incidentie van complicaties kent en bij wie de overleving zo hoog mogelijk is. Er is over SAE nog meer informatie nodig met betrekking tot complicaties, indicaties en contra-indicaties. Dit wordt bemoeilijkt door het feit dat dit relatief zelden uitgevoerd wordt.

1.2 Doel
Deze studie heeft als doel na te gaan in welke mate de huidige aanbevelingen tot een goede uitkomst voor de patiënt leiden en welke factoren deze uitkomst beïnvloeden. De wijze waarop de opvang en behandeling van milttraumapatiënten gebeurt in het UZ Gent zal onderzocht worden waarna deze zal vergeleken worden met de beschikbare literatuur. Meer specifiek zullen de verschillende behandelingssmodaliteiten onderling vergeleken worden wat betreft kans op falen van de therapie, het voorkomen van complicaties, het overleven van de patiënt… Ook zal aandacht uitgaan naar het opsporen van voorspellende factoren die kunnen helpen bij de keuze van de uiteindelijke behandeling.

Er zal getracht worden antwoorden te formuleren op voorgenoemde huidige problemen bij de aanpak van milttrauma en mogelijke nog niet geïdentificeerde problemen in de aanpak in kaart te brengen. Uiteindelijk zal op basis van deze studie een besluit gemaakt worden met aanbevelingen voor de behandeling van milttraumata, en/of aanzet tot verder onderzoek.
2. Methoden

2.1 Studie design
Het design van deze studie betreft een monocentrische retrospectieve studie. Studiehypothesen werden gemaakt op basis van de wetenschappelijke literatuur. De verzamelde data werd vervolgens aan deze hypothesen getoetst.

2.2 Setting
Deze studie werd uitgevoerd in het kader van een masterscriptie voor het behalen van “Master of Medicine in de geneeskunde”.

De patiëntenrekrutering gebeurde in november 2016 op basis van het medisch dossier van patiënten die in de periode januari 2005 tot en met het eerste semester van 2016 met exclusie van het jaar 2015 werden behandeld voor een milttrauma in het UZ Gent. Voor het jaar 2015 was geen lijst met patiënten behandeld voor een milttrauma beschikbaar; het was hier dus niet mogelijk om deze patiënten op te sporen. In totaal werden 133 personen aangeschreven.

2.3 Deelnemers

Deze deelname werd gevraagd aan de hand van een informerende brief gekoppeld aan een informed consent-formulier type opting-out.
2.4 Variabelen

2.4.1 Uitkomstvariabelen
Om de uitkomst van de aanpak van milttrauma te analyseren werden uitkomstvariabelen vastgelegd dewelke het resultaat van de behandeling beschrijven. Zo werd nagegaan of bij elke patiënt de initiële ingestelde therapie faalde (hieronder wordt verstaan het persisteren van de bloeding in de milt, met noodzaak tot meer invasieve therapie), en of de eventuele bijgestuurde therapie faalde. Naast het falen van behandeling werd ook nagegaan of er complicaties optraden, met bijzondere aandacht voor sepsis of andere infectieuze complicaties. Er werd nagegaan of de milt is kunnen gered worden alsook of de patiënt overleden is, tijdens de behandeling of later. Hiernaast werd ook de totale opnameduur en de ligduur op de intensive care unit (ICU) nagegaan.

2.4.2 Voorspellende variabelen
Als factoren die verondersteld werden een invloed te hebben op het succes van de behandeling en overleving werden volgende beschouwd:
Allereerst werden de persoonskenmerken beschouwd, met name de leeftijd van de patiënt waarop het trauma optrad en het geslacht van de patiënt.
Ten tweede de kenmerken met betrekking tot het trauma. Hierbij werd gekeken op welk moment van de dag het trauma optrad, wat de oorzaak hiervan was, of het een penetrerend of stomp abdominaal trauma betrof, of de patiënt begeleidende letsels vertoonde en of de patiënt bij opname zich in een hemodynamisch stabiele toestand bevond.
Ten derde zijn er elementen met betrekking tot de diagnosestelling die een voorspellende waarde kunnen hebben; hier werd nagegaan of de hemoglobineconcentratie van de patiënt bij opname een voorspellende waarde had. Er werd onderzocht welke beeldvormingsonderzoeken werden uitgevoerd en of hierop vrij abdominaal vocht te zien was, of in het geval van CT-onderzoek een contrast blush ter hoogte van de milt waarneembaar was. Ook werd opgezocht of de mitschade gescoord werd aan de hand van een classificatie.
Als laatste categorie van voorspellende variabelen kunnen elementen met betrekking tot de behandeling beschouwd worden. Hierbij werd gekeken naar het jaar waarin de patiënt in het UZ behandeld werd, wat de initiële therapie was, of de patiënt werd doorverwezen vanuit een ander centrum.
2.4.3 Confounding variabelen
Als belangrijkst geachte confounding variabele worden de polytraumapatiënten beschouw. Deze patiëntengroep is ondanks hun gemeenschappelijk miltletsel vrij heterogeen. Ook patiënten die uit een ander centrum werden doorverwezen voor behandeling kunnen de resultaten beïnvloeden. Dit door mogelijke verschillen in aanpak, een langere tijd tussen diagnose en behandeling, het doorverwijzen van patiënten bij wie de initiële behandeling reeds faalde etc.

2.5 Databronnen
Voor de verzameling van de data werd toegang verkregen tot het Elektronisch Patiëntendossier (EPD) van het UZ Gent. In het EPD werden de patiënten van de uiteindelijke studiepopulatie opgezocht en werden alle relevante klinische verslagen doorgelezen. Hieruit werd de informatie gewonnen dewelke werd omgezet naar variabelen in een aparte database. Wegens het restrospectief design werd geen bijkomende informatie verkregen; alle informatie die verzameld werd was reeds aanwezig op het moment van consulteren van het EPD. De labo-waarden werden overgenomen uit de laboresultaten van de bloedafnames verricht in het UZ Gent.

2.6 Bias
Het is vanzelfsprekend dat er in deze studie een groot risico op bias aanwezig is vanwege het retrospectief karakter. De verzameling van data vanuit verslagen die niet steeds op dezelfde manier opgesteld worden dragen hiertoe bij. In het geval van interpretatie van beeldvorming kon in sommige gevallen enkel een beschrijvende, doch niet conform een classificatie, interpretatie gevonden worden. Dit heeft als gevolg dat niet voor elke milttraumapatiënt een analyse kan worden gemaakt op basis van het miltletsel volgens de AAST-classificatie.

Wat de follow-up betreft waren enkel gegevens beschikbaar indien deze plaatsvonden in het UZ Gent en hield dit meestal een klinisch onderzoek, echografische of CT-grafische beeldvorming in. Verdere informatie over het ziekteverloop, immuunfunctie van de patiënten, laattijdige complicaties… werden dus niet rechtstreeks opgevolgd. Ook andere onderzochte variabelen worden niet routinematig bijgehouden waardoor een groot aantal missing variabelen ontstaat. Een ander element is het feit dat de dataverzameling en het opstellen van de database hoewel elektronisch, manueel gebeurde. Er bestaat dus een (kleine) kans dat in dit proces fouten hebben plaatsgevonden.
2.7 Statistische methoden

De verkregen gegevens werden geordend in een dataset en verwerkt via het statistisch programma IBM SPSS v.24.

Er wordt onderzocht of personen, afhankelijk van de verschillende voorspellende variabelen (zoals opgesomd in 2.4.3) een significant verschillende kans hebben op een andere outcome. Significantie wordt nagegaan op een significantieniveau $\alpha = 0,05$.

Om associaties tussen verschillende variabelen na te gaan werden voor categorische variabelen gepaarde χ^2-testen uitgevoerd met nadien Bonferroni-correctie wegens het uitvoeren van multiple tests.

In het geval van missing data bij een bepaalde variabele werd nagegaan of deze data al dan niet “missing not at random” (MNAR) is. Indien missing data “missing at random” (MAR) of “missing completely at random” (MCAR) werd voor deze variabelen multiple imputatie toegepast. Bij het uitvoeren van deze multiple imputatie werden 40 iteraties uitgevoerd, hierbij werden outcome variabelen, indien missing, niet geïmputeerd.

Bij continue variabelen werd onderzocht of deze de normale verdeling volgen, dit aan de hand van de visuele representatie en de Shapiro-Wilk-test.
3. Resultaten

3.1 Deelnemers

Van de oorspronkelijke patiëntenpopulatie van 154 personen (aangeleverd op de lijst van de dienst MZG) waren 21 personen reeds overleden. Uiteindelijk werden 133 personen om hun informed consent gevraagd. 11 personen waren lost to follow-up, informed consent kon in deze gevallen niet verkregen worden. 1 persoon gaf uitdrukkelijk geen toestemming om deel te nemen. Van de patiënten wiens informed consent verkregen was werden er uiteindelijk nog 34 niet geïncludeerd om volgende redenen: bij 13 personen was er sprake van een iatrogene miltletsel (peroperatoir bij een oesofagus/maagoperatie), 2 personen kenden een spontane ruptuur ten gevolge van een splenomegalie door een virale oorzaak, bij 14 personen werd uiteindelijk geen zekerheidsdiagnose van een miltlaceratie weerhouden, 5 personen overleden kort na opname ten gevolge van een zwaar neurotrauma. Het totaal aantal deelnemers aan deze studie bedroeg uiteindelijk 108 personen (Zie figuur 1).

Figuur 1. Bekomen studiegrootte a.d.h.v. exclusiecriteria.
3.2 Outcome data

Voor de rapportering van gegevens wordt als volgt gewerkt: indien er ontbrekende data zijn bij een bepaalde variabele dan zal telkens vermeld worden waar en hoeveel ontbrekende data bestaan. Bij het beschrijven van volgende variabelen zullen eerst de gegevens weergegeven worden die de volledige studiegrootte betreffen, dit wil zeggen voor polytraumata (PT) en solitair milttrauma (SMT) samen. Daarna zullen de gegevens voor SMT en PT afzonderlijk voorgesteld worden.

3.2.1 Begeleidende letsels.

86 van de 108 personen (80%) hadden naast hun milttrauma bijkomend een of meerdere letsels opgelopen en werden bijgevolg beschouwd als polytraumapatiënten. De begeleidende letsels (een letsel aan een ander lichaamsdeel) kunnen opgesplitst worden in extra-en intra-abdominale letsels. In 32 van de 86 gevallen (37%) was er enkel sprake van geassocieerde extra-abdominale (EA) letsels, in 4 gevallen (5%) enkel sprake van begeleidende intra-abdominale (IA) letsels. Bij 50 van de 86 personen (58%) werden zowel bijkomende IA als EA letsels vastgesteld. (Zie tabel 1)

<table>
<thead>
<tr>
<th>Lokalisatie begeleidende letsels</th>
<th>Aantal (N=86)</th>
<th>RF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enkel intra-abdominaal</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Enkel extra-abdominaal</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Intra-en extra-abdominaal</td>
<td>50</td>
<td>46</td>
</tr>
</tbody>
</table>

RF= absolute frequentie (ten opzichte van de volledige studiepopulatie)

Voor een gedetailleerd overzicht van de begeleidende EA letsels wordt naar de appendix verwezen.

Nota bene: onder orthopedisch letsel worden schedeltrauma’s niet apart meegerekend; dit wordt als neurotrauma beschouwd wegens 100% concordantie tussen schedeltrauma en neurotrauma in deze dataset. Deze worden samen benoemd als hoofdletsel.

Als frequentste begeleidende letsels worden orthopedische letsels en longletsels gezien; bij 71 van de 108 personen (66%) zijn er een of meerdere fracturen terug te vinden en bij 43 van de 108 personen (40%) zijn een of meerdere longletsels terug te vinden. Voor een meer uitgebreide weergave van alle begeleidende letsels: zie appendix, tabel I.

De meest frequente orthopedische letsels zijn een of meerdere ribfracturen; deze komen voor bij 43 van de 71 personen (61%) met begeleidende orthopedische letsels. Als tweede meest frequente komen lidmaatfracturen voor. 19 van de 71 personen (27%) hadden minstens één fractuur aan de ledematen. Zie tabel II in appendix voor de verdere onderverdeling van de orthopedische letsels.
De begeleidende longletsels waren voornamelijk een unilaterale of bilaterale longcontusie bij 21 van de 49 personen (43%) en ten minste één unilaterale pneumothorax bij 26 personen van de 49 (53%). Zie appendix, tabel III.

De IA letsels betroffen voornamelijk solide organen, met name de lever en de nier. Bij 16 personen (36%) werd een bijkomend nierletsel vastgesteld. Bij 13 personen (30%) werd een bijkomend leverletsel vastgesteld. Zie appendix, tabel IV.

3.2.2 Leeftijd en geslacht

De leeftijd van de beschouwde populatie is niet normaal verdeeld. Van de beschouwde 108 beschouwde personen was de gemiddelde leeftijd 29 jaar (SD=17,3) en de mediane leeftijd 25 jaar. Het jongste slachtoffer was 2 jaar en het oudste 83 jaar. De gemiddelde leeftijd bij de populatie met een solitair milttrauma bedroeg 19 jaar (SD=17,7), de mediane leeftijd 13 jaar. Bij de polytraumata bedroeg deze 32 jaar (SD=16,5) en bedroeg de mediane leeftijd 31 jaar.

De geslachtsverdeling is als volgt: 80 slachtoffers waren man (74%) en 28 waren vrouw (26%). Deze verhouding blijft constant indien men SMT en PT met elkaar vergelijkt. Zie tabel 2.

<table>
<thead>
<tr>
<th>Geslacht</th>
<th>SMT (N=22)</th>
<th>PT (N=86)</th>
<th>Totaal (N=108)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n) (%)</td>
<td>(n) (%)</td>
<td>(n) (%)</td>
</tr>
<tr>
<td>Man</td>
<td>16 (73)</td>
<td>64 (74)</td>
<td>80 (74)</td>
</tr>
<tr>
<td>Vrouw</td>
<td>6 (27)</td>
<td>22 (26)</td>
<td>28 (26)</td>
</tr>
</tbody>
</table>

3.2.3 Tijdstip van opname.

Meeste opnames op de dienst vonden overdag plaats (07:00-22:00u). Namelijk 85 (78%) overdag en 23 ’s nachts (22%). Zie tabel V in appendix voor verdere onderverdeling.

3.2.4 Oorzaak van milttrauma.

De meest frequente oorzaak van het milttrauma was een verkeersongeval, dit was zo bij 74 personen (69%). Hiernaast liepen 11 personen (11%) hun trauma op tijdens sportbeoefening waarvan 7 personen gewond raakten door een paard (van het paard gevallen of een stamp in het abdomen ontvangen). Zowel bij SMT als bij PT zijn de meest frequente oorzaken verkeersongevallen en een val (al dan niet van een hoogte). Zie appendix, tabel VI een voor weergave van alle oorzaken.
3.2.5 Hemodynamische parameters bij aanmelding

Bij aanmelding op de dienst spoedgevallen waren 8 personen hypotens (7%) (dit wil zeggen een systolische bloeddruk < 90mmHg). Bij 42 personen (39%) ontbraken gegevens over bloeddruk bij aanmelding in het medisch dossier.

Bij 39 personen (36%) ontbrak eveneens informatie over de hartfrequentie in het medisch dossier. 33 personen (31%) waren tachycard bij aankomst (hartslagfrequentie >100bpm).

23 personen (21%) werden bij aankomst hemodynamisch (HD) instabiel beschouwd. Van 4 personen (4%) ontbreekt het oordeel over HD (in)stabiliteit.

33 personen (31%) waren tachycard bij aankomst (hartslagfrequentie >100bpm).

Bij SMT waren 3 personen (14%) hypotens bij aanmelding, bij 5 van de 22 personen (23%) ontbrak hierover gegevens. 8 van de 22 personen met een SMT (36%) waren tachycard.

Bij 6 personen (27%) ontbrak informatie over de hartfrequentie. Bij de PT-patiënten waren 4 personen (5%) bij aankomst hypotens, bij 35 personen (44%) ontbrak hierover informatie.

Verder waren bij de PT-patiënten 24 personen (31%) tachycard bij aanmelding. Bij 32 van de 86 PT-patiënten (37%) ontbrak hierover informatie.

3.2.6 Beeldvorming

Bij 103 personen (95%) werd beeldvorming uitgevoerd, deze beeldvorming betrof in 3 gevallen (3%) enkel echografie, in 74 gevallen (72%) enkel een CT-onderzoek en in 26 gevallen (25%) zowel echografie als een CT-onderzoek. Zie tabel 3.

<table>
<thead>
<tr>
<th>Onderzoek</th>
<th>SMT (N=22)</th>
<th>PT (N=81)</th>
<th>Totaal (N=103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CT</td>
<td>8</td>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td>Echo + CT</td>
<td>11</td>
<td>50</td>
<td>26</td>
</tr>
</tbody>
</table>

Bij de PT-patiënten ondergingen 81 van de 83 personen beeldvorming (98%), dit was in 66 gevallen (82%) enkel een CT-onderzoek en in 15 (18%) een combinatie van CT-onderzoek en echografisch onderzoek.

Bij 28 van de uitgevoerde CT-onderzoeken (28%) werd een contrast blush gezien ter hoogte van de milt. 6 van deze personen (21%) behoorden tot de groep van SMT.
3.2.7 Bijkomende onderzoeken

6 personen (6%) ondergingen bijkomende evaluaties, in 5 gevallen (83%) was dit een angiografische evaluatie, in 1 geval (17%) een DPL.

Slechts 1 persoon (5%) met een SMT had nood aan bijkomende investigaties, deze persoon onderging een diagnostische angiografie. Bij de PT werd bij 5 personen (6%) overgegaan tot verdere investigaties, deze waren in 4 gevallen angiografie, in 1 geval was dit een DPL.

3.2.8 AAST-Classificatie

Bij slechts 68 personen (63%) werd een gradering van het miltletsel volgens de AAST-classificatie gemaakt. De overige 40 personen (37%) kregen enkel de diagnose miltlaceratie in het verslag. Zie tabel 4 en figuur 2.

<table>
<thead>
<tr>
<th>Graad</th>
<th>SMT (N=12)</th>
<th>PT (N=56)</th>
<th>Totaal (N=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>I</td>
<td>0 (0%)</td>
<td>9 (16%)</td>
<td>9 (13%)</td>
</tr>
<tr>
<td>II</td>
<td>2 (17%)</td>
<td>9 (16%)</td>
<td>11 (16%)</td>
</tr>
<tr>
<td>III</td>
<td>5 (42%)</td>
<td>18 (32%)</td>
<td>23 (34%)</td>
</tr>
<tr>
<td>IV</td>
<td>3 (25%)</td>
<td>15 (27%)</td>
<td>18 (27%)</td>
</tr>
<tr>
<td>V</td>
<td>2 (17%)</td>
<td>5 (9%)</td>
<td>7 (10%)</td>
</tr>
</tbody>
</table>

Figuur 2. Verdeling milttraumata volgens de AAST-classificatie.
3.2.9 Soort trauma
107 personen (99%) leden aan een stomp milttrauma, 1 persoon (1%) aan een penetrerend milttrauma.

3.2.10 Vrij vocht
Bij initiële evaluatie werd met behulp van beeldvorming (echografie en/of CT-onderzoek) bij 48 van de 103 personen die beeldvorming kregen (47%) vrij vocht vastgesteld. Bij 4 personen (4%) ontbreeken hierover gegevens.
Bij SMT was er bij 11 van de 22 personen (50%) via beeldvorming vrij abdominaal vocht te zien.
Bij PT-patiënten was er bij 36 van de 81 personen (3%) vrij vocht te zien via beeldvorming.

3.2.11 Behandeling.
De initiële uitgevoerde behandeling was bij 70 personen (65%) conservatief, bij 9 personen (8%) werd een SAE uitgevoerd, bij 23 personen (21%) werd onmiddellijk overgegaan tot heelkunde. Bij 6 personen (6%) werd geen informatie teruggevonden over de initiële behandeling, deze personen behoorden allen tot de groep PT-patiënten.
Zowel bij SMT als bij PT werd in de meeste gevallen overgegaan tot een observationeel beleid (in 16 en 55 van de gevallen respectievelijk) Als tweede meest frequent behandelings werd heelkunde uitgevoerd (respectievelijk in 4 en 19 gevallen). Zie tabel 5.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>SMT (N=22)</th>
<th>PT (N=80)</th>
<th>Totaal (N=102)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>(%)</td>
<td>(n)</td>
</tr>
<tr>
<td>Observatie</td>
<td>16</td>
<td>72</td>
<td>54</td>
</tr>
<tr>
<td>SAE</td>
<td>2</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Heelkunde</td>
<td>4</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Splenectomie LT</td>
<td>1</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Splenectomie LP</td>
<td>1</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Miltsparend</td>
<td>1</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Exploratie LT</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Exploratie LP</td>
<td>1</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

LT = laparotomie, LP = laparascopie

3.2.12 Falen initiële behandeling
De initiële ingestelde behandeling faalde in 7 gevallen (7%). Bij 2 personen (2%) werd geen uitkomst teruggevonden. Bij SMT faalde de behandeling in één geval (5%). Bij PT faalde de behandeling in 6 gevallen (7%).
3.2.13 Bijgestuurde behandeling

De initiële behandeling faalde bij het observationeel beleid in 2 gevallen (3%). Bij de SAE-groep faalde deze behandeling bij 3 personen (33%). Heelkunde faalde in 2 gevallen (9%), hierbij werd overgegaan tot een SAE bij 1 persoon en observatie bij de andere persoon. Zie figuur 3.

Figuur 3. Bijgestelde behandelingen indien initiële behandeling faalde

3.2.14 Complicaties

In totaal traden bij 40 personen (37%) complicaties op. Van deze 40 ontwikkelden er 29 personen (73%) een trombocytose in het bloedbeeld, 6 personen van de 40 (15%) ontwikkelden infectieuze complicaties. 2 personen (5%) ontwikkelden een sepsis; beide personen hadden een splenectomie ondergaan.

Na heelkunde (primaire of secundaire) traden in totaal bij 6 van de 27 personen (22%) complicaties op. In 1 geval (4%) was dit een thrombocytose. 4 personen (15%) ontwikkelden infectieuze complicaties, waaronder 2 personen een sepsis. Beide personen hadden een splenectomie ondergaan.

In de groep patiënten behandeld met SAE traden bij 4 personen (44%) complicaties op. In 2 van de 4 gevallen (50%) was dit een trombocytose. Eén persoon ontwikkelde een acuut respiratoire distress syndroom (ARDS), de ander een pneumonie.

Bij observationeel beleid ontwikkelden 22 personen (34%) complicaties, de meest frequente complicatie in deze groep is trombocytose, welke bij 17 personen optrad (24%).

Zie appendix, tabel VII-X voor een volledig overzicht van opgetreden complicaties per behandelingsmodaliteit.
3.2.15 Doorverwezen vanuit ander centrum
Van de 108 behandelde personen waren er 30 afkomstig vanuit een ander centrum (28%). Bij SMT waren 10 van de 22 personen (46%) doorverwezen vanuit een ander centrum. PT patiënten waren in 20 van de 83 gevallen (24%) doorverwezen vanuit een ander centrum.

3.2.16 Splenic salvage
Bij 87 personen kon uiteindelijk de milt gered worden. Dit komt neer op een splenic salvage rate (SSR) van 81%.
Bij SMT-patiënten werd bij 18 van de 22 personen de milt gered, hier ligt de SSR op 82%. Bij PT-patiënten werd in 66 van de 86 gevallen de milt gered, de SSR ligt hier op 77%.

3.2.17 Labo
De Hb-concentratie van de onderzochte populatie is normaal verdeeld. De gemiddelde Hb-concentratie bij de opgenomen patiënten bedroeg 11.42 g/dl (SD=3) met een minimum van 3.2 g/dl en een maximum van 21.1 g/dl. Deze werd bij 101 patiënten geregistreerd in het dossier.

 Bij SMT was de gemiddelde Hb-concentratie bij opname 11.7g/dl (SD=3) met een minimum van 4.6 en een maximum van 18.6 g/dl.
 Bij PT was de gemiddelde Hb-concentratie bij opname 11.3 g/dl (SD=3) met een minimum van 3,2 en een maximum van 21.1 g/dl.

Bij 73 personen was het thrombocytenaantal terug te vinden. Het gemiddelde aantal was 228 x 10⁹/mm³ (SD=104) met een minimum van 42 x 10⁹/mm³ en een maximum van 787 x 10⁹/mm³.

3.2.18 Hospitalisatieduur.
De gemiddelde verblijfsduur in het hospitaal bedroeg 31 dagen (SD=50), de mediane verblijfsduur bedroeg 14 dagen. Bij personen die verbleven op de afdeling intensieve zorgen (ICU) was de gemiddelde ligduur op deze dienst 6 dagen (SD=8), de mediana ligduur was hier 3 dagen. Zie appendix, tabel XI en XII voor verdere informatie m.b.t. gemiddelde verblijfsduur.

Personen die initieel een observationeel beleid toegewezen kregen bleven gemiddeld 32 dagen in het hospitaal en 6 dagen op de ICU. De mediane verblijfsduur is respectievelijk 12 dagen en 3 dagen. Personen die initieel SAE toegewezen kregen verbleven gemiddeld 14 dagen in het hospitaal waarvan 4 dagen op de ICU. De mediane verblijfsduren zijn hier respectievelijk 12 en 4 dagen. Personen die heelkunde ondergingen verbleven gemiddeld 53 dagen in het hospitaal waarvan 6 dagen op de ICU. De mediane verblijfsduur is hier respectievelijk 23 en 3 dagen.
Personen bij wie observationeel beleid faalde verbleven gemiddeld 10 dagen in het hospitaal, indien dit niet faalde was de gemiddelde verblijfsduur 31 dagen. De gemiddelde verblijfsduur op een ICU was 1 dag indien dit faalde en 6 dagen indien dit niet faalde.

Personen bij wie SAE faalde verbleven gemiddeld 19 dagen in het hospitaal in vergelijking met 12 dagen indien deze niet faalde, de gemiddelde verblijfsduur op de ICU was gemiddeld 7 dagen bij falen van SAE en 3 dagen indien deze niet faalde.

Personen bij wie de heelkundige behandeling faalde verbleven gemiddeld 23 dagen in het hospitaal, bij wie deze niet faalde gemiddeld 62 dagen. Indien heelkundige behandeling faalde was de gemiddelde verblijfsduur op de ICU 2 dagen, indien deze niet faalde 6 dagen. De verblijfsduur op basis van het type heelkunde verdeelt zich als volgt: bij het uitvoeren van een laparotomische splenectomie is de gemiddelde verblijfsduur in het hospitaal 51 dagen en 6 dagen op de ICU. Bij het uitvoeren van een miltsparende heelkunde is dit 115 dagen en 14 dagen op de ICU. Bij het uitvoeren van een laparoscopische splenectomie is dit 13 dagen en 1 dag op de ICU gemiddeld.

Indien er complicaties optraden was de gemiddelde verblijfsduur op de ICU 6 dagen, indien geen complicaties optraden was deze eveneens 6 dagen. De gemiddelde verblijfsduur in het hospitaal was bij afwezigheid van complicaties 30 dagen, bij aanwezigheid van complicaties was dit 49 dagen.

Tabel 6. Verblijfsduur op basis van succes behandeling.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Gemiddelde verblijfsduur*</th>
<th>Gemiddelde verblijfsduur ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niet falen</td>
<td>Falen</td>
</tr>
<tr>
<td>Observationeel</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>SAE</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Heelkunde</td>
<td>62</td>
<td>23</td>
</tr>
</tbody>
</table>

* Verblijfsduur uitgedrukt in dagen.

Tabel 7. Verblijfsduur op basis van type heelkundige behandeling.

<table>
<thead>
<tr>
<th>Type heelkunde</th>
<th>Gemiddelde verblijfsduur*</th>
<th>Gemiddelde verblijfsduur ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenectomie LT</td>
<td>51</td>
<td>6</td>
</tr>
<tr>
<td>Splenectomie LP</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Miltsparende heelkunde</td>
<td>115</td>
<td>14</td>
</tr>
</tbody>
</table>

* Verblijfsduur in dagen.
3.2.19 Evolutie in de tijd

Figuur 4. Initiële behandelingskeuze per jaar

Er is geen duidelijke trend waarneembaar over de jaren met betrekking tot initieel ingestelde therapie. Wel kan men vaststellen dat een observationeel beleid in elk jaar het meest frequent is, gevolgd door het uitvoeren van heelkunde, behalve voor de jaren 2008 en 2012. (zie figuur 4)

3.2.20 Overlijden

Uiteindelijk zijn er van de 108 behandelde patiënten 4 overleden (4%). Hiervan leed 1 persoon aan een solitair milttrauma opgelopen tijdens een epileptisch tonisch-clonisch insult. De overige 3 personen (3%) waren polytraumapatiënten.
3.3 Hoofdresultaten
Om na te gaan of er significante voorspellende variabelen bestaan met betrekking tot de outcome variabelen werden χ^2-tests uitgevoerd op de geïmputeerde dataset. Indien niet aan de voorwaarden voor de χ^2-test werd voldaan werd gekozen voor de Fisher’s exact test. De bekomen significante weerspiegelt de significantie van de pooled uitkomst van de verschillende imputaties. Nadien werden multiple enkelvoudige logistische regressies uitgevoerd met het oog op het bekomen van odds ratio's. Indien significantie bekomen werd worden de odds ratio’s vermeld.

Er werden significante voorspellende variabelen gevonden:
Voor de outcome-variabele overlijden was dit HD-stabiliteit. Voor het falen van de initiële behandeling waren dit uitvoeren van SAE en CT blush. Het optreden van splenic salvage verschilt op basis van de HD-stabiliteit van de patiënt, aanwezigheid van vrij vocht op beeldvorming, CT-blush en tussen NOM en heelkunde als therapie onderling. Ook het uitvoeren van miltsparende heelkunde geeft effectief een hogere kans op het redden van de milt in vergelijking met een splenectomie.
Voor het optreden van complicaties en sepsis werden geen significante voorspellende variabelen gevonden. Voor een volledig overzicht van alle significant bevonden variabelen zie tabel 6.

3.3.1 Beeldvorming
De aanwezigheid van een contrast blush op CT ter hoogte van de milt is een significante voorspeller van zowel falen van initiële therapie als van SS: patiënten met een blush op CT hebben een odds ratio (OR) van 0.3 ($p = 0.019$) op het redden van hun milt ten opzichte van personen zonder blush. Bij SMT-patiënten is deze OR 0.07 ($p = 0.04$). De aanwezigheid van een blush geeft een OR van 7.6 ($p = 0.02$) op het falen van initiële therapie vergeleken met personen zonder blush.
Noch vrij vocht op beeldvorming, noch hoog-versus laaggradig miltletsel zijn bepalend bevonden voor hemodynamische stabiliteit (χ^2, $p = 0.075$).

3.3.2 Falen behandeling
SAE faalde significant meer dan bij observatie en heelkunde samen (OR = 18.4, $p < 0.001$). Indien een blush op CT aanwezig is bij patiënten die initieel een observationele behandeling toegewezen kregen, dan heeft deze behandeling een hoger risico op falen (F-exact, $p = 0.027$). Voor de volledige populatie is de odds ratio op falen 7.6 ($p = 0.02$). In de polytrauma-populatie is deze OR = 6.4, ($p = 0.04$).
3.3.3 Splenic salvage
Hemodynamisch stabiele patiënten vertonen een OR van 16.5 (p < 0.001) op het behouden van hun milt ten opzichte van hemodynamisch instabiele patiënten. Ook bij HD-stabiele PT-patiënten is dit zichtbaar: deze vertonen een OR = 15 (p < 0.001) op het behouden van hun milt ten opzichte van HD instabiele PT-patiënten. Indien als initiële behandeling een NOM beleid werd ingesteld (observatie en/of SAE), hebben patiënten, indien deze faalt, een hoger risico om hun milt te verliezen (OR = 181, p < 0.001). In de PT-populatie is deze OR = 320 (p < 0.001). Er is een significant verschil in splenic salvage bij falen van de initiële observationele therapie (F-exact, p = 0.029).

Er is een significant verschil in optreden van splenic salvage tussen personen met vrij vocht op beeldvorming en personen zonder vrij vocht op beeldvorming. Personen zonder vrij vocht op beeldvorming hebben een OR van 4.9 (p = 0.004) op het redden van de milt ten opzichte van personen met vrij vocht. In de PT-populatie is deze OR = 5.3 (p = 0.008).

3.3.4 Overlijden
In de algemene milttraumapopulatie hebben personen die bij opname HD-instabiel zijn een groter risico op overlijden ten opzichte van HD-stabiele patiënten. (F-exact, p = 0.048). Er is bij de polytraumapatiënten een significant verschil in overleving na 5 jaar bij patiënten bij wie de milt gered is t.o.v. de populatie bij wie dit niet zo is en dit onafhankelijk van de leeftijd (F-exact, p = 0.04). Ook bij polytraumapatiënten is hemodynamische (in)stabiliteit een bepalende factor voor overlijden in het hospitaal (F-exact, p = 0.04).

3.3.5 Complicaties
Er zijn geen significante factoren gevonden die een hogere kans op het optreden van bepaalde complicaties kunnen helpen verklaren.

3.3.6 Verblijfsduur
Er is een significant verschil in ligduur tussen patiënten die een observationeel beleid toegewezen kregen tegenover patiënten die heelkunde ondergingen (Kruskall-Wallis, p = 0.036). Patiënten die heelkunde ondergingen bleven dus gemiddeld 11 dagen langer opgenomen op een niet ICU. Indien een observationeel beleid faalt leidt dit tot een significant korter verblijf op een ICU (Kruskall-Wallis, p = 0.047). Deze personen blijven dus gemiddeld 5 dagen korter op een ICU.
Er is een significant verschil in verblijfsduur op een ICU indien het uitvoeren van een SAE faalt (Kruskall-Wallis, p = 0.027). Personen bij wie dit faalt verblijven dus gemiddeld 4 dagen langer op een ICU.

Bij het vergelijken van de verschillende heelkundige technieken onderling zijn er geen significante verschillen met betrekking tot verblijfsduur in het hospitaal of ICU.

Tabel 8. Samenvatting van significant bevonden voorspellende variabelen op de volledige populatie

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Voorspellende variabele</th>
<th>Test</th>
<th>Significatie</th>
<th>Sign. na correctie°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlijden</td>
<td>HD stabiliteit</td>
<td>F-exact</td>
<td>p = 0.048</td>
<td>p = 0.72</td>
</tr>
<tr>
<td>Falen initiële behandeling</td>
<td>SAE (t.o.v. obs en hk)</td>
<td>F-exact</td>
<td>p = 0.002</td>
<td>p = 0.03</td>
</tr>
<tr>
<td></td>
<td>CT-blush</td>
<td>Chi²</td>
<td>p = 0.008</td>
<td>p = 0.12</td>
</tr>
<tr>
<td>Splenic salvage</td>
<td>HD stabiliteit</td>
<td>Chi²</td>
<td>p < 0.001</td>
<td>p < 0.015</td>
</tr>
<tr>
<td></td>
<td>Vrij vocht</td>
<td>Chi²</td>
<td>p = 0.002</td>
<td>p = 0.03</td>
</tr>
<tr>
<td></td>
<td>NOM</td>
<td>Chi²</td>
<td>p < 0.001</td>
<td>p < 0.015</td>
</tr>
<tr>
<td></td>
<td>CT-blush</td>
<td>Chi²</td>
<td>p = 0.015</td>
<td>p = 0.23</td>
</tr>
<tr>
<td></td>
<td>Falen initiële therapie*</td>
<td>F-exact</td>
<td>p = 0.003</td>
<td>p = 0.45</td>
</tr>
<tr>
<td></td>
<td>Miltsparende heelkunde</td>
<td>F-exact</td>
<td>p = 0.007</td>
<td>p = 0.11</td>
</tr>
<tr>
<td>Langer ICU verblijf</td>
<td>obs vs. hk</td>
<td>Kruskall-</td>
<td>p = 0.038</td>
<td>p = 0.076</td>
</tr>
<tr>
<td></td>
<td>Falen obs beleid</td>
<td>Kruskall-</td>
<td>p = 0.047</td>
<td>p = 0.094</td>
</tr>
<tr>
<td></td>
<td>Falen SAE</td>
<td>Kruskall-</td>
<td>p = 0.027</td>
<td>p = 0.054</td>
</tr>
</tbody>
</table>

*NOM ten opzichte van heelkunde. °Bonferroni

3.4 Bijkomende analyses

Analyse van de subgroepen polytraumapatiënten en patiënten met een solitair milttrauma leert ons het volgende:

In de subgroep polytraumapatiënten is er (vóór correctie) een significant verschil in overlijden op basis van de HD stabiliteit en op lange termijn is er een significant verschil in overleving bij patiënten wiens milt gered is kunnen worden.

Indien er op CT een blush gezien wordt ter hoogte van de milt heeft de initiële behandeling een hogere kans op falen. Splenic salvage bij de PT-patiënten is afhankelijk van de HD stabiliteit van
de patiënt, van de aanwezigheid van vrij vocht op beeldvorming en van het al dan niet toegewezen krijgen van een NOM (zie tabel 9).

In de subgroep patiënten met een solitair milttrauma is er (vóór correctie) een significant verschil in het optreden van splenic salvage op basis van de HD stabilité, de aanwezigheid van een blush op CT. Het toegewezen krijgen van een observationeel beleid zorgt voor een grotere splenic salvage dan indien men tot SAE of heelkunde overgaat (zie tabel 10).

<table>
<thead>
<tr>
<th>Tabel 9. Samenvatting van significant bevonden voorspellende var. op subpopulatie polytraumata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Overlijden</td>
</tr>
<tr>
<td>Overleving na 5 jaar</td>
</tr>
<tr>
<td>Falen initiële behandeling</td>
</tr>
<tr>
<td>Splenic salvage</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

°Bonferroni

<table>
<thead>
<tr>
<th>Tabel 10. Samenvatting van significant bevonden voorspellende var. op subpopulatie solitair milttrauma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Splenic salvage</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

°Bonferroni. +Ten opzichte van SAE en HK samen
4. Discussie

4.1 Samenvatting resultaten

Het doel van deze studie was om elementen op te sporen die kunnen leiden tot een beter management van personen met een milttrauma.

De voornaamste oorzaak van milttrauma is nog steeds te wijten aan verkeersongevallen, gevolgd door accidenteel vallen en sportbeoefening.

Er is in deze studie geen verband aangetoond dat de aanwezigheid van een of meerdere geassocieerde letsels een invloed heeft op de outcome van de patiënt met betrekking tot overleving, optreden van complicaties.

Personen die bij opname in het hospitaal zich in een hemodynamisch instabiele situatie bevinden hebben een groter risico op overlijden ten gevolge van hun trauma.

Er is een significant verschil in het optreden van falen van SAE ten opzichte van observatie en heelkunde samen. Ook indien men als initiële behandeling een observationeel beleid aanneemt is er een groter risico op falen van SAE indien er op CT een blush zichtbaar is. Personen bij wie op beeldvorming vrij vocht waargenomen wordt alsook hemodynamisch onstabiele patiënten hebben een groter risico om hun milt te verliezen.

Wat splenic salvage betreft ziet men dat personen die hemodynamisch instabiel zijn, vrij vocht op beeldvorming vertonen, een blush vertonen op CT en bij wie een initiële NOM-behandeling faalt een groter risico hebben om hun milt te verliezen dan patiënten bij wie heelkunde faalt. Daarentegen hebben personen die als initiële behandeling NOM of miltsparende heelkunde ondergaan een lager risico om hun milt te verliezen.

In de polytrauma-populatie hebben hemodynamisch onstabiele patiënten een grotere kans dan hemodynamisch stabiele patiënten om hun milt te verliezen. Dit geldt ook indien er op beeldvorming vrij vocht zichtbaar is of als overgegaan wordt tot heelkunde. Ook hebben hemodynamisch onstabiele patiënten een hoger risico op overlijden. Personen bij wie de milt uiteindelijk gered kan worden hebben een lager risico op overlijden.

In de populatie patiënten met een solitair milttrauma kan men stellen dat hemodynamisch instabiele personen een hoger risico hebben op het verliezen van hun milt. Het vertonen van een blush ter hoogte van de milt op CT zou ook een hoger risico hierop geven.
Indien een patiënt doorverwezen werd vanuit een ander centrum heeft die een lager risico om de milt te verliezen. Het aannemen van een observationele houding bij patiënten met een solitair milttrauma geeft een lager risico om de milt te verliezen.

4.2 Beperkingen

Informatie over de gevolgen van de keuze van behandelstrategie op lange termijn werd bemoeilijkt door het feit dat personen die voor hun trauma behandeld werden in het UZ Gent voor follow-up niet steeds naar het UZ Gent terugkeren. Hierdoor kan waardevolle informatie met betrekking tot de mogelijke complicaties of verwikkelingen op lange termijn verloren gaan. Dit probleem is gevolg van de trauma-setting en is bijgevolg moeilijk te omzeilen. Nog een rechtstreeks gevolg hiervan is dat er slechts weinig informatie is over de ziektegeschiedenis/comorbiditeiten van de patiënten. Dit zijn mogelijke confounding variabelen die gemist worden.

Hiernaast moet gewezen worden op het retrospectief karakter van deze studie: een groot deel van de beschouwde variabelen wordt na ontslag niet standaard opgevolgd/geregistreerd in het patiëntendossier. Hier geraakt waardevolle informatie verloren. Het zou dus nuttig zijn om bij patiënten die een milttrauma doormaken standaard na te vragen of infectieuze en/of thromboembolische gebeurtenissen zijn opgetreden, hetzij in het hospital hetzij door de huisarts, en deze informatie dan ook routinematig te communiceren.

Deze studie baseert zich op een relatief kleine populatie. Er zijn in deze tijdsperiode tevens weinig personen overleden aan een milttrauma wat het moeilijk maakt om met grote zekerheid voorspellingen te doen over welke variabelen invloed hebben op de lange- en kortetermijnoverleving. Deze onzekerheid wordt weerspiegeld door sommige zeer hoge odds-ratio’s die mogelijk een gevolg zijn van een beperking in het aantal deelnemers.

Deels ten gevolge van de kenmerken van de AAST-classificatie zijn er kunstmatig veel graad III trauma’s omwille van de hogere score voor multiple laceraties/hematomen. Het zou kunnen dat hierdoor een subpopulatie ontstaat van patiënten met graad III AAST die ondanks deze graad klinisch eerder te vergelijken zijn met personen die aan een graad I of II lijden. Deze groep zou dus het risico lopen op té invasieve behandeling met meer risico op complicaties en morbiditeit. Door het gebruik van de (restrictieve) Bonferronicorrectie wegens het uitvoeren van multiple vergelijkingen kan het zijn dat bepaalde significante variabelen nu verworpen worden.
Dit is zo voor volgende variabelen:

- Hemodynamische stabiliteit als voorspellende factor voor overlijden.
- Blush op CT als voorspellende factor voor falen initiële behandeling en splenic salvage.
- Falen initiële behandeling, uitvoeren van miltsparende heelkunde, doorverwezen vanuit een ander centrum en vrij vocht op beeldvorming (bij PT-patiënten) als voorspellende factor voor splenic salvage

Het verwerpen van deze initieel als significant beschouwde variabelen heeft als gevolg dat potentieel belangrijke verbanden die klinisch wel relevant zijn niet weerhouden worden. Omdat het klinische belang niet onderschat mag worden, werd voor besluiten en interpretatie deze correctie niet in acht genomen.

Het rapporteren van milttrauma in radiologische verslagen gebeurt niet systematisch via een classificatie (zoals de AAST), dit was slechts in 62% van de verslagen het geval. Hierdoor werden technieken toegepast om met deze ontbrekende data om te springen. Dit heeft als gevolg dat extra bias geïntroduceerd kan worden. Ook werden er bij de dataverzameling vage beschrijvingen gevonden wat betreft al dan niet aanwezig zijn van een milttrauma, bij twijfel werd een patiënt niet geïncludeerd in deze studie, dit kan leiden tot een vertekening van de outcome.

Vaak wordt in de literatuur het begrip ‘splenic salvage’ als eindpunt beschouwd. Men kan zich de vraag stellen of dit zinvol is. In deze studie is aangetoond dat splenic salvage in de subpopulatie van polytraumapatiënten een invloed heeft op overleving na 5-jaar. Dit zou erop kunnen wijzen dat de huidige preventieve maatregelen die getroffen worden na een splenectomie nog onvoldoende zijn.

4.3 Interpretatie

4.3.1 Rol van beeldvorming

CT blijft het meest uitgevoerde beeldvormingsonderzoek, zowel bij SMT als bij PT. 22 van de 80 HD stabiele personen (28%) kregen initieel een FAST-onderzoek, waarvan 19 personen bijkomend een CT scan. Deze personen zouden hier weinig baat bij hebben aangezien een FAST bij een HD stabiele patiënt een lage sensitiviteit heeft en niet orgaanspecifiek is. (7) Bij de HD instabiele patiënten kregen er 7 initiële een FAST, opgevolgd door een CT-scan en 13 personen ondergingen enkel een CT-scan. Bij de overige 3 personen gebeurde geen beeldvorming of ontbrak informatie hierover in het dossier. Alle 13 HD instabiele personen die een CT
ondergingen waren polytraumapatiënten. Volgens Huber-Wagner et al. is het zeker te verantwoorden om bij deze patiënten onmiddellijk CT-grafische beeldvorming uit te voeren. (33)

Gelet op de specificiteit, maar vooral de sensitiviteit van CT ten opzichte van echografie blijft CT superieur voor het uitsluiten van abdominale letsels, ondanks de stralingsbelasting en duur. Zeker als men te maken heeft met hypotensieve patiënten: hierbij zou de CT misschien wel voorrang moeten krijgen op het uitvoeren van een FAST, indien deze CT tijdig beschikbaar is.

Noch vrij vocht op beeldvorming, noch hoog-versus laaggradig miltletsel zijn bepalend bevonden voor hemodynamische stabilité. Bij de beslissing om tot heilkunde over te gaan zou de aanwezigheid van vrij vocht of een hooggradig miltletsel geen rol moeten spelen en zou men kunnen voortgaan op het klinisch beeld; in deze studie is geen verband gevonden tussen de gradering van het miltletsel volgens de AAST-classificatie en de outcome.

Men kan zich dus net zoals Clark et al. de vraag stellen of deze classificatie een voorspellende waarde heeft op een gewenste afloop. (14) Dit wordt tegengesproken door Olthof et al. die in hun systematische review besluiten dat hooggradige miltletsels een hoger risico geven op falen van een NOM. Dit hoger risico varieert van OR 3-19.2 afhankelijk van de uitgevoerde studie. (15)

De aanwezigheid van een blush op CT brengt een verhoogd risico op falen van initiële therapie (NOM) met zich mee (zie 4.3.2 Falen behandeling). Ook geeft de aanwezigheid van een blush een 3.33-maal (95% BI [1.2-9.1]) hoger risico op het niet redden van de milt.

4.3.2 Falen behandeling

Het falen van een initieel observationele houding faalt in deze studie in 2 gevallen (3%; 95% BI [0.3-10%]). Dit verschilt niet significant van de 8.3% die gerapporteerd werd in de meta-analyse van Requarth et al. (31)

Het uitvoeren van een SAE faalt globaal gezien in 15.7%. (31) In deze studie ligt het percentage falen op 33% (95% BI [7.5-70]), dit verschilt niet significant met het globale falen. Dit kan verklaard worden door de kleine groep patiënten (9 personen) die op deze manier behandeld werden. Gelet op dit kleine aantal uitgevoerde SAE moet men voorzichtig zijn bij de interpretatie van het voorgaande.
Indien een SAE faalde werd overgegaan tot heelkunde, uiteindelijk is men bij 3 van de 9 personen hiertoe moeten overgaan. Misschien hadden deze patiënten beter onmiddellijk heelkunde gekregen, zodat geen onnodige tijd werd verloren.

Belangrijk om te beschouwen is dat deze drie patiënten allen hemodynamisch stabiel waren bij opname, de ernst van het letsel was 2 maal graad IV, eenmaal graad V. Alle drie waren jonger dan 65 jaar. Het betrof 2 mannen en 1 vrouw. 2 personen hadden begeleidende letsels en alle drie vertoonden een contrast blush op CT. Volgens Requarth et al. hebben patiënten met een graad IV-V trauma een lager risico op falen van initiële therapie in vergelijking met een observationeel beleid indien men een bijkomende SAE ondergaat (43.7% vs. 17.3% falen voor graad IV en 83.1% vs. 25% falen voor graad V). (31)

Men kan dus stellen dat bij deze 3 patiënten ondanks het falen er een gegrond reden was om tot SAE over te gaan indien men geen heelkunde zou uitvoeren.

De aanwezigheid van een blush op CT geeft bij alle patiënten een hoger risico op falen van de initiële behandeling (OR = 8.12; 95% BI [1.48-44.9]). Een gelijkwaardig fenomeen werd ook gevonden door Schurr et al.. Zij vonden dat personen die een blush op CT vertoonden een 24-maal hoger risico vertoonden op falen observationele behandeling (95% BI [3.9-147]). (34)

De patiënten (bij wie een blush wordt waargenomen) ondergaan dan preferentieel heelkunde (eventueel via laparoscopie), of SAE. Hoewel in de literatuur beschreven staat dat bij hogere AAST-classificaties het uitvoeren van SAE een betere prognose betekent in vergelijking met observationeel beleid is dit op basis van de eigen data niet bevestigd. (15,31)

SAE zou, indien enkel de eigen data beschouwd wordt, een plaats kunnen krijgen als therapie bij een patiënt met een laaggradig solitair mittruma (AAST I-III), indien de initiële observationele behandeling faalt.

De rol van SAE zou dus veranderen naar een nog selectievere therapie, enkel uit te voeren na het eventueel falen van een initiële observationeel beleid. Men kan verwachten dat hierdoor heelkunde als initiële behandeling ook zal stijgen in frequentie, doch zal dit niet per se leiden tot meer morbiditeit, ervan uitgaande dat minder behandelingen zullen falen, en dat indien miltsparende heelkunde faalt dit niet per se een verlies van de milt inhoudt.
4.3.3 Splenic salvage

Er werd gevonden dat bij hemodynamisch instabiele patiënten significant minder splenic salvage optreedt ten opzichte van hemodynamisch stabiele patiënten (OR = 18.5, 95% BI [5.8-59]. Dit is rechtstreeks een gevolg van de therapiekeuze (namelijk heelkunde dewelke meestal een splenectomie inhoudt) en heeft waarschijnlijk niet te maken met het al dan niet falen hiervan.

Indien een NOM faalt hebben patiënten een hoger risico om hun milt te verliezen (OR = 105, 95% BI [4.2-2628]). Dit resultaat wordt sterk beïnvloed door het kleine aantal gefaalde NOM, dus dit resultaat moet met voorzichtigheid geïnterpreteerd worden.

Op basis hiervan kan zou men kunnen stellen dat de splenic salvage rate voornamelijk bepaald wordt door het type heelkundige behandeling, en het falen van een initiële NOM-behandeling. Deze twee factoren worden in zekere zin gedicteerd door de ernst van de miltschade.

Ook de aanwezigheid van een blush op CT geef een hoger risico op het niet redden van de milt (zie 4.3.1).

Patiënten die werden doorverwezen vanuit een ander centrum vertonen een OR van 12.7 (95% BI [3.4-46.7]) op het redden van de milt ten opzichte van patiënten die onmiddellijk in het UZ Gent werden behandeld. Dit verschil valt te verklaren uit het feit dat er bij patiënten die doorverwezen werden procentueel gezien minder splenectomieën uitgevoerd werden dan bij personen die initieel in het UZ Gent werden opgevangen (10% tegenover 21% respectievelijk).

Indien beslist wordt om tot heelkunde over te gaan zou eerst moeten getracht worden miltsparende technieken te gebruiken en slechts indien deze falen, of indien een miltsparende ingreep niet mogelijk lijkt, een splenectomie uit te voeren. Er is in deze studie geen nadeel van miltsparende heelkunde aangetoond tegenover splenectomie in traumasetting. Ook het herbloedingsrisico na een splenorrhaphy lijkt kleiner te zijn dan het herbloedingsrisico na een splenectomie namelijk 1.8% en 4.8% respectievelijk. (35,36)

In het algemeen bekwam men een SSR van 81%, dit is gelijk aan de SSR bekomen volgens Bjerke et al. die een SSR van 81% vaststelden. (37)
4.3.4 Complicaties

Thrombocytose treedt op bij 18.7-20.4% van alle traumapatiënten. (38,39) In deze studie trad bij 17.6% van de personen een thrombocytose op. Dit verschil is niet significant. Bij de patiënten die een thrombocytose ontwikkelden was bij opname de gemiddelde concentratie 278,9.10³/mm³, standaarddeviatie (STD) = 161. Indien een thrombocytose optrad na een splenectomie werd deze niet meegerekend als complicatie omdat dit een direct gevolg van de splenectomie is. Deze thrombocytose had een gemiddelde waarde van 681.4.10³/mm³, STD = 172. De maximumwaarden werden bereikt in de tweede week volgend op het trauma.

Er kan de vraag rijzen of men bij het optreden van een thrombocytose na milttrauma een anti-aggregatietherapie zoals een tijdelijke behandeling met acetylsalicylzuur (ASA) zou kunnen opstarten. Dit laatste is nog onderwerp van discussie in de huidige literatuur: een thrombocytose na milttrauma behoeft geen profylactische behandeling met ASA, daar er geen gestegen risico op het optreden van thrombo-embolische events is waargenomen volgens Valade et al. (39)

Dit wordt tegengesproken door Pommerening et al. die in hun prospectieve studie een verhoogd risico op het ontwikkelen van thrombo-embolische events na een splenectomie vaststelden. (27)

Men kan zich tevens ook de vraag stellen of een anti-stollingsbehandeling wel zinvol is naast een potentiële levensbedreigende bloeding heeft kunnen stoppen. In tegenstelling tot wat Demetriades et al. schrijven is er in deze studie geen significant verschil gevonden in het optreden van infectieuze complicaties indien men splenectomie met miltsparende heilkunde vergelijkt. (40)

4.3.5 Overlijden

De voornaamste factor die bepaalt of een persoon komt te overlijden is de hemodynamische stabilité. HD instabiele patiënten vertonen een 12-maal zo hoog risico om te overlijden dan HD stabiele patiënten (95% BI [1.2-122]). PT-patiënten bij welke een geslaagde splenic salvage gezien wordt hebben een grotere kans om niet te overlijden op lange termijn.

De mortaliteit ten gevolge van persisterende bloeding bij een splenectomie uitgevoerd voor trauma ligt hier op 5%. Dit is lager dan de 9.3% mortaliteit gerapporteerd door Bjerke et al., maar kan veroorzaakt zijn door het kleine aantal deelnemers in deze studie. (37) Ook is dit lager dan de mortaliteit door Velhamos et al., waarbij men vaststelt dat een splenectomie bij patiënten met een graad IV of V trauma een mortaliteit van 17% kent. Ook Qu et al. vinden een hogere mortaliteit, namelijk 21.43%. (36,41)
4.3.6 Evolutie in de tijd
Er is geen duidelijke trend waarnembaar in de keuze van verschillende strategieën. De verwachte evolutie zou zijn dat men relatief gezien minder heelkunde zou uitvoeren ten voordele van het uitvoeren van een SAE. Dit is echter niet het geval. De verklaring hiervoor kan liggen in het feit dat men bij de HD instabiele patiënten een SAE niet kan uitvoeren en in het geval van een stabiele patiënt zo conservatief mogelijk tracht te blijven. De keuze van therapie is dus in deze studie tegen de verwachtingen in, niet conform de tijdsgeest.

4.3.7 Begeleidende letsels
Ondanks het feit dat er in deze studie geen significante verbanden gevonden zijn tussen outcome en de aanwezigheid van begeleidende letsels is het toch belangrijk op te merken dat bij 49 personen schade aan de longen te vinden was en dat er bij 43 personen sprake was van één of meerdere ribfracturen. Het zou dus nuttig kunnen zijn om deze letsels specifiek op te sporen indien deze niet nagegaan zijn via beeldvorming, of omgekeerd bij elk traumatisch rib-of longletsel zeker te controleren of schade aan de milt aanwezig is/waarschijnlijk is. Indien een echografie uitgevoerd wordt kan dit eenvoudig nagegaan worden door een e-FAST-protocol uit te voeren. (7)

Bij de interpretatie van SMT versus PT moet erop gelet worden dat er ook een relatief groot aantal personen bestaat die naast hun milttrauma enkel orthopedische letsels hebben. Het betreft hier 28 personen (26% van de studiepopulatie). Deze personen worden ingedeeld bij de PT-populatie maar kunnen in zekere zin ook beschouwd worden als SMT-patiënten. Met betrekking tot inwendig abdominaal trauma passen deze patiënten meer in de groep patiënten met een SMT. De rationale om deze patiëntengroep in te delen bij PT is: bijkomende fracturen kunnen wijzen op een blootstelling aan een hoger energetisch trauma en/of aanleiding geven tot optreden van complicaties (bijvoorbeeld DVT ten gevolge van bedlegerigheid, pneumonie ten gevolge van gedaalde hoestreflex, ademhalingsinhibitie wegens thoracale pijn bij ribfracturen) geassocieerd aan deze fracturen waardoor deze patiënten dan weer beter niet worden geïncludeerd in de populatie SMT. Als voorbeeld kan men de subgroep patiënten beschouwen die naast hun milttrauma enkel een of meerdere ribfracturen vertonen.

4.3.8 Verblijfsduur
Indien het uitvoeren van een SAE faalt is er een verschil in verblijfsduur op een ICU: bij falen verblijven patiënten gemiddeld 4 dagen langer op een ICU.

Bij het falen van andere therapieën wordt een tegenovergesteld fenomeen waargenomen: indien de initiële behandeling faalt is er net een significant kortere verblijfsduur, dit kan verklaard worden
door twee factoren. Ten eerste kan bij falen de patiënt overlijden wat bijgevolg een zeer korte verblijfsduur veroorzaakt. Ten tweede faalde de initiële behandeling slechts bij een klein aantal patiënten wat de interpretatie van deze significantie bemoeilijkt.

Er zijn verschillen in verblijfsduur op basis van het type uitgevoerde heilkundige behandeling: een laparoscopische splenectomie geeft aanleiding tot een gemiddelde verblijfsduur van 13 dagen waarvan 1 dag op een ICU, een laparotomische splenectomie daarentegen geeft aanleiding tot een gemiddelde verblijfsduur van 51 dagen waarvan 6 dagen op een ICU. Dit verschil kan het gevolg zijn van het feit dat men slechts in geselecteerde gevallen overgaat tot een laparoscopische splenectomie, bij patiënten die al a priori al een betere prognose hebben dan de patiënten bij wie men een laparotomische splenectomie uitvoert.

Personen die miltsparende heilkunde ondergaan blijven gemiddeld 115 dagen opgenomen, waarvan 14 dagen op een ICU. Dit is veel langer dan personen die een splenectomie hebben ondergaan. De oorzaak voor deze langere verblijfsduur kan te wijten zijn aan geassocieerde IA en EA letsels, dewelke bij alle personen die miltsparende heilkundige ondergingen aanwezig waren.

Indien er complicaties optreden blijven personen gemiddeld 19 dagen langer opgenomen dan personen bij wie er geen complicaties optreden.

Alhoewel significante verschillen werden gevonden in verblijfsduur, moeten deze met voorzichtigheid worden geïnterpreteerd. Allereerst kan een langere verblijfsduur te wijten zijn aan geassocieerde letsels, zoals orthopedische fracturen van de onderste ledematen. Hier krijgt men dus een vertekening van het beeld waardoor de totale verblijfsduur minder gediekt wordt door de aanpak van het milttrauma maar door deze bijkomende letsels.

4.4 Externe validiteit

Bij het beschouwen van voorgaande is het belangrijk dat men in gedachten houdt dat een traumapopulatie vrij divers is en dat de technische en logistieke mogelijkheden van een ziekenhuis ook een belangrijke impact hebben op de aanpak en outcome. Het is dus aangeraden om de conclusies getrokken uit deze studie enkel voor te behouden voor grotere centra zoals het UZ Gent. Ook zijn er in deze studie 30 patiënten opgenomen die voor de initiële aanpak in een ander hospitaal terechtkwamen en pas na verloop van tijd doorverwezen werden.
5. Besluit

Heelkunde blijft belangrijk als initiële behandeling bij de milttraumapatiënt die zich in een algemeen slechte toestand bevindt. Observationeel beleid heeft ook zijn waarde bewezen, deze faalt weinig en brengt relatief weinig complicaties met zich mee en blijft de eerstekeuzebehandeling bij een stabiele patiënt. Indien een observationeel beleid echter faalt, is er een groter risico op overlijden van de patiënt wegens het onnodig uitstellen van heelkundige behandeling. Het verhaal is anders voor SAE: in deze studie faalt deze frequenter, met de noodzaak om tot heelkunde over te gaan wat in het geval van een splenectomie eindigt in het verlies van de milt. Er zijn geen factoren geïdentificeerd op basis waarvan men kan voorspellen of SAE als initiële behandeling zal falen.

Figuur 5 toont een beslisstrategie voor de behandeling van milttraumata, opgesteld op basis van gegevens van de eigen studiepopulatie.

![Flowchart voor de aanpak milttrauma](image)

Figuur 5. Flowchart voor de aanpak milttrauma.

Dit schema is natuurlijk slechts een voorstel en zou gevalideerd moeten worden in prospectieve studies met grotere studiepopulaties.

Er kan dus gesteld worden dat de belangrijkste beslissende parameter voor de behandelingsekeuze de hemodynamische stabiliteit van de patiënt bij opname is. Indien op basis van beeldvorming een HD instabiele patiënt ervan verdacht wordt een abdominaal inwendig (milt)letsel te hebben wordt overgegaan tot heelkunde. Wel moet men in gedachten houden dat een FAST ook vals negatief
kan zijn, en dit vooral bij hypotensieve patiënten. Herhaling en goede observatie met oog op het verslechteren van de HD toestand is hier van belang.

Bij hemodynamisch stabiele patiënten speelt CT een belangrijke rol bij de therapiekeuze. Deze keuze kan gebeuren op basis van de AAST-classificatie en/of de aanwezigheid van een blush ter hoogte van de milt. De reden waarom blush als criteria voor heelkunde wordt overwogen is het feit dat dit een hoger risico op falen van initiële behandeling met zich meebrengt, en er uiteindelijk indien een NOM faalt toch heelkunde moet plaatsvinden. Observatie is de meest aangewezen aanpak bij minder gekwetste milten zonder blush op CT. In andere gevallen kan men overgaan tot (preferentieel) heelkunde of SAE. Indien heelkunde wordt uitgevoerd moet men proberen miltsparende technieken toe te passen (zoals partiële splenectomie, splenorrhaphy) indien de milt en de algemene toestand van de patiënt dit toelaten. Een bijkomend voordeel van (miltsparende) heelkunde tegenover het uitvoeren van een SAE is dat men tijdens deze heelkunde een exploratie van het abdomen kan uitvoeren om zo eventueel gemiste beschadiging aan andere abdominale organen vast te stellen. (42)

De rationale om tot heelkunde over te gaan bij personen die een graad V milttrauma vertonen en hemodynamisch stabiel zijn is gebaseerd op het feit dat in deze studie slechts 1 persoon met een graad V trauma initieel observationeel werd behandeld, en dus geen uitspraken kunnen gedaan worden over de haalbaarheid van een observationeel beleid in deze situatie. Hoewel heelkunde tot een langere verblijfsduur in het hospitaal leidt (op een niet ICU) en een splenectomie een risico op een OPSI inhoudt, weegt dit niet op tegen een gestegen risico op overlijden bij het falen van een NOM. Peitzman et al. stelden vast dat personen bij wie een NOM faalde een hoger risico hebben op overlijden in vergelijking met personen die onmiddellijk heelkunde zouden ondergaan hebben en dat tot 70% van deze overlijdens volgend op falen zouden kunnen voorkomen worden. Het risico op overlijden ten gevolge van een uitgestelde heelkundige behandeling is groter dan het risico op overlijden ten gevolge van een OPSI, men mag dus ook niet te conservatief willen behandelen. (43)

Om verdere uitspraken te kunnen doen over de haalbaarheid van miltsparende heelkunde en minder invasieve technieken zoals laparascopische heelkunde moet verder onderzoek gebeuren, dit bij voorkeur via prospectieve studies. Ook met betrekking tot lange-termijncomplicaties zijn er veel mogelijkheden om dit verder te exploreren.
Wat indicaties om over te gaan tot SAE betreft zijn er geen significante elementen gevonden, wel werd gezien dat deze meer faalde dan de andere behandelingen, en dit bij de meer gekwetste milten. Daarentegen is in de literatuur beschreven dat SAE ook bij de graad IV-V milttrauma haalbaar is, en dat dit in vergelijking met enkel een observationeel beleid een betere slaagkans veroorzaakt. (1)

Tenslotte moeten er, om een grotere gezondheidswinst te verkrijgen in het kader van milttrauma, naast een optimale medische aanpak ook bijkomende maatregelen getroffen worden de welke de incidentie van milttraumata doen dalen. Aangezien de meest frequente oorzaak een verkeersongeval is, zijn voornamelijk maatregelen op macroniveau aan de orde (met name verkeersveiligheid). Alhoewel persoonlijke factoren ook sterk meespelen in het optreden van verkeersongevallen. Ook kan op gebied van preventie aangeraden worden aan personen die paardrijden zich uit te rusten met voldoende beschermende kleding.

Een grote beperking in het uitvoeren van deze studie is het kleine aantal deelnemers en het ontbreken van sommige informatie in de verslagen. Het zou de gezondheidszorg en de aanpak van milttrauma ten goede komen als er vaste afspraken zijn met betrekking tot het registreren van bepaalde gegevens, met in het bijzonder aandacht voor een objectieve beschrijving van het miltletsel en bijbehorende classificatie, uitgebreide verslagen indien men een technische handeling (SAE, heilkunde) uitvoert etc. Indien in de toekomst verder onderzoek gebeurt zal men na het doorvoeren van dergelijke maatregelen uitspraken kunnen doen met een sterkere onderbouwing.

Aangezien de mate van splenic salvage gelijk is als die van andere grote traumacentra, en de mortaliteit zeker niet hoger ligt dan in andere centra, kan men besluiten dat de aanpak van milttrauma in het UZ Gent globaal gezien goed is. Daarentegen is er mogelijkheid voor optimalisatie van de aanpak, zeker wat betreft het uitvoeren van SAE. Indien men een lagere mortaliteit en een hogere splenic salvage wil verkrijgen moet men zeker niet terughoudend zijn in het overgaan naar miltsparende heilkunde indien er twijfel bestaat of een NOM voor een bepaalde patiënt al dan niet geschikt is.
Referentielijst

34. Ovid: Management of Blunt Splenic Trauma: Computed Tomographic Contrast Blush Predicts Failure of Nonoperative Management.

