IMEPITOÏNE VERSUS FENOBARBITAL VOOR DE BEHANDELING VAN IDIOPATHISCHE EPILEPSIE BIJ DE HOND

door

Naomi Van Hecke

Promotoren: Prof. dr. Patrick De Backer
Prof. dr. Mathias Devreese

Literatuurstudie in het kader van de Masterproef

©2016 Naomi Van Hecke
Vrijwaringsclausule

Universiteit Gent, haar werknemers of studenten bieden geen enkele garantie met betrekking tot de juistheid of volledigheid van de gegevens vervat in de masterproef,noch dat de inhoud van deze masterproef geen inbreuk uitmaakt op of aanleiding kan geven tot inbreuken op de rechten van derden.

Universiteit Gent, haar werknemers of studenten aanvaarden geen aansprakelijkheid of verantwoordelijkheid voor enig gebruik dat door iemand anders wordt gemaakt van de inhoud van de masterproef, noch voor enig vertrouwen dat wordt gesteld in een advies of informatie vervat in de masterproef.
IMEPITOÏNE VERSUS FENOBARBITAL VOOR DE BEHANDELING VAN IDIOPATHISCHE EPILEPSIE BIJ DE HOND

door

Naomi Van Hecke

Promotoren: Prof. dr. Patrick De Backer
Prof. dr. Mathias Devreese

Literatuurstudie in het kader van de Masterproef

©2016 Naomi Van Hecke
SAMENVATTING

Idiopathische epilepsie is een van de meest voorkomende chronische neurologische aandoeningen bij de hond. Honden met idiopathische epilepsie hebben vaak een vermindering in de levenskwaliteit en -kwantiteit. Het is van belang dat de epileptische aanvallen optimaal gecontroleerd worden, zodat de honden zo minimaal mogelijk de neveneffecten van de anticonvulsiva ondervinden. Zo wordt het dierenwelzijn in beperkte mate aangetast en heeft de patiënt een langere overlevingsduur. Een groot probleem dat kan optreden is het ontstaan van refractaire patiënten. Dit zijn patiënten die onvoldoende respons vertonen op de behandeling met anticonvulsiva. Hierdoor is men op zoek naar geschikte anticonvulsiva die deze populatie dieren kunnen verkleinen. Imepitoïne is een nieuw anticonvulsivum dat sinds 2013 in de praktijk kan gebruikt worden, maar de effectiviteit ervan moet nog verder onderzocht worden.

Deze masterproef vergelijkt de farmacokinetiek, -dynamiek, toxiciteit, geneesmiddeleninteracties en het gebruik tussen fenobarbital en imepitoïne bij de hond. Dit is gebeurd aan de hand van bestaande wetenschappelijke literatuur omtrent idiopathische epilepsie, fenobarbital en imepitoïne. De wetenschappelijke literatuur die momenteel beschikbaar is, is beperkt en dit vooral bij literatuur over imepitoïne. Er is wel veel literatuur te vinden over epilepsie en de behandeling bij de mens, maar deze is in vele gevallen niet te extrapoleren naar de hond.

Uit deze vergelijking is gebleken dat imepitoïne en fenobarbital een vergelijkbare effectiviteit hebben. De toxiciteit, farmacokinetiek, -dynamiek en het gebruik zijn allemaal gunstiger voor imepitoïne. Voor imepitoïne is er tot nu toe nog geen enkele geneesmiddeleninteractie waargenomen, wat in contrast staat met fenobarbital.

Key words: Epilepsie – Fenobarbital – Idiopathisch – Imepitoïne – Hond
INLEIDING

Epilepsie is een veel voorkomende neurologische aandoening bij de mens en de hond (Licht et al., 2002; Andríć et al., 2010; Alves et al., 2011; Löschler et al., 2013; Rundfeldt en Löschler, 2014; Rundfeldt et al., 2015; Packer en Volk, 2015). Afhankelijk van de onderzochte populatie varieert de prevalentie bij de mens tussen 0,1 en 4% (Patterson, 2013; Penderis, 2014). De geschatte prevalentie van epilepsie in de globale hondenpopulatie varieert tussen de 0,5 en 5,7%, hiervan zou 60 tot 70% aan idiopathische epilepsie lijden (Patterson, 2013; Rundfeldt et al., 2015). Honden met idiopathische epilepsie moeten chronisch behandeld worden, hiervoor heeft men geschikte anticonvulsiva nodig. Momenteel zijn er 3 producten op de Belgische markt te verkrijgen: fenobarbital, kaliumbromide en imepitoïne (Bhatti et al., 2015). Fenobarbital en kaliumbromide worden al ongeveer een eeuw ingezet voor de behandeling van idiopathische epilepsie (Rusbridge, 2013a; Löschler et al., 2013). Daartegenover verscheen imepitoïne pas vanaf 2013 op de markt en is enkel bedoeld voor diergeneeskundig gebruik (Rundfeldt en Löschler, 2014).

Momenteel is fenobarbital nog altijd de eerste-keuzebehandeling voor idiopathische epilepsie (Hojo et al., 2002; Fukunaga et al. 2009). De effectiviteit ervan, voor een meer dan 50% daling in de aanvalsfrequentie, varieert tussen de 37,2 en 85% (Boothe et al., 2012; Packer et al., 2015; Bhatti et al., 2015). Maar er zijn problemen met therapierezistentie, toxiciteit en geneesmiddeleninteracties (Boothe et al., 2012; Rusbridge, 2013a; Tipold et al., 2014; Bhatti et al., 2015; BCFI, 2015). Zo ziet men als neveneffecten: ataxie, sedatie, polyfagie en nog vele andere neveneffecten die nog verder in deze masterproef worden besproken (BCFI, 2008; Boothe et al., 2012; Rusbridge, 2013a; Löschler et al., 2013; Tipold et al., 2014; Bhatti et al., 2015; BCFI, 2015). Doordat fenobarbital cytochroom P450 iso-enzymen induceert, is het ook veel gevoeliger aan geneesmiddeleninteracties en auto-inductie (Boothe et al., 2012; Bhatti et al., 2015).

Het tweede anticonvulsivum, imepitoïne, heeft een geschikt farmacokinetisch profiel bij de hond. De farmacokinetiek is zeer verschillend tussen en rokers en niet rokers en is daarom niet geschikt voor therapeutische toepassingen bij de mens (Löschler et al., 2013; Rundfeldt en Löschler, 2014; Tipold et al., 2014; Bhatti et al., 2015; Rundfeldt et al., 2015). Bij de eerste studies die uitgevoerd werden bij de hond bleken er maar weinig neveneffecten op te treden en het had een effectiviteit die vergelijkbaar was met fenobarbital (Löschler et al., 2013; Rundfeldt et al., 2014; Tipold et al., 2014). Imepitoïne heeft bijkomend een anxiolytische werking om de angst, gerelateerd met epileptische aanvallen, weg te nemen. Momenteel zijn er nog geen geneesmiddeleninteracties met imepitoïne waargenomen (Rundfeldt et al., 2014). Over therapierezistentie bij imepitoïne is er op dit ogenblik nog maar weinig geweten.

In deze literatuurstudie is het de bedoeling om na te gaan welke van deze 2 anticonvulsiva het meest geschikt is voor de chronische behandeling van idiopathische epilepsie. De voor- en nadelen van beide anticonvulsiva worden vergeleken op een aantal niveaus: de farmacodynamie, farmacokinetiek, nevenwerkingen, geneesmiddeleninteracties, therapierezistentie en de gebruiksvriendelijkheid. Al deze informatie wordt uit de recente wetenschappelijke literatuur gehaald in verband met imepitoïne, fenobarbital en idiopathische epilepsie.

De wetenschappelijke literatuur bij de hond is zeer beperkt, terwijl deze van de mens veel uitgebreider is. Jammer genoeg zijn de gegevens die bij de mens onderzocht zijn, niet te extrapoleren naar de hond. Bij de mens wordt er namelijk ene andere nomenclatuur en indeling van epilepsie gehanteerd. Het gebruik van imepitoïne is niet mogelijk bij de mens wegens zijn farmacokinetisch profiel en fenobarbital en kaliumbromide zijn vervangen door anticonvulsiva met minder neveneffecten. Daarom wordt de
vergelijking met de mens maar zelden gemaakt in deze literatuurstudie. Het arsenaal aan wetenschappelijke literatuur in verband met imepitoïne is beperkt en het heeft 2 redenen: het heeft geen toepassing in de humane geneeskunde en het is een nieuw product. De meeste artikels zijn door dezelfde onderzoekers geschreven, aangezien zij het geneesmiddel hebben ontwikkeld en er nog geen verdere studies over zijn uitgevoerd door andere personen.

Het eerste deel van deze literatuurstudie geeft meer uitleg over idiopathische epilepsie en de problemen die ermee gepaard gaan. Van hieruit kan men dan beter begrijpen waarop de behandeling met anticonvulsiva gebaseerd is en waarom er wel of niet voor een behandeling geopteerd zal worden. Een verdere uitbreiding over andere vormen van epilepsie en hun behandeling wordt hier niet aan bod gebracht, omdat dit te uitgebreid zou zijn. Het stellen van de diagnose van epilepsie en de onderverdeling van epilepsie met behulp van verschillende diagnostische technieken wordt hier niet vermeld. Dit zou te ver afwijken van het doel van deze literatuurstudie, aangezien hier de focus meer op de behandeling ligt. In de 2 daaropvolgende hoofdstukken worden fenobarbital en imepitoïne uitgebreid besproken volgens de 5 punten waarop ze vergeleken gaan worden. Op het einde wordt er kort ingegaan op het gebruik van kaliumbromide en andere anticonvulsiva, zoals gabapentine, zonisamide en levetiracetam. Al deze anticonvulsiva zijn geen eerste-keuzetherapie, waardoor ze zelden worden toegepast in de praktijk, en zijn vaak te duur voor het gebruik in de diergeneeskunde.
LITERATUURSTUDIE

1. Idiopathische epilepsie

1.1. Nomenclatuur

De IVETF (International Veterinary Epilepsy Task Force) is een organisatie die in 2014 is opgericht en die de nomenclatuur en definities omtrent epilepsie vastlegt. De reden om deze organisatie op te richten, berustte vooral op het probleem dat men in de diergeneeskunde niet altijd dezelfde termen en definities hanteerde. Er moest dus een universele taal komen, zodat epilepsie in de praktijk correct wordt benaderd en behandeld (Volk, 2015; Berendt et al., 2015).

Volgens de definitie die door IVETF werd vastgelegd, is epilepsie een chronische neurologische aandoening van het cerebrum. Men spreekt pas van epilepsie indien er meer dan 2 epileptische aanvallen optreden met minstens 24 uur tussentijd. Deze aanvallen zijn plots optredende, kortdurende en voorbijgaande gebeurtenissen. Zo’n epileptische aanval is de veruitlrijking van een abnormale epileptische activiteit van de neuronen in de hersenen, die meestal zelflimiterend is. De hersenen hebben voor de rest van het leven een blijvende predispositie voor het genereren van epileptische aanvallen (Berendt et al., 2015).

Idiopathische epilepsie is een vorm van epilepsie met een genetische of vermoedelijk genetische oorsprong (Berendt et al., 2015). Men komt tot deze conclusie indien er geen neuro-anatomische of neuropathologische afwijking of een andere neurologische ziekte als basis van de epilepsie kan gevonden worden (Patterson, 2013; Penderis, 2014; Heske et al., 2014; Packer en Volk, 2015). Het dier is in de interictale periode (periode tussen de epileptische aanvallen) normaal en vertoont geen andere neurologische symptomen (Patterson, 2013; Penderis, 2014; Heske et al., 2014; Packer en Volk, 2015). De eerste aanval treedt meestal op als de hond tussen 6 maanden en 6 jaar oud is (Licht et al., 2002; Penderis, 2014; Hülsmeyer et al., 2015; Packer en Volk, 2015). Vroeger werd de benaming van primaire epilepsie toegekend aan idiopathische epilepsie (Patterson, 2013; Berendt et al., 2015). Men spreekt pas van genetische epilepsie, als men een oorzakelijk gen heeft kunnen aantonen of op basis van de genetische achtergrond het oorzakelijk gen gekend is (Berendt et al., 2015).

Een andere vorm van epilepsie is structurele epilepsie, waarbij er een intracraniale oorzaak te vinden is. Er zal dus een cerebrale pathologie zichtbaar zijn met behulp van medische beeldvormingstechnieken (Berendt et al., 2015). Deze vorm is ook bekend onder de oudere benaming van secundaire epilepsie (Patterson, 2013; Berendt et al., 2015). In bepaalde wetenschappelijke artikels spreekt men ook nog over symptomatische en cryptogene epilepsie (vermoedelijk structurele oorzaak, maar nog niet aangetoond) (Licht et al., 2002; Patterson, 2013; Penderis, 2014). Ook structurele afwijkingen met een genetische oorsprong behoren tot structurele epilepsie (Penderis, 2014; Berendt et al., 2015).
Een andere manier van indelen is volgens het fenotype van de epileptische aanval, bij zowel idiopathische als structurele epilepsie kunnen beide fenotypes voorkomen. Vroeger gebruikte men de termen grand mal en petit mal, ondertussen is er een evolutie in de nomenclatuur opgetreden waardoor men nu over respectievelijk generaliseerde en focale epilepsie spreekt. Bij focale epilepsie heeft men nog een verdere onderscheiding in een laterale (aanval beperkt tot 1 zijde van het lichaam) en een regionale epilepsie (maar een bepaalde zone van het lichaam in de aanval betrokken) (Berendt et al., 2015). In oudere wetenschappelijke artikels, is er soms sprake van partiële of gelokaliseerde aanvallen (Penderis, 2014). Het dier kan wel of niet zijn bewustzijn verliezen, indien wel dan zijn het complexe focale aanvallen (Penderis, 2014; Berendt et al., 2015). Een ander fenotype van aanvallen zijn de generaliseerde epileptische aanvallen, hierbij is dus het hele lichaam (bilateraal) betrokken in de aanval. Het dier zal altijd zijn bewustzijn verliezen als het een generaliseerde aanval doormaakt (Penderis, 2014; Berendt et al., 2015).

De hierboven beschreven fenotypes komen allemaal voor binnen de ictale fase, dit is de eigenlijke epileptische aanval. Hierop volgt de post-ictale fase waarin de herstelfase van de hersenen plaatsvindt, men heeft hierbij milde en tijdelijke neurologische afwijkingen als gevolg van de epileptische aanval (Penderis, 2014, Berendt et al., 2015). Ook voorafgaand heeft men een fase die kan optreden: de pre-ictale fase, ook wel prodrome genoemd (Berendt et al., 2015). Deze fase kan gebruikt worden als verklikker van de ictale fase (Berendt et al., 2015; Packer en Volk, 2015).

Er bestaat een reactieve aanval, ook wel uitgelokte aanval genoemd, dit is geen epileptische aanval en dus geen vorm van epilepsie. Het is een aanval die optreedt door een natuurlijke reactie van de normale hersenen op een voorbijgaande verstoring in de functie van neuronen (Berendt et al., 2015).

1.2. Prevalentie en predisposities

Epilepsie is een van de meest voorkomende neurologische aandoeningen bij de mens en de hond (Licht et al., 2002; Andrić et al., 2010; Alves et al., 2011; Löscher et al., 2013; Rundfeldt en Löscher, 2014; Rundfeldt et al., 2015; Packer en Volk, 2015). Bij de mens ligt de prevalentie van epilepsie tussen 0,1 en 4%, afhankelijk van de regio die onderzocht werd (Patterson, 2013; Penderis, 2014). De prevalentie van epilepsie wordt geschat tussen de 0,5 en 5,7% in de globale hondenpopulatie (Licht et al., 2002; Patterson, 2013; Rundfeldt et al., 2014; Berendt et al., 2015; Hülsmeyer et al., 2015; Rundfeldt et al., 2015; Packer en Volk, 2015). In een onderzochte Zweedse populatie was de prevalentie 0,75% en in het Verenigd Koninkrijk wordt de prevalentie geschat op 0,62% (Rundfeldt et al., 2014; Heske et al., 2014; Rundfeldt, 2015). Men heeft gezien dat de prevalentie van epilepsie in een Duitse dierenkliniek tussen 1 en 2% lag voor hun jaarlijks cliëntele (Lemieux, 1977; Heske et al., 2014). De prevalentie van epilepsie in een andere dierenziekenhuispopulatie bevond zich tussen 0,5 tot 1% (Tipold et al., 2014).

Vaak zijn epileptische aanvallen bij de hond van idiopathische oorsprong en is er minder kans dat het gaat om structurele epilepsie of reactieve aanvallen (Licht et al., 2002; Rusbridge, 2013b). Bij vele honden met epilepsie wordt een familiale overdracht vermoed en zou er dus een genetische oorzaak aanwezig zijn (Lemieux, 1977). In een bepaalde dierenziekenhuispopulatie zag men dat 60 tot 70% van de gevallen met epilepsie aan idiopathische epilepsie leden (Tipold et al., 2014). Er wordt zelfs verondersteld door Patterson (2013) en Rundfeldt et al. (2015) dat 60 tot 70% van de globale epileptische populatie idiopathische epilepsie heeft.
Idiopathische epilepsie komt voor bij zowel rashonden als kruisingen (Hülsmeyer et al., 2015; Rundfeldt et al., 2015). Maar bij bepaalde hondenrassen is de prevalentie van idiopathische epilepsie vele hoger dan van de globale populatie en wordt dus een overerving van een mutant allele vermoed (Hülsmeyer et al., 2015). In verschillende studies kwamen bepaalde rassen regelmatig terug die aanzien worden als gepredisponeerde rassen. Dit zijn onder andere: Belgische herders (vooral de Groenedaeler en Tervurer), Berner Sennenhond, Labrador Retriever, Cavalier King Charles Spaniël, Border Terriër, Border Collie, Beagle, Golden Retriever, Duitse Herder, Ierse Wolfhond, Engelse Springer Spaniël, Koningspoedel, Boxer, Magyar Vizsla, Keeshond, Shetland Sheepdog (Licht et al., 2002; Heske et al., 2014; Hülsmeyer et al., 2015). 25 tot 30% van de rassen van de Amerikaanse hondenpopulatie heeft een hogere prevalentie van epileptische aanvallen dan die van de globale hondenpopulatie (Licht et al., 2002). In het Verenigd Koninkrijk, heeft men gezien dat Border Terriërs en Duitse Herders een hogere prevalentie voor epilepsie hadden en West Highland White Terriërs een lagere prevalentie hadden (Rundfeldt et al., 2014; Rundfeldt et al., 2015).

De predisposities zijn niet enkel ras-afhankelijk, maar ook afhankelijk van een bepaalde geografische lokalisatie (land of continent), subpopulatie of familie. De prevalentie en incidentieratio kan naargelang de onderzochte populatie of familie, afwijken omwille van genetische variatie. Afhankelijk van de onderzochte populatie kon de prevalentie bij de Belgische Herders variëren van 3,1% tot 33% (Heske et al., 2014; Hülsmeyer et al., 2015). Meestal werd er geen causaal gen gevonden, aangezien er een vermoeden is van multifactoriële overerving en het type overerving en het oorzakelijk gen verschilt tussen de populaties (Licht et al., 2002; Hülsmeyer et al., 2015).

1.3. Pathofysiologie

In de grijze stof van de cerebrale cortex communiceren de neuronen met elkaar, vooral diegene met een gelijkelijke functie. Deze neuronen kunnen onderverdeeld worden in 2 groepen: men heeft principiële, of projectieneuronen, en interneuronen. De projectieneuronen zenden signalen uit via hun axonen naar verder afgelegen neuronen, piramidale neuronen zijn een voorbeeld van projectieneuronen. Ze hebben vooral een exciterende functie, terwijl interneuronen vooral een remmende functie hebben en hun axonen geven lokaal informatie door (Penderis, 2014).

Indien een neuron gestimuleerd wordt, treedt een actiepotentiaal in werking. Hierdoor zal er een depolarisatie ontstaan over het axon richting de synaps, waar er een vrijstelling is van neurotransmitters. Niet altijd ontstaat er uit een actiepotentiaal een depolarisatie, er moet een drempel overschreden worden (Penderis, 2014). De hersenen bevatten vele soorten neurotransmitters, glutamaat is de meest voorkomende exciterende neurotransmitter en wordt gecodeerd door projectieneuronen. Gamma-aminoboterzuur (GABA) komt vrij ter hoogte van de synaps van interneuronen en is de meest geziene inhiberende neurotransmitter in de hersenen (Patterson, 2013; Penderis, 2014). Glutamaat heeft 2 types receptoren: de inotrope receptoren, die werken via een verhoogde kation permeabiliteit na binding van glutamaat en de metabotrope receptoren (Penderis, 2014). GABA heeft ook 2 types receptoren, de GABAa-receptor en GABAb-receptor (Patterson, 2013; Penderis, 2014). Postsynaptisch bevindt zich de GABAa-receptor en deze wordt permeabel voor het chloride-ion na binding met GABA. Door deze chloor influx is er een hyperpolarisatie van de cellen, waardoor de neuronen meer stabiel worden en de
drempel voor een depolarisatie hoger komt te liggen. De GABAb-receptor is presynaptisch geplaatst en zorgt voor het verminderen van de GABA-vrijstelling (Penderis, 2014).

Het ontstaan van epileptische aanvallen en epilepsie is een complex gebeuren, vaak is de oorzaak multifactorieel en zijn er meerdere genen, omgevingsfactoren en schade aan de hersenen betrokken (Penderis, 2014; Berendt et al., 2015). De oorzaak is in de hersenen gelegen en meer specifiek in het cerebrum. Daarvan zijn vooral de cerebrale cortex (met vooral de hippocampus) en de thalamus van belang als lokalisatie voor de pathofysiologie van epilepsie (Penderis, 2014).

Voordat een epileptische aanval optreedt, moeten de hersenen zich klaarmaken door het creëren van een abnormaal neuronaal netwerk, de aanvalsfoce of epileptogene focus genaamd (Patterson, 2013; Penderis, 2014). Dit netwerk heeft een verhoogde gevoeligheid voor prikkel en ook voor minder sterke prikkel die normaal geen neuronen kunnen laten depolariseren (Penderis, 2014). Dit proces om deze aanvalsfocus te ontwikkelen, wordt epileptogenese in strikte zin of de latente fase van de epileptogenese in brede zin genoemd (Patterson, 2013; Penderis, 2014). Er zijn in deze fase nog geen epileptische aanvallen, wel is er een predisperserende factor aanwezig, zoals een mutant allel (Patterson, 2013). Er zit dus vertraging op, er is tijd nodig om een aanvalsfoce in de hersenen te ontwikkelen. De epileptogenese zal dus bepalen of er wel of niet epileptische aanvallen gaan optreden tijdens het leven van het dier en wanneer. Deze verhoogde gevoeligheid van de neuronen is permanent en dus voor de rest van het leven, dit verklaart waarom epilepsie een chronische aandoening is (Penderis, 2014). De reden voor het ontstaan van overgevoelige neuronen, of pacemakerneuronen, is niet alleen de aanwezigheid van een predisperserende factor (Patterson, 2013; Penderis, 2014). Andere factoren die de drempel voor depolarisatie doen verlagen of het toekomende actiepotentiaal versterkt doorgeven, kunnen ook bijdragen tot overgevoelige neuronen (Penderis, 2014). De pacemaker neuronen zijn in deze fase wel al actief, er treden microaanvallen op in de aanvalsfoce, die nog niet klinisch zichtbaar zijn. Deze microaanvallen leiden dan door middel van hun verhoogd aantal uitgelokte actiepotentialen tot een aantal neurionale veranderingen. Aan de randzone van de aanvalsfoce wordt de gevoeligheid van de neuronen voor depolarisatie verhoogd, wat dan weer leidt tot zichtbare epileptische aanvallen door depolarisatie van een groter gebied van neuronen. Dit is dan de 2de fase van de epileptogenese in brede zin: de spontane aanvallactiviteit, de wederkerende aanvallsperiode of de ictogone fase (Patterson, 2013).

De eigenlijke uitlokkende van een epileptische jaar zelf, zal gebeuren door een endogene of exogene prikkel die een actiepotentiaal teweegbrengt (Rundfeldt et al., 2014; Berendt et al., 2015). Als de uitlokkende stimuli sterk genoeg is, kan elke gezonde hond een epileptische aanval doormaken zonder de fase van epileptogenese door te maken (Rundfeldt et al., 2014). Ter hoogte van een abnormaal neuronaal netwerk wordt de drempelwaarde voor depolarisatie sneller overschreden, wat dan klinisch zichtbaar wordt als een epileptische aanval (Rundfeldt et al., 2014; Berendt et al., 2015). Het duurt een tijd voordat een gezond neuron terug getriggerd kan worden door een actiepotentiaal, doordat de inhiberende neuronen een negatieve feedback geven op de projectiehronen (Patterson, 2013; Penderis, 2014). Dit gebeurt niet meer vanaf dat het individu zich in de epileptogene fase bevindt en de excitatie krijgt de overhand (Patterson, 2013).

1.4. Levenskwaliteit en -kwantiteit
Zowel op de levenskwaliteit als de levenskwantiteit kan epilepsie een negatieve invloed hebben (Packer en Volk, 2015). Door het continu wederkeren van epileptische aanvallen heeft dit een effect op het gedrag, de gezondheid en levenskwantiteit van de hond en de eigenaar (Penderis, 2014). Om dit te
vermijden worden er anticonvulsiva toegediend, zodat de aanvalsfrequency daalt (Packer en Volk, 2015).

Uit de studie van Packer en Volk (2015) is gebleken dat eigenaars het belangrijker vinden dat hun dier een hogere levenskwaliteit heeft dan een lagere frequentie van epileptische aanvallen heeft. De ervaringen met epileptische aanvallen en de periodes errond verwoordend kan een dier niet, men moet dit bepalen aan de hand van gedragingen die de eigenaar heeft waargenomen (Licht et al., 2002; Packer en Volk, 2015). Het starten van een behandeling of overgaan tot euthanasie is afhankelijk van de eigenaar, tot gevolg is de waarneming van de eigenaar van groot belang (Packer en Volk, 2015).

Het effect van aanvallen op de levenskwaliteit en het dierenwelzijn kan nagegaan worden aan de hand van de 5 vrijheden. Deze vrijheden zijn: vrij van honger en dorst; vrij van ongemak; vrij van pijn, verwondingen en ziekte; vrij om normaal gedrag te vertonen; vrij van angst. Tegen al deze 5 vrijheden wordt gezondigd door het optreden van een epileptische aanval (Packer en Volk, 2015). Op lange termijn en in alle drie de fasen van de epileptische aanvallen zou er een effect zijn op de mentale status van het dier (Penderis, 2014; Packer en Volk, 2015). Als het dier bewust is, kan men mentaal of emotioneel lijden verwachten, met als gevolg een negatieve invloed op de levenskwaliteit. Tijdens een aanval kunnen verwondingen optreden met tot gevolg het hebben van fysiek lijden. Een toename in het risico op verwondingen bij de mens treedt op als de aanvalsfrequency en ergeheid hoger is en is afhankelijk van het type aanval (Packer en Volk, 2015).

Honden met epilepsie leven gemiddeld minder lang dan niet epileptische honden, de gemiddelde leeftijd van sterfte bij honden met epilepsie is 7 jaar, terwijl dit bij gezonde honden gemiddeld 10 tot 12 jaar is (Packer en Volk, 2015). Na de diagnose van epilepsie leven de honden gemiddeld nog 1,5 (Heske et al., 2014) tot 2,3 jaar (Packer en Volk, 2015). De meerderheid van de sterfte bij dieren met idiopathische epilepsie is epilepsie gerelateerd, dit kan over een natuurlijke dood gaan of door euthanasie ten gevolge van epilepsie (Packer en Volk, 2015). 63,4% van de sterfte bij de honden met epilepsie was te wijten aan een natuurlijke dood door epilepsie of door euthanasie ten gevolge van epilepsie (Heske et al., 2014). Een lage aantal aanvallen tijdens de behandeling en een hoge pre-therapeutische aanvallsfrequency verlaagt de overlevingstijd, zowel door natuurlijke sterfte als door euthanasie (Packer en Volk, 2015). Indien de epileptische aanvallen onvoldoende gecontroleerd worden, zijn eigenaars meer geneigd om te opteren voor euthanasie en wordt de levenskwantiteit ingekort (Heske et al., 2014; Rundfeldt et al., 2015).

Niet enkel epileptische aanvallen, maar ook anticonvulsiva kunnen een sterke daling geven van de levenskwaliteit door inbreuk te doen op de 5 vrijheden (Licht et al., 2002; Packer en Volk, 2015). Soms kunnen de neveneffecten van medicatie een grotere invloed hebben op de levenskwaliteit dan de epileptische aanvallen (Packer en Volk, 2015). Ten gevolge van erge neveneffecten kan hiernaast het leven vroegtijdig beëindigd worden door euthanasie (Rundfeldt et al., 2014; Rundfeldt et al., 2015).

1.5. Inleiding anticonvulsiva

In de literatuur wordt er vaak de benaming anti-epileptica of anti-epileptic drugs (AED) gebruikt. Dit is een foute term aangezien er met een medicamenteuze behandeling enkel de epileptische aanval wordt onderdrukt, maar er blijft nog altijd een epileptische stoornis in de hersenen aanwezig en de epileptogenese wordt niet geremd (Rusbridge, 2013a; Patterson, 2013; Bhatti et al., 2015). De correcte term is dus eigenlijk anti-seizure drugs, anti-aanval geneesmiddelen of anticonvulsiva (Rusbridge, 2013a; Bhatti et al., 2015).
Het werkingsmechanisme van anticonvulsiva berust erin de drempelwaarde te verhogen, zodat de neuronen minder gevoelig worden voor een actiepotentiaal en een aanvalscontrole bereikt kan worden (Rundfeldt et al., 2014; Penderis, 2014). Dit effect kunnen ze bereiken door op neurotransmitters, receptoren of ionenkanalen ter hoogte van de hersenen te werken (Rusbridge, 2013a). Men kan bijvoorbeeld glutamaat receptor antagonisten gebruiken, zodat de aanvalssactiviteit verminderd. Hetzelfde effect is te bereiken met GABAa-receptor agonisten, zoals barbituraten en benzodiazepines (Penderis, 2014).

Er zijn verschillende redenen voor het toepassen van een behandeling, een van deze redenen is de verminderde levenskwaliteit en -kwantiteit. Met anticonvulsiva probeert men de aanvalsfrequentie te doen dalen en de ergerheid van de aanval te verminderen. Tegenwoordig wordt er veel meer aandacht gevestigd wordt op het verbeteren van de levenskwaliteit in plaats van enkel de aanvalsfrequentie te doen dalen (Packer en Volk, 2015). Een goede aanvalscontrole met zo weinig mogelijk nevenwerking van het gebruikte anticonvulsiva is het meest geschikte behandelingsschema voor de hond (Tipold et al., 2014; Packer et al., 2015; Bhatti et al., 2015; Packer en Volk, 2015). Door het ontwikkelen van nieuwe anticonvulsiva, zoals imepitoïne, probeert men een vermindering van de neveneffecten en bijwerkingen te krijgen zonder verlies aan effectiviteit (Patterson, 2013).

Pas vanaf dat de aanvalsfrequentie met 50% of meer daalt, kan men spreken over een succesvolle therapie met anticonvulsiva (Packer et al., 2015; Packer en Volk, 2015). De aanvallen zullen niet altijd volledig verdwijnen, meer dan twee op de drie honden zal in de toekomst aanvallen blijven doormaken, ook al wordt er correct behandeld (Penderis, 2014; Packer en Volk, 2015). In een andere populatie zag men dat ¾ van de behandelde honden met idiopathische epilepsie nog aanvallen blijft vertonen (Penderis, 2014). Een gespecialiseerde kliniek in het Verenigd Koninkrijk zag dat maar 37,2% van de honden een reductie van meer dan 50% kreeg na een eerste behandeling met anticonvulsiva (Packer et al., 2015). De respons op therapie met anticonvulsiva is zeer complex en individueel bepaald, waardoor deze niet te voorspellen is (Hülsmeyer et al., 2015). Ook al is de respons niet ideaal, een goed aanvalsmanagement met anticonvulsiva kan ervoor zorgen dat de aanvallen beter te voorspellen zijn en de situatie voor mens en dier verbeterd (Packer en Volk, 2015).

Een probleem waar men mee te maken krijgt is therapieresistentie, met als synoniemen refractaire patiënten of drug resistent (BCFI, 2008; Rundfeldt et al., 2014; Packer et al., 2015). Dit is de derde fase van de epileptogenese in brede zin en treedt op bij een beperkt aantal patiënten (Patterson, 2013). Ondanks dat er een goed behandelingsschema was opgesteld, zijn de aanvallen moeilijk te controleren en kan men geen reductie van minstens 50% bereiken (Patterson, 2013; Penderis, 2014; Packer et al., 2015). Men ziet dat bij 20 tot 30% van de epileptische dieren behandeld met anticonvulsiva hun reductie in aanvalsfrequentie niet boven de 50% geraakt (Packer en Volk, 2015). Bij 25 tot 30% van de honden is er onvoldoende respons op de behandeling met de meest gebruikte anticonvulsiva, met name fenobarbital en kaliumbromide (Dewey, 2009; Alves et al., 2011; Rundfeldt et al., 2014; Rundfeldt et al., 2015). Waarschijnlijk is de pathogeneese van dit fenomeen multifactorieel, met de genetica die een rol in speelt (Penderis, 2014; Bhatti et al., 2015). Als de aanvalsfrequentie hoger is wanneer men begint met de behandeling, hebben humane patiënten meer kans op therapieresistentie. Een andere risicofactor op het voorkomen van therapieresistentie is het mannelijk geslacht, ze blijken vaker een minder goede respons op therapie te vertonen (Bhatti et al., 2015). Naast deze andere 2 risicofactoren, ziet men een significant groter risico op therapieresistentie, indien de epileptische aanvallen erg zijn of geleidelijk verergeren (Penderis, 2014).
Tot het ontstaan van therapierezistentie kan ook de genetica een bijdrage leveren, waardoor er rasdisposities worden gezien (Alves et al., 2011; Penderis, 2014; Bhatti et al., 2015). Men ziet bijvoorbeeld dat Australische Herders, Border Collies, Duitse Herders en Staffordshire Bull Terriërs moeilijker te controleren zijn dan bijvoorbeeld Labrador Retrievers en Belgische Herders (Bhatti et al., 2015). In de Border Collie populaties kan het aantal therapierezistente dieren oplopen tot 71% (Alves et al., 2011; Mizukami et al., 2013; Penderis, 2014).

Therapierezistentie is niet altijd van in het begin aanwezig, het kan optreden na herhaalde epileptische aanvallen als gevolg van het niet behandelen van de epileptische aanvallen (Penderis, 2013). De verklaring hiervoor is dat er via de NMDA-receptor (een inotrope receptor) een verhoogde intracellulaire calciumconcentratie ontstaat door de overmatige glutamaat vrijstelling als de aanvallen herhaaldelijk optreden (Penderis, 2013; Penderis, 2014). Dit is een toxisch milieu voor de neuronen en men krijgt allerlei reacties van het hersenweefsel hierop, zodat de neuronen minder gevoelig worden aan anticonvulsiva (Penderis, 2013).

Af en toe is het toch mogelijk dat dieren met epilepsie aanvallsvrij geraken met behulp van anticonvulsiva, een andere term voor dit gebeuren is remissie (Packer et al., 2015; Bhatti et al., 2015; Packer en Volk, 2015). Het aantal dieren dat een remissie meemakt kan sterk variëren van populatie tot populatie, het kan gaan van 14,2 tot 85% (Licht et al., 2002; Packer et al., 2015; Bhatti et al., 2015; Rundfeldt et al., 2015; Packer en Volk, 2015). In sommige gevallen is er bij idiopathische epilepsie geen chronische behandeling nodig (Bhatti et al., 2015; Packer en Volk, 2015). Er werd gezien dat er een hogere kans op remissie aanwezig was als men een aanvalsreductie kon bereiken van meer dan 50%, hierbij ging de kans op remissie van 14% naar 64,5% (Bhatti et al., 2015). Wat geen verschil maakte voor het aantal dieren in remissie, was het moment van het opstarten van de behandeling (Penderis, 2014). In tegenstelling tot bij de hond kan men bij 70 tot 80% van de humane epileptische patiënten remissie waarnemen door het gebruik van anticonvulsiva (Rundfeldt et al., 2014).

Als de eigenaars zouden opteren voor idiopathische epilepsie niet te behandelen, ziet men dat de frequentie in epileptische aanvallen alleen maar blijft toenemen over de tijd heen (Penderis, 2014; Bhatti et al., 2015). Hiernaast is het mogelijk dat er geleidelijk een verergering van de aanvallen optreedt en de hond kan een hogere kans op het ontstaan van status epilepticus hebben (Lemieux, 1977). Naast deze nadelen van geen behandeling toe te passen, heeft een vroegtijdige behandeling een betere prognose dan een laatijdige behandeling, aangezien er minder kans is op refractaire patiënten (BCFI, 2008). Wordt de behandeling met een anticonvulsivum direct gestart nadat de eerste epileptische aanval is opgetreden, zou men een betere controle van de epilepsie kunnen krijgen (Penderis, 2014). Niet altijd wordt er aangeraden om meteen een behandeling met anticonvulsiva op te starten en de behandeling pas te beginnen als de epileptische aanvallen aan bepaalde eigenschappen voldoen (BCFI, 2008; Bhatti et al., 2015).

Er is altijd een individuele afstelling van de behandeling is altijd nodig, zowel de dosering als het gebruikte anticonvulsivum moeten per patiënt worden afgesteld (Bhatti et al., 2015). Vaak moet men zoeken naar het juiste anticonvulsivum of combinaties van meerdere anticonvulsiva, die voor dat individu effectief werken (Rusbridge, 2013a; Rundfeldt et al., 2014; Packer et al., 2015).

2. Fenobarbital

2.1. Inleiding en Farmacodynamie

Fenobarbital is een anticonvulsivum dat meer dan 100 jaar wordt toegepast in de praktijk voor de behandeling van epilepsie (Löscher et al., 2013). Het werd ontwikkeld als hypnoticum en sedativum en
in 1912 heeft men per toeval de anti-convulsieve eigenschap ontdekt, sinds 1937 wordt het voor kleine huisdieren toegepast tegen pijn en spasmen (Rusbridge, 2013a). Bij de mens is het gebruik sterk ingeperkt omwille van de tolerantieproblematiek (Lösch et al., 2013). Het wordt nu nog wel wijdverspreid gebruikt voor de behandeling van caniide idiopathische epilepsie. Aangezien fenobarbital zo veel en zo lang in de praktijk gebruikt wordt, heeft men veel goed gedocumenteerde successen die de goede werking van het geneesmiddel staven (Hojo et al., 2002; Fukunaga et al., 2009).

Fenobarbital is een agonist van de GABAa-receptor, door de binding op de GABAa-receptor wordt het chloride ionenkanaal geopend en gaat de chloride concentratie intracellulair toenemen met een hyperpolarisatie van het neuron tot gevolg (Rusbridge, 2013a; Patterson, 2013). Men neemt een verminderde gevoeligheid van de neuronen voor een actiepotentiaal waar, wat betekent dat er een toename van de drempelwaarde plaatsvindt in de motorische cortex van het cerebrum, hierdoor is er een verminderde transmissie van neurotransmitters ter hoogte van de synaps (Rundfeldt et al., 2014; BCFI, 2015). Deze verhoging van de drempel werd ook waargenomen in een studie met 7 Beagles, in dezelfde studie werd gezien dat de drempel lineair steeg met de dosis, dus het effect was dosisafhankelijk (Lösch et al., 2013). Naast de werking op de GABAa-receptor, wordt er een effect gezien van fenobarbital op de glutamaat vrijstelling, de calciumkanalen en de voltage-afhankelijke kaliumkanalen (Rusbridge, 2013a).

De effectiviteit van fenobarbital als 1ste lijn anticonvulsivum ligt rond de 37,2% in een Engelse kliniekpopulatie van 196 honden met idiopathische epilepsie. Bij deze dieren kon men een aanvalsreductie van meer dan 50% bereiken en bij 14,2% van deze dieren kon men zelfs tot remissie komen (Packer et al., 2015). Fenobarbital kan een effectieve daling geven in de aanvals frequentie met 60 tot 93% als de therapeutische plasmaconcentraties bereikt worden (Bhatti et al., 2015). Gedurende 6 maanden werden 20 honden met idiopathische epilepsie gegeven en behandeld met fenobarbital, er was aanvals vrijheid bij 85% van de dieren (Boothe et al., 2012; Bhatti et al., 2015). Het aantal aanvallen, de aanvandsduur en de aanvalsergerheid waren significant gedaald als men de waarden vergeleek met de waarden vóór de behandeling. In vergelijking met voordat de therapie werd gestart, was er een significante verlenging van het aanvalstijdstip (Boothe et al., 2012). Als laatste zag men dat het aantal aanvallen dat succesvol gecontroleerd werd, de effectiviteit en de veiligheid van fenobarbital hoger lag dan voor kaliumbromide, maar dit was niet significant (Boothe et al., 2012; Bhatti et al., 2015). Het aantal neveneffecten voor fenobarbital was het minste van alle anticonvulsiva voordat imepitoine werd ontwikkeld (Hojo et al., 2002; Fukunaga et al., 2009; Bhatti et al., 2015).

Primidone is een pro-drug en wordt in het lichaam gemetaboliseerd naar fenobarbital en phenylethylalonamide (Rusbridge, 2013b). 85% van de aanvals activiteit zou te wijten zijn aan

2.2. Farmacokinetiek

De absorptie bij de hond is snel en treedt op binnen de 2 uur na opname, de biologische beschikbaarheid bevindt zich rond de 90% (Bhatti et al., 2015). Men ziet wel een lichte daling van de biologische beschikbaarheid, indien men fenobarbital gelijktijdig met voeding toedient (Rusbridge, 2013a).

Nadat fenobarbital geresorbeerd is uit het gastro-intestinaal kanaal, ziet men een maximale plasmaconcentratie in het bloed na 4 tot 8 uur, met een plasma-eiwitbinding van 45% (Bhatti et al., 2015; BCFI, 2015). Het distributievolume bij de hond bedraagt 0,75 l/kg en er wordt pas een steady-state serumconcentratie bereikt als de therapie 2 weken tot 1 maand bezig is (BCFI, 2008; BCFI, 2015). De therapeutische plasma- of serumconcentraties liggen tussen de 15 en 40 mg/l, maar een betere aanvalscontrole werd gezien bij concentraties van 25 tot 35 mg/l (Andrić et al., 2010; Boothe et al., 2012; Bhatti et al., 2015). Andere auteurs gebruikten wel ongeveer dezelfde getallen, maar hadden een andere eenheid vermeld, deze waren ofwel µg/l (BCFI, 2008) ofwel mg/ml (Rusbridge, 2013a). De correlatie tussen de dosis van fenobarbital die wordt toegediend en de serumconcentratie is laag, met als gevolg dat de dosis geen goede correlatie heeft met de behandelingsrespons (Boothe et al., 2012).

Fenobarbital wordt gemetaboliseerd door de hepatische cytochrom P450 (CYP450) iso-enzymen, maar toch zal er 25% van fenobarbital onveranderd geëlimineerd worden via de urine (Bhatti et al., 2015; BCFI, 2015). De eliminatiehalfwaardetijd is relatief lang en varieert tussen de 40 en 90 uur bij de hond, afhankelijk van het individu (Hojo et al., 2002; BCFI, 2008; Fukunaga et al., 2009; Boothe et al., 2012; BCFI, 2015). Bhatti et al. (2015) zag dat de eliminatiehalfwaardetijd bij normale honden varieerde van 37 tot 73 uur, met 93 uur na een eenmalige intraveneuze toediening. De eliminatiehalfwaardetijd nagegaan bij 15 gezelschaps honden was gemiddeld 68 uur aan het begin van de therapie (Boothe et al., 2012).

Een typisch fenomeen dat optreedt bij het gebruik van fenobarbital is de inducitie van de CYP450 iso-enzymen, dit werd ook bij de hond waargenomen (Hojo et al., 2002; Sasaki en Shimoda, 2015; Bhatti et al., 2015). Bij de rat werd er bijna een verdubbeling vastgelegd in het totale aantal CYP450 iso-enzymen van de hepatische microsomen (Rundfeldt et al., 2014). Fenobarbital zou ook nog op een ander microsomaal enzym inductie uitoefenen, namelijk het UDP-glucuronosyltransferase (Fukunaga et al., 2009; Sasaki en Shimoda, 2015).

De toename in de productie van reactive oxygen species door de lever kan een gevolg zijn van de inductie van CYP450 iso-enzymen en verhoogt het risico op leverschade (Bhatti et al., 2015). Hiernaast kan de stijging in de activiteit van CYP450 auto-inductie geven (Boothe et al., 2012; Tipold et al., 2014; Bhatti et al., 2015). Dit is een toegenomen metabolisatie van fenobarbital en is ook bekend onder de term metabolische klaring (Boothe et al., 2012; Bhatti et al., 2015). Vooral CYP2C staat in voor het metabolisme van fenobarbital en de activiteit ervan was duidelijk toegenomen. Het is hoogstwaarschijnlijk dat een stijging in de activiteit van deze subfamilie de auto-inductie op gang zet (Hojo et al., 2002). Een gevolg van deze metabole klaring is een geleidelijke daling van de eliminatiehalfwaardetijd van fenobarbital, dit kan gaan tot 30 à 45 uur (Bhatti et al., 2015). Hierdoor treedt er een reductie in de serumconcentratie van fenobarbital, waardoor de therapie kan falen (Boothe et al., 2012; Tipold et al., 2014; Bhatti et al., 2015). Als men de klaring vergeleek tussen een eenmalig toegediende orale dosis en een herhaalde dosering zag men dat de klaring van fenobarbital hoger was voor de langdurige therapie (Hojo et al., 2002). Nadat de auto-inductie optrad bij de
behandeling van 15 honden met fenobarbital voor 6 maanden, was de gemiddelde eliminatiehalfwaardetijd significant gedaald van 68 naar 46 uur. Indien er een daling in de serumconcentratie optreedt, bestaat er een kans dat de aanvalsactiviteit toeneemt en moet er een dosisaanpassing worden doorgevoerd (Boothe et al., 2012).

2.3. Toxiciteit

Bij de toediening van fenobarbital aan 226 dieren, zag men dat 57,3% van de dieren ten minste 1 neveneffect vertoonde (Tipold et al., 2014). Vele neveneffecten kunnen optreden, maar de meeste zijn dosisafhankelijk en treden enkel in het begin van de therapie of na een verhoging van de dosis op (Rusbridge, 2013a; Bhatti et al., 2015). Na een aantal weken zouden deze dosisaanhankelijke neveneffecten spontaan moeten verdwijnen door farmacodynamische en -kinetische tolerantie (Boothe et al., 2012; Bhatti et al., 2015). Dit houdt in dat er een verlaagde gevoeligheid van de receptor en een verhoogde eliminatie door auto-inductie plaatsvindt (Bhatti et al., 2015). Deze functionele (verlaagde gevoeligheid) en metabole effecten (auto-inductie) liggen naast het verminderen van neveneffecten aan de basis van het optreden van therapie falen (Tipold et al., 2014). Af en toe treden er erge neveneffecten op waardoor de toediening van fenobarbital moet worden stopgezet, voor het merendeel van de gevallen zijn de neveneffecten reversibel als fenobarbital niet meer wordt toegediend (Bhatti et al., 2015).

Een van de neveneffecten die optreden bij de behandeling met fenobarbital zijn ataxie en sedatie, na een tot enkele weken is de sedatie meestal verdwenen door tolerantie (BCFI, 2008; Boothe et al., 2012; Tipold et al., 2014; BCFI, 2015). Andere neveneffecten die kunnen optreden na het starten van de behandeling zijn polyfagie, polydipsie en polyurie en deze zijn net zoals ataxie en sedatie van voorbijaagende aard (BCFI, 2008; Boothe et al., 2012; Tipold et al., 2014). Sedatie, ataxie, polyurie, polydipsie en polyfagie zijn de meest geziene neveneffecten van fenobarbital en zijn maar van milde aard (BCFI, 2008; Boothe et al., 2012; Bhatti et al., 2015). De prevalentie van deze 5 neveneffecten was significant lager als men gedurende 6 maanden behandelde ten opzichte van de prevalentie van een behandeling gedurende 1 maand (Boothe et al., 2012). Een eerder zeldzaam neveneffect is hyperexcitatie, het treedt op in het begin van de therapie en is niet dosisaanhankelijk (Rusbridge, 2013a; BCFI, 2015).

De leverenzymen kunnen een verhoogde serumconcentratie bereiken door de invloed van fenobarbital (BCFI, 2008; Rusbridge, 2013a; Tipold et al., 2014). Uit Rusbridge (2013a) en Tipold et al. (2014) is gebleken dat alkalische fosfatase (AP), gamma glutamine transferase (GGT), alanine aminotransferase (ALT) en glutamaat dehydrogenase (GLDH) significant waren gestegen in het serum en dit dosisaanhankelijk was. De oorzaak van deze stijging is ten gevolge van enzyminductie en men mag het niet verwachten met hepatotoxiciteit door fenobarbital die kan optreden, waar er dus echte leverschade optreedt (BCFI, 2008; Rusbridge, 2013a; Bhatti et al., 2015). Bij de mens en de rat werd een stijging van aspartaat aminotransferase (AST) waargenomen ten gevolge van enzyminductie, deze stijging werd bij de hond nog niet gezien. Indien men gezonde en epileptische honden om de 12 uur fenobarbital gaf aan een dosis van 2 mg/kg, kon men een significante stijging zien van AP na 3 weken van behandeling (Andrić et al., 2010). Een significante stijging van ALT trad pas op als men 3 weken behandelde aan een dosis van 5 mg/kg om de 12 uur. In het geval men de dosis van fenobarbital verhoogde, werd de serumconcentratie van AP en ALT significant hoger, wat erop wijst dat de stijging dosisaanhankelijk is (Andrić et al., 2010). De verstoring van de leverfunctie zal zich ook uiten door een daling in de serumconcentratie van albumine, maar de gemiddelde waarde blijft binnen de referentiewaarde (Boothe et al., 2012). Naast een stijging in de leverenzymen kan er een toename in de serumconcentraties van cholesterol en triglyceriden opgemerkt worden (Bhatti et al., 2015).
Levertoxiciteit is een neveneffect dat pas optreedt bij een hoge serumconcentratie van fenobarbital, vooral als de serumconcentratie hoger is dan 35 µg/l (BCFI, 2008; Rusbridge, 2013a; BCFI, 2015). Ook bij Packer en Volk (2015) blijkt dat het fenomeen dosisafhankelijk is en vooral optreedt na lange termijn behandeling met fenobarbital. Het ontstaan van de levertoxiciteit is te wijten aan de inductie van microsomale leverenzymen, wat dan aanleiding geeft tot een verhoogde aanmaak van reactive oxygen species die het leverfalen in de hand werken (Rusbridge, 2013a; Bhatti et al., 2015). Uiteindelijk resulteert dit in levercirrose, dit werd vooral gezien bij concentraties hoger dan 40 mg/ml en als men fenobarbital over meerdere jaren toediend (Rusbridge, 2013a). Levertoxiciteit is een zeldzaam neveneffect, maar het kan wel een gevaar betekenen voor het leven van het dier (BCFI, 2008; Rusbridge, 2013a; Tipold et al., 2014; Bhatti et al., 2015). Voor de diagnose van hepatotoxiciteit is een stijging van de serumconcentratie van AST een sensitieve diagnostische test, aangezien deze enkel stijgt bij hepatocellulaire schade (Andrić et al., 2010). Indien ALT meer dan 2 keer boven de referentiewaarde, AP meer dan 5 keer de referentiewaarde, een stijging in GGT en een stijging in ALT optreedt, wijst dit op lever insufficiëntie ten gevolge van hepatotoxiciteit (Rusbridge, 2013a). Primidone geeft aanleiding tot leverfalen bij 70% van de patiënten (Rusbridge, 2013b).

Behalve de hierboven besproken directe schade van fenobarbital op de lever heeft men nog de idiosyncratische reactie, die erg zeldzaam is. Deze aandoening treedt op binnen de start van de therapie. Op histologie ziet men cholestase en een prevalentie van ten minste 10% (Packer en Volk, 2015). Een therapeutische dosis van fenobarbital kan een significante stijging waar blijkt dat het zelfs dosisafhankelijk geïnduceerd door fenobarbital (Hojo et al., 2002). Als gevolg ziet men een stijging van de gebonden fractie en een daling van de vrije fractie van het geneesmiddel (Hojo et al., 2002; Bhatti et al., 2015; BCFI, 2015). Hieruit kan men afleiden dat er een invloed is op de farmacokinetiek van andere geneesmiddelen die aan AGP binden (Hojo et al., 2002). Een daling in de vrije plasmaconcentratie en

2.4. Geneesmiddeleninteracties

Een therapeutische dosis van fenobarbital kan een significante verhoging in de serumconcentratie van bepaalde plasmaproteïnen geven (Bhatti et al., 2015; BCFI, 2015). De bindingsproteïne waar de meeste geneesmiddelen op binden in het plasma is α-1-acid glycoproteïne (AGP), dit proteïne wordt dosisafhankelijk geïnduceerd door fenobarbital (Hojo et al., 2002). Als gevolg ziet men een stijging van de gebonden fractie en een daling van de vrije fractie van het geneesmiddel (Hojo et al., 2002; Bhatti et al., 2015; BCFI, 2015). Hieruit kan men afleiden dat er een invloed is op de farmacokinetiek van andere geneesmiddelen die aan AGP binden (Hojo et al., 2002). Een daling in de vrije plasmaconcentratie en

14
een vermindere effectiviteit door toedoen van fenobarbital wordt waargenomen voor de volgende geneesmiddelen: cyclosporine, T4 en theofylline (BCFI, 2015).

Een tweede manier waarop fenobarbital geneesmiddeleninteracties bewerkstelligd is door een invloed te hebben op de metabolisatie van andere geneesmiddelen door de inductie van CYP450 iso-enzymen (Boothe et al., 2012; Bhatti et al., 2015). Afhankelijk door welke CYP450 subfamilie het geneesmiddel wordt afgebroken, kan het geneesmiddel een verhoogde klaring ondervinden door het gebruik van fenobarbital of niet. Fenytloïne, antipyrine en quinidine hebben bijvoorbeeld bij de hond een verhoogde metabolische klaring door CYP450 iso-enzymen, terwijl de klaring van theofylline niet is aangetast (Sasaki en Shimoda, 2015). Vooral geneesmiddelen afgebroken door CYP2C, CYP3A en CYP2B ondergaan een verhoogde metabolisatie onder invloed van fenobarbital (Fukunaga et al., 2009; Sasaki en Shimoda, 2015). Hojo et al. (2002) heeft gezien dat bij 8 mannelijke Beagles er een significante stijging is in de metabolisatie van geneesmiddelen die voorbij CYP1A, CYP2B, CYP2C en CYP3A moeten passeren. Naast een effect op de CYP450 iso-enzymen zou fenobarbital een effect hebben op geneesmiddelen die geëlimineerd worden via glucuronidatie door UGT, zoals niet-steroidale anti-inflammatoire drugs (NSAID). Bij honden kan een 3 keer hogere glucuronidatie van morfine door UGT worden waargenomen na een behandeling met fenobarbital, waardoor deze sneller wordt geëlimineerd uit het lichaam (Sasaki en Shimoda, 2015). Voor alle geneesmiddelen wiens farmacokinetiek door fenobarbital wordt beïnvloed, moet er een dosisaanpassing worden doorgevoerd indien de toediening van fenobarbital wordt stopgezet (Fukunaga et al., 2009).

Fenobarbital is zelf ook onderhevig aan geneesmiddeleninteracties (BCFI, 2015). Door de vermindere metabolisatie van fenobarbital als gevolg van de remming van CYP450 iso-enzymen, krijgt men een toename in de serumconcentratie van fenobarbital en de kans op het ontstaan van toxiciteit (Bhatti et al., 2015; BCFI, 2015). Men heeft gezien dat omeprazole, chloramfenicol, trimethoprim, fluoroquinolones en tetracyclines het CYP450 kunnen remmen (Bhatti et al., 2015). Geneesmiddelen die centrale depressie geven (bijvoorbeeld narcotische analgetica, morfinederivaten, …), kunnen dan weer het effect van fenobarbital verminderen door een vermindere actieve fractie (BCFI, 2015).

Andere anticonvulsiva toegediend aan de hond, zoals levetiracetam, zonisamide en benzodiazepines kunnen het slachtoffer worden van een gewijzigde farmacokinetiek door fenobarbital, waardoor ze hun therapeutisch effect verliezen (Bhatti et al., 2015). Als men een combinatietherapie van kaliumbromide en fenobarbital gebruikt, kan men een synergisme waarnemen bij de hond door de geneesmiddeleninteractie (Rusbridge, 2013a).

2.5. Gebruik

Als men een doseerinterval van 12 uur hanteert, treden er maar minimale fluctuaties in de plasmaconcentraties op dankzij de lange eliminatiehalfwaardetijd (BCFI, 2008; Boothe et al., 2012). Meestal wordt er daarom een dosering van 2 keer per dag (BID) aangeraden om mee te beginnen (BCFI, 2008; Boothe et al., 2012; Rusbridge, 2013a; Tipold et al., 2014; BCFI, 2015).

De chronische toediening van fenobarbital verloopt per os en hoeft niet op een lege maag te worden uitgevoerd (BCFI, 2008; Rusbridge, 2013a; Bhatti et al., 2015). Voor de therapeutische range te bereiken, die hoger werden besproken, moet men volgens Rusbridge (2013a) een dosis van 3 mg/kg BID geven. Men raadt aan om een startdosis van 2 tot 3 mg/kg BID toe te dienen voor te beginnen en dan de dosis aan te passen naargelang het zichtbare effect (Rusbridge, 2013a; Tipold et al., 2014; Bhatti et al., 2015). Er is een studie gebeurd op 76 honden waaruit men heeft mogen concluderen dat 73.9% van de patiënten voldoende had aan een dosis van 2 mg/kg BID. De maximaal toelaatbare dosering is 6 mg/kg BID, dit om erge neveneffecten te vermijden (Tipold et al., 2014).
Nadat men de therapie heeft gestart, kan men best de dosis individueel afstellen naargelang de aanvalscontrole, therapeutische serumconcentratie en neveneffecten (BCFI, 2008; Rusbridge, 2013a; Bhatti et al., 2015). Indien de serumconcentratie niet binnen de therapeutische range ligt en er toch een voldoende aanvalscontrole is, is het niet nodig om de dosis te verhogen (Bhatti et al., 2015). Om de neveneffecten en bijwerkingen zo klein mogelijk te maken, moet er getracht worden om een zo laag mogelijke effectieve dosis te geven (BCFI, 2008; BCFI, 2015). Er bestaat een formule voor de dosisaanpassing voor het geval dat er onvoldoende aanvalscontrole is en de serumconcentratie zich onder de 30 mg/l bevindt (Bhatti et al., 2015). Deze berekening wordt gebaseerd op de serumconcentraties van fenobarbital (BCFI, 2008; Rusbridge, 2013a; Bhatti et al., 2015).

\[
de \text{nieuwe totale, dagelijkse dosis van fenobarbital in mg} = \frac{\text{gewenste serumconcentratie van fenobarbital}}{\text{huidige serumconcentratie van fenobarbital}} \times \text{de huidige totale, dagelijkse dosis van fenobarbital in mg}
\]

Bij een langdurige therapie is het noodzakelijk de leverwaarden en hematologie te monitoren (BCFI, 2008; Rusbridge, 2013a; BCFI, 2015). Voordat de behandeling gestart wordt, moet er een volledige biochemie en hematologie gebeuren en de galzuren in het serum moeten worden nagegaan voor reeds bestaande afwijkingen op te sporen (Rusbridge, 2013a; Bhatti et al., 2015). Als men de therapie start of de dosis aanpast, moet men 3 maanden later de hematologie en biochemie uitvoeren, daarna moeten al deze parameters om de 6 maanden bepaald worden (Bhatti et al., 2015). In tegenstelling tot Bhatti et al. (2015) wilt BCFI (2008) dat de eerste hematologie en biochemie op 14 dagen wordt uitgevoerd nadat de therapie werd gestart of een dosisaanpassing werd doorgevoerd en daarna moet dit om de 3 tot 6 maanden herhaald worden.

Een andere monitoring die moet gebeuren is die van de serumconcentratie van fenobarbital zelf (BCFI, 2008; Rusbridge, 2013a; Bhatti et al., 2015). Dit is vooral om na te gaan wanneer de steady-state concentratie bereikt is, de serumconcentratie binnen de therapeutische range ligt en vooral dat de serumconcentratie niet te hoog is (BCFI, 2008; Boothe et al., 2012). De serumconcentratie mag zeker niet hoger zijn dan 45 mg/l om erge neveneffecten te vermijden (Tipold et al., 2014). Een andere reden voor het opvolgen van de serumconcentratie is de auto-inductie door CYP450 iso-enzymen, waardoor de serumconcentratie van fenobarbital zich niet meer binnen de therapeutische grenzen bevindt (Bhatti et al., 2015). 14 dagen na de start van de therapie of verandering van de dosis kan men best de serumconcentraties van fenobarbital bepalen (BCFI, 2008; Rusbridge, 2013a; Bhatti et al., 2015). Hierna is het ideaal om 6 weken later de bepaling te herhalen voor het effect van metabole tolerantie na te gaan (Bhatti et al., 2015). De verdere monitoring gebeurd door de bloedafname ter herhalen na 6 tot 12 maanden of indien de aanvalscontrole onsuccesvol blijkt te zijn (Rusbridge, 2013a). BCFI (2008) raadt dan weer aan om elke 3 tot 6 maanden de serumconcentratie van fenobarbital te bepalen.

Naast de tolerantie na chronisch gebruik, heeft men vaak therapeuteresistentie bij de behandeling met fenobarbital (Alves et al., 2011; Rusbridge, 2013b; Mizukami et al., 2013; Penderis, 2014). Het zou geassocieerd kunnen zijn met het polymorfisme in het ABCB1 gen, er werd wel nog geen causaal verband vastgesteld (Alves et al., 2011; Mizukami et al., 2013; Penderis, 2014). Een synoniem voor het ABCB1 gen is het multi drug resistance 1 gen (MDR1 gen) (Alves et al., 2011; Mizukami et al., 2013). Het ABCB1 gen codeert voor een transmembraan proteïne ter hoogte van onder andere de bloedhersenbarrière, het permeabiliteit-glycoproteïne (P-gp) (Alves et al., 2011; Mizukami et al., 2013; Penderis, 2014). De functie van het P-gp is de efflux van geneesmiddelen uit de hersenen met behulp van adenosinetrifosfaat (ATP). Door een mutatie in het gen zal er een dysfunctie zijn in het eiwit, wat kan leiden tot intoxicaties ter hoogte van de hersenen (zoals ivermectine intoxicatie) of tot behandlingsresistentie (Alves et al., 2011; Mizukami et al., 2013). De mutatie die leidt tot de
behandelingsresistentie zou een single nucleotide substitutie betreffen in de promotorregio van het MDR1 gen (Alves et al., 2011; Mizukami et al., 2013; Penderis, 2014). In dit geval leidt de dominante mutatie in het MDR1 gen tot een up-regulatie van het gen en tot een verhoogde expressie van het P-gp (Rusbridge, 2013b; Mizukami et al., 2013). Bij een over-expressie van het P-gp ten gevolge van een mutatie in het gen geraakt de therapeutische concentratie van fenobarbital moeilijker bij de epileptogene focus en heeft men een moeilijker aanvalscontrole (Alves et al., 2011; Rusbridge, 2013b). Bij een over-expressie van het P-gp ten gevolge van een mutatie in het gen geraakt de therapeutische concentratie van fenobarbital moeilijker bij de epileptogene focus en heeft men een moeilijker aanvalscontrole (Alves et al., 2011; Rusbridge, 2013b). De frequentie van het mutant allel wordt geschat op 24,9% in een Japanse populatie van 473 Border Collies, men mag deze frequentie niet overzetten naar andere Border Collie populaties (Mizukami et al., 2013).

Soms kan men opteren om de therapie van fenobarbital stop te zetten, een van de redenen is het aanwezig zijn van remissie gedurende 6 maanden tot 2 jaar. Bij het onderbreken van de therapie heeft men de mogelijke neveneffecten van de therapie die verdwijnen, maar wel een kans op het terugkeren van de epileptische aanvallen (BCFI, 2008). Als men stopt met de toediening van fenobarbital kan men dit best geleidelijk doen zodat er geen toename in het aantal epileptische aanvallen, ook wel 'withdrawal seizures' genoemd (BCFI, 2008; Rusbridge, 2013a; BCFI, 2015). Een tweede reden voor het volledig afbouwen van de therapie is door erge neveneffecten. Dit is bij 1/5 van de patiënten behandeld met fenobarbital het geval (BCFI, 2008).

3. Imepitoïne

3.1. Inleiding en Farmacodynamie

Imepitoïne is een imidazolinone derivaat, het 1-(4-chlorophenyl)-4morpholino-imidazolin-2-one of ELB138 (Löscher et al., 2013; Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014; Tipold et al., 2014; Rundfeldt et al., 2015). Het werd in 1990 ontwikkeld voor de behandeling van epilepsie en angst bij de mens en men zag een hoge verdraagbaarheid (weinig neveneffecten) (Löscher et al., 2013; Rundfeldt et al., 2015). Maar de farmacokinetiek kon sterk verschillen tussen rokers en niet rokers, waardoor er een verschil in effectiviteit optrad (Löscher et al., 2013; Rundfeldt en Löscher, 2014; Rundfeldt et al., 2015). De oorzaak ligt bij de inhalatie van een aromatische stof uit teer die vrijkomt bij het roken. Deze stof zou dan leiden tot een inductie van een CYP450 iso-enzym (namelijk CYP1A1) die instaat voor de metabolisatie van imepitoïne (Rundfeldt en Löscher, 2014; Rundfeldt et al., 2015). Hierdoor zag men bij rokers een daling in de eliminatiehalfwaardetijd en bij niet-rokers accumulatie na meerdere doseringen door oversaturatie van het iso-enzym. Bij de hond zou er geen variatie zijn tussen individuen in de activiteit van het CYP1A1 iso-enzym. Uiteindelijk werd imepitoïne in 2013 op de Europese markt gebracht voor de behandeling van caniene epilepsie (Rundfeldt en Löscher, 2014). Het zou een hoge veiligheid hebben bij de hond wegens weinig en milde neveneffecten die meestal van voorbijgaande aard zijn, waardoor het geschikt is voor langdurige therapie (Rundfeldt et al., 2015).

De werking berust erin dat het een partiele agonist is met een lage affiniteit voor de benzodiazepine bindingsplaats op de GABAa-receptor (Löscher et al., 2013; Rundfeldt en Löscher, 2014; Tipold et al., 2014; Bhatti et al., 2015). De remming van de epileptische aanvallen wordt bekomen door het
remmende effect op de neuronen via de GABAa-receptoren (Rundfeldt en Lösch er, 2014; Tipold et al., 2014; BCFI, 2015). Het chloorkanaal wordt namelijk geopend na binding van imepitoïne aan de GABAa-receptor, waardoor het post-synaptisch neuron hyperpolarisatie ondergaat (Rundfeldt en Lösch er, 2014). Hierdoor krijgt men een verhoging in de drempelwaarde voor depolarisatie en bij imepitoïne is dit dosisafhankelijk: hoe hoger de dosis, hoe hoger de drempelwaarde (Lösch er et al., 2013; Rundfeldt en Lösch er, 2014; Rundfeldt et al., 2014). Zowel in een studie met muizen als in een studie met 7 Beagles zag men dat de drempel verhoogde bij de toediening van imepitoïne en de drempel lineair steeg bij een verhoogde dosis (Lösch er et al., 2013). Ook de zwakke calciumkanaal blokkerende werking van imepitoïne kan bijdragen tot zijn anti-convulsieve eigenschappen (BCFI, 2015).

In knaagdiermodellen, bij de hond en bij de mens werd er een uitgesproken anti-convulsieve activiteit van imepitoïne waargenomen en een hoge verdraagbaarheid gezien (Rundfeldt en Lösch er, 2014; Rundfeldt et al., 2014; Rundfeldt et al., 2015). De anti-convulsieve activiteit van imepitoïne zou vergelijkbaar zijn met die van fenobarbital, maar de verdraagbaarheid zou hoger liggen (Lösch er et al., 2013; Rundfeldt et al., 2014; Tipold et al., 2014). In een studie van 152 honden met generaliseerde idiopathische epilepsie werd de effectiviteit tussen fenobarbital en imepitoïne vergeleken, met als uitgangspunt een aanvallsreductie van meer dan 50%. Als er een betrouwbaarheidsinterval van 95% werd gehanteerd was er geen significant verschil tussen beiden op te merken in de effectiviteit, voor fenobarbital bedroeg dit 83% en voor imepitoïne 75%. Om een volledige aanvalls vrijheid te bereiken bedroeg de effectiviteit voor imepitoïne 46,9% en voor fenobarbital 58%, maar terug was er geen significant verschil aan te tonen (Tipold et al., 2014). Over 6 tot 7 maanden werd er een andere studie uitgevoerd op 12 honden die oraal imepitoïne kregen toegediend voor een nieuw gediagnosticeerde idiopathische epilepsie. Men kon een duidelijk vermindere aanvalls frequentie waarnemen en de ergeheid van de aanvallen was duidelijk afgenomen, maar er werd geen significant verschil waargenomen ten opzichte van de behandeling met fenobarbital (Rundfeldt en Lösch er, 2014). Proefondervindelijk heeft men vastgesteld dat bij een groep honden die een hogere dosis (30 mg/kg BID) imepitoïne toegediend kreeg een significantere reductie in de aanvalls frequentie had dan de honden die een lage dosis (1 mg/kg BID) kregen. Het percentage honden dat vrij te krijgen was door de toediening van imepitoïne was 37,5% voor de hoge dosis groep en 31,7% voor de lage dosis groep, met geen significant verschil tussen beiden (Rundfeldt et al., 2015).

Honden die aan chronische epilepsie leden en waarbij de respons op fenobarbital of primidone ontoereikend was, konden met de toediening van imepitoïne toch een goede aanvalls controle bereiken (Bhatti et al., 2015). De add-on toediening van imepitoïne aan 17 honden met therapieresistentie zorgde bij de meeste dieren voor een reductie in de aanvalls frequentie en de ergeheid van de aanvallen. Dit gebeurde in dezelfde mate als bij add-on therapie met kaliumbromide voor fenobarbital, maar imepitoïne wordt veel beter getoler eerd dan kaliumbromide (Rundfeldt en Lösch er, 2014).

De farmacokinetiek bij de hond is veel beter dan voor fenobarbital aangezien de individuele variatie er veel beperker is (Lösch er et al., 2013; Rundfeldt en Lösch er, 2014). Bijkomend heeft imepitoïne een hoge veiligheid bij de epileptische hond en men ziet al bij een lage dosis een goede anti-convulsieve activiteit (Rundfeldt en Lösch er, 2014). De dosis die bij 50% van de populatie toxiciteit geeft (TD50), is voor imepitoïne hoger dan voor fenobarbital als men dit baseerde op het uitlokken van neurotoxiciteit bij muizen. Dezelfde test werd uitgevoerd bij Beagles en daar lag de TD50 van imepitoïne nog hoger (Lösch er et al., 2013).

Naast de anti-convulsieve werking kon men ook een anxiolytische werking waarnemen bij ratten na het toedienen van imepitoïne (Rundfeldt et al., 2014). Rundfeldt en Lösch er (2014) en Tipold et al. (2014)
hebben deze anxiolytische werking van imepitoïne ook gezien bij de hond, dewelke dosisafhankelijk zou zijn.

Naast de gegeneraliseerde aanvallen, was er een significante redactie waar te nemen voor de partiële aanvallen, zowel de gewone als de complexe (Rundfeldt et al., 2015). Tot nu toe is er nog geen significante redactie door imepitoïne gezien in het optreden van clusters (meer dan 2 aanvallen binnen 24 uur) (Berendt et al., 2015; Rundfeldt et al., 2015; Packer en Volk, 2015).

3.2. Farmacokinetiek

Het toedienen van een dosis 1 keer per dag of 2 keer per dag, heeft geen effect voor de farmacokinetiek, ook het verschil in voeding en vasten heeft geen invloed op de farmacokinetiek (Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014).

Imepitoïne is een chemisch stabiel geneesmiddel, heeft een lage oplosbaarheid in waterig milieu en is non-hygroscopisch (Rundfeldt en Löscher, 2014). Het heeft een hoge lipofiliteit en een hoge affinititeit voor membranen en oppervlaktes. Het kan daarom zijn dat er geen correlatie is tussen de plasmoconcentratie en de anti-convulsieve activiteit, doordat imepitoïne al uit de bloedbaan verdwenen is en gebonden is aan de celmembranen (Rundfeldt et al., 2014).

De orale biologische beschikbaarheid is 92% en is maximaal als men imepitoïne toedient bij een nuchtere hond (Rundfeldt et al., 2014; BCFI, 2015). Binnen de 30 minuten na een orale dosering van 30 mg/kg zag men al hoge plasmoconcentraties van imepitoïne door de snelle vrijstelling van het geneesmiddel uit de tablet en het snel aanvatten van de absorptie (Rundfeldt et al., 2014; Bhatti et al., 2015). Deze snelle vrijstelling uit de tablet is een gevolg van de goede oplosbaarheid van imepitoïne in een zuur milieu zoals de maag (Rundfeldt et al., 2014). In tegenstelling tot de snelle aanvang van absorptie heeft imepitoïne een verlengde absorptietijd die optreedt, aangezien men pas na 2 tot 3 uur de piekconcentratie bereikt (Rundfeldt en Lösch, 2014; Rundfeldt et al., 2014; Bhatti et al., 2015). De reden hiervoor is de lage wateroplosbaarheid van imepitoïne, waardoor er maar een beperkte fractie per tijdseenheid oplost in de darm die geabsorbeerd kan worden (Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014).

De maximale plasmoconcentratie (Cmax) was na een dosering van 30 mg/kg maximaal 14,9 tot 17,5 µg/ml in een studie met 12 gezonde Beagles (Rundfeldt et al., 2014). Als men imepitoïne toedient na een maaltijd laat dit de oppervlakte onder de concentratie-tijdscurve (AUC) dalen met 30%, zonder een significante verandering te geven in de Cmax en Tmax (Rundfeldt et al., 2014; BCFI, 2015). Hieruit concludeert men dat het niet klinisch relevant is en waarschijnlijk te wijten is aan een artefact in de metingen (Rundfeldt et al., 2014). De plasma-eiwitbinding van imepitoïne in het bloed bedraagt 60 tot 70% en er is een relatief hoog distributievolume van 579 tot 1548 ml/kg (BCFI, 2015). In een studie met de 12 gezonde Beagles was de plasmaproteïnebinding nog maar 55% (Rundfeldt et al., 2014).

De metabolisatiesnelheid van imepitoïne is hoog en het wordt snel uit het bloed geklaard: 260 tot 568 ml/uur/kg (BCFI, 2015). Deze metabolisatie vindt plaats ter hoogte van de lever en vindt voor het merendeel van de imepitoïne concentratie plaats voordat er excretie optreedt (Bhatti et al., 2015). Het is waarschijnlijk het CYP1A1 iso-enzym dat het grootste deel van de metabolisatie voor zich neemt, ook in de long, dunne darm en nieren ziet men deze primaire klaring optreden (Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014). De eliminatiehalfwaardetijd bedraagt ongeveer 1.5 tot 2 uur, bij een hogere dosis van imepitoïne ziet men een langere eliminatiehalfwaardetijd (Rundfeldt et al., 2014; Bhatti et al., 2015; BCFI, 2015). Bijkomend kunnen de oudere leeftijd en het ras de eliminatie doen vertragen (Rundfeldt en Lösch, 2014; Rundfeldt et al., 2014). Het grootste deel van de excretie bij de hond verloopt via de
feces, zowel voor de moedermolecule van imepitoïne als voor de metaboolieten (Rundfeldt et al., 2014; Bhatti et al., 2015; BCFI, 2015). De fractie van imepitoïne die de excretie via de feces ondergaat, varieert tussen de 56 en 78% en men vermoedt dat deze vooral door biliaire excretie in de feces terecht komt (Rundfeldt et al., 2014). Afwijkingen in de nier- en leverfunctie hebben vermoedelijk weinig effect op de farmacokinetiek van imepitoïne (Rundfeldt et al., 2014; Bhatti et al., 2015).

Nadat de Cmax bereikt wordt, treedt er een snelle daling op in de plasmaconcentratie van imepitoïne die na 24 uur op zijn laagste therapeutische punt komt. De afname in de plasmaconcentratie gebeurt in 2 fasen, de eerste fase is de snelle afname waarbij 76 tot 97% van imepitoïne wordt geëxcretieerd. Na de 48 uur durende eerste fase, heeft men de tweede fase die een meer stabiel afname is over een periode van een aantal dagen. In het geval van imepitoïne is de snelle afname van de plasmaconcentratie waarschijnlijk door de hoge excretie binnen de eerste 48 uur, voorafgegaan door de hoge metabolisatie (Rundfeldt et al., 2014).

Bij een in vitro studie op humane CYP450 iso-enzymen kon men geen inhibitie van de microsomale iso-vormen van CYP450 vaststellen, zelfs niet bij een hoge dosis. Eventueel kon er een lichte inhibitie van CYP1A1 vermoed worden, maar dit iso-enzym heeft geen andere geneesmiddelen die hierdoor hoofdzakelijk worden gemetaboliseerd. Bij een zeer hoge dosering van 100 mg/kg/dag kon men een lichte toename zien in de activiteit van CYP2B en CYP1A, maar in vergelijking met fenobarbital was dit een lage inductie. Een inductie van de leverenzymen bleef ook afwezig na het toedienen van imepitoïne aan ratten (Rundfeldt et al., 2014). In de studie uitgevoerd door Rundfeldt en Löscher (2014) zag men geen inductie of inhibitie van CYP450. In meerder studies werd aangetoond dat er geen metabole tolerantie, dus verlies van anti-convulsieve activiteit, plaatsvond bij verschillende dosissen (tot 100 mg/kg) en toedieningsperiodes (tot 2 jaar) van imepitoïne (Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014; Rundfeldt et al., 2015).

3.3. Toxiciteit

In een populatie van 226 honden zag men dat 46,6% ten minste 1 neveneffect vertoonde met imepitoïne, terwijl dit voor fenobarbital hoger lag op 57,3% (Tipold et al., 2014). Als men 127 dieren een dosis van 30 mg/kg BID of 1 mg/kg BID gaf, was het aantal dieren met ten minste 1 neveneffect respectievelijk 86 en 82%. Als men enkel de neveneffecten bekeek die geassocieerd konden worden met de behandeling kon men zien dat bij de toediening van een hoge dosis de neveneffecten zich significant frequenter voordeden. Meestal waren alle soorten neveneffecten mild van aard en verdwenen ze na de eerste weken van de behandeling (Rundfeldt et al., 2015). In de studie van Tipold et al. (2014) maakten polyfagie, sedatie, polyurie en polydipsie 50% van de waargenomen neveneffecten uit. Polyfagie is het meest voorkomende neveneffect en wordt meestal enkel gezien in het begin van de behandeling gezien (Rundfeldt en Löscher, 2014; Bhatti et al., 2015; BCFI, 2015). Andere maar minder voorkomende neveneffecten zijn hyperactiviteit, polyurie, polydipsie, sedatie, hypersalivatie, braken, ataxie, apathie, diarree, prolap van de membrana nictitans, verminderd zicht en verhoogde gevoeligheid voor geluiden (Bhatti et al., 2015; BCFI, 2015). Zeer hoge plasmaconcentraties kunnen wel aanleiding geven tot een verlengd QT-interval op het elektrocardiogram, bij de mens werd dit zelfde symptoom gezien en dan vooral bij de niet-rokers (Rundfeldt en Löscher, 2014).

De veiligheid van imepitoïne werd nagegaan bij 32 gezonde Beagles door imepitoïne toe te dienen onder verschillende doseringen voor een periode van 6 maanden (Tipold et al., 2014). 90 mg/kg BID was de no observed effect level (NOEL), dit is 3 keer de maximaal aangeraden therapeutische dosis (Rundfeldt en Löscher, 2014; Tipold et al., 2014). Bij muizen en ratten zag men dat een 1-malige
dosering van 2150 mg/kg nog geen letaliteit gaf (Rundfeldt en Löscher, 2014). Imepitoïne heeft een ruime toxisch-therapeutische breedte, waardoor de pharmacologische effecten en de neveneffecten ver uit elkaar liggen (Löscher et al., 2013; Rundfeldt en Löscher, 2014; Bhatti et al., 2015). Indien men bij de hond een hoge, chronische dosering (voor 6 maanden meer dan 150mg/kg BID) toedient, ziet men pas milde symptomen van toxiciteit optreden (Tipold et al., 2014; Bhatti et al., 2015). Deze klinische symptomen zijn dan vooral gerelateerd aan het centraal zenuwstelsel of het gastro-intestinale systeem. Voorbeelden van deze symptomen zijn depressie, kortstondige ataxie, braken, gewichtsverlies, hypersalivatie, relaxatie van de membraan, en wat materiaal aanwezig in de feces (Rundfeldt en Löscher, 2014; Tipold et al., 2014; Bhatti et al., 2015). In zeldzame gevallen zag men sluiting van de ogen, epiphora, droge ogen, etterende ogen, ataxie, verlies van de oprichtingsreflex, intermitterende tremoren, minder actief zijn en nystagmus (Tipold et al., 2014). Al deze neveneffecten zijn niet levensbedreigend en meestal verdwijnen ze binnen de 24 uur nadat men een symptomatische behandeling heeft ingesteld (Bhatti et al., 2015). Omdat imepitoïne weinig neveneffecten heeft en deze meestal van milde aard zijn, kan men ervan uitgaan dat het een veilig geneesmiddel is (Rundfeldt et al., 2015). De veiligheid van imepitoïne is waarschijnlijk niet meer zo hoog voor honden die minder dan 5 kg wegen of andere aandoeningen hebben (Bhatti et al., 2015).

In tegenstelling tot fenobarbital induceert imepitoïne de leverenzymen niet en heeft men dus ook geen gestegen serumconcentraties van de leverenzymen, zoals AP en AST (Tipold et al., 2014; Bhatti et al., 2015; Rundfeldt et al., 2015). Er waren 2 studies waarbij men een verhoogde serumconcentratie van creatinine kon waarnemen. Men vermoed dat een verhoogde turnover van de spieren de stijging zal hebben gegeven, aangezien de nefronen op histopathologie geen schade vertoonden (Tipold et al., 2014; Rundfeldt et al., 2015). De hematologische waarden blijven allemaal onveranderd, zowel bij een lage als bij een hoge dosis van imepitoïne (Rundfeldt et al., 2015).

Ten opzichte van de andere anticonvulsiva kunnen de neveneffecten ook verschillen in intensiteit en voorkomen (Löscher et al., 2013; Rundfeldt en Löscher, 2014; Tipold et al., 2014; Bhatti et al., 2015; Rundfeldt et al., 2015). Zo ziet men namelijk dat er minder sedatie optreedt in vergelijking tot benzodiazepines. Hiernaast valt er bij benzodiazepines een metabole tolerantie en afhankelijkheid (verslaving) op te merken na een chronische toediening, wat bij imepitoïne niet wordt gezien door zijn lage intrinsieke activiteit als partiële agonist (Löscher et al., 2013; Rundfeldt en Löscher, 2014; Bhatti et al., 2015). Het abrupt onderbreken van de behandeling met imepitoïne bracht geen withdrawal symptomen met zich mee, hieruit kan men besluiten dat er waarschijnlijk geen fysische afhankelijkheid aanwezig is (Rundfeldt en Löscher, 2014). Voor polyfagie, sedatie, neurologische stoornissen, polydipsie, polyurie, renale of urinaire stoornissen en diarree was de frequentie van voorkomen gemiddeld 50% hoger bij een behandeling met fenobarbital dan met imepitoïne (Tipold et al., 2014). Rundfeldt et al. (2015) bevestigde hierop dat deze neveneffecten, behalve sedatie, significant minder voorkwamen dan bij fenobarbital. De frequentie van hyperactiviteit was wel hoger voor imepitoïne, maar in de meeste gevallen was de hyperactiviteit mild en verdween na een tijd spontaan (Tipold et al., 2014; Rundfeldt et al., 2015). De reden van deze hyperactiviteit kan de anxiolytische activiteit zijn, doordat de angst en agressie worden weggenomen (Tipold et al., 2014). Als men een combinatietherapie toepast van fenobarbital en imepitoïne dan verergeren de centraal zenuwstelsel neveneffecten van fenobarbital niet (Rundfeldt en Löscher, 2014).

3.4. Geneesmiddeleninteracties

Tussen imepitoïne en andere geneesmiddelen werden er momenteel nog geen geneesmiddeleninteracties opgemerkt (Bhatti et al., 2015). Imepitoïne heeft een lage proteïnenbinding en induceert of inhibeert geen synthese of afbraak van plasmaproteïnes. De CYP450 iso-enzymen

21
worden maar in een lage mate verstoord, waardoor interactie op dit punt bijna onbestaande is (Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014). De inductie van de CYP450 iso-enzymen door fenobarbital heeft op dit moment nog niet geleid tot een verhoogde klaring van imepitoïne (Rundfeldt et al., 2014).

Aangezien benzodiazepines ook ter hoogte van de dezelfde bindingsplaats binden en omdat dit volle agonisten zijn met een hoge affiniteit, kunnen ze imepitoïne van zijn bindingsplaats verdringen. De affiniteit van de benzodiazepines voor de receptorbindingsplaats is hoger, waardoor de kans klein is dat hun werking wordt gehinderd (Bhatti et al., 2015).

3.5. Gebruik

Na een eenmalige toediening, kan men de farmacologische activiteit niet behouden gedurende een hele dag, de snelle eliminatie ligt aan de basis van dit probleem. Om in de therapeutische plasmaconcentraties te blijven zonder al te grote fluctuaties moet de toediening BID worden uitgevoerd, zodat de klinische effectiviteit gegarandeerd blijft (BCFI, 2008; Rundfeldt en Löscher, 2014; Rundfeldt et al., 2014; Tipold et al., 2014; Bhatti et al., 2015). Klinisch relevant verschillen tussen het met of zonder voeding toe te dienen was er niet, maar het beste is toch om het tijdstip tussen de toediening van de medicatie toediening en de voeding constant te houden (Rundfeldt et al., 2014).

De orale dosering van imepitoïne varieert tussen de 10 en 30 mg/kg BID, de aangeraden startdosis is 10 tot 20 mg/kg BID (Bhatti et al., 2015). Rundfeldt et al. (2014) en Tipold et al. (2014) raden aan om als initiële dosis 10 mg/kg BID te nemen en dan de dosis te titreren naargelang het effect, om voldoende aanvalscontrole te verkrijgen. 64.1% van de 76 honden in een studie bleek voldoende te hebben aan de laagste concentratie (10 mg/kg BID) van imepitoïne (Tipold et al., 2014). 30 mg/kg BID is de maximale dosis die mag worden toegediend, indien de aanvalscontrole onvolmaakt is (Tipold et al., 2014; Bhatti et al., 2015; BCFI, 2015). Een anti-convulsieve activiteit bij een lage dosis van 1 mg/kg BID moet niet verwacht worden, maar soms wordt er wel een anti-convulsieve activiteit gezien. De oorzaken hiervoor zijn: de epilepsie frequentie kan fluctueren in de tijd en men kan dan per toeval in een lagere frequentie periode zitten, de verandering in het gedrag van de eigenaar en de patiënt door deelname aan een klinische studie en het placebo-effect doordat de eigenaar een effect verwacht. Pas vanaf een dosis van 5 mg/kg BID ziet men een kleine effect op de depolarisatiedrempel en een anti-convulsieve werking (Rundfeldt et al., 2015).

Elke dosisaanpassing zal snel leiden tot een wijziging in de plasmaconcentratie, door de lineaire kinetiek en de korte halfwaardetijd. Daardoor kan men een snelle start van actie verwachten en een snelle reductie in dosis bekomen indien er sprake is van toxiciteit (Rundfeldt et al., 2014).

Over het gebruik van imepitoïne als monotherapie is de werking al goed gekend, maar voor het gebruik als add-on anticonvulsivum moet nog verder onderzoek gedaan worden (Bhatti et al., 2015). Bij therapieresistente dieren kan men het zowel als monotherapie, als voor add-on therapie bij fenobarbital gebruiken (Rundfeldt et al., 2014).

Voor de monitoring van de serum- of plasmaconcentraties zijn geen referentiewaarden ter beschikking en het wordt ook niet aangeraden door de fabrikant om deze op te volgen. Een andere moeilijkheid is dat momenteel de correlatie tussen de plasmaconcentratie van imepitoïne en de reductie in de aanvalsfrequency nog niet is aangetoond (Bhatti et al., 2015). Bhatti et al. (2015) raadt wel aan om de hematologie en biochemie te monitoren met een bloedafname voordat men aan de therapie begint en vervolgens om de 6 maanden te herhalen.
Men kan stoppen met de toediening van imepitoïne omwille van neveneffecten of als men ziet dat men met alleen fenobarbital voldoende aanvalscontrole kan bekomen (Bhatti et al., 2015). Een andere reden voor het afbouwen van de therapie is het aanvals vrij zijn van de hond of geen reactie op de therapie (BCFI, 2015). De dosis van imepitoïne moet in dit geval traag worden afgebouwd over meerdere maanden (Bhatti et al., 2015; BCFI, 2015).

4. Andere anticonvulsiva
De enige anticonvulsiva, die geregistreerd zijn in de Europese Unie voor de chronische eerste lijn behandeling van epilepsie zijn fenobarbital en imepitoïne. In de meeste landen van de Europese Unie is de geregistreerde add-on therapie voorbehouden aan kaliumbromide. Andere farmaca voor de behandeling van idiopathische epilepsie zijn niet geregistreerd voor de hond (Bhatti et al., 2015). Het zijn tweede generatie anticonvulsiva en werden gedurende de laatste 20 jaar ontwikkeld voor de behandeling van epilepsie bij de mens. Hun werkings mechanisme is meestal hetzelfde gebleven, maar ze hebben een betere farmacokinetiek bij de mens, vertonen minder neveneffecten en geneesmiddeleninteracties kunnen minder voorkomen (Rusbridge, 2013b). Tweede generatie anticonvulsiva worden enkel toegediend als de therapie met geregistreerde anticonvulsiva niet aanslaat (Bhatti et al., 2015). Voor vele van deze tweede generatie geneesmiddelen is de effectiviteit nog onvoldoende bewezen, behalve voor levetiracetam (Rusbridge, 2013b; Bhatti et al., 2015). Meestal zijn ze niet goedkoop en kunnen ze ongewenste neveneffecten opwekken bij de hond (Dewey, 2009; Rusbridge, 2013b). Voorbeelden van deze 2de generatie anticonvulsiva zijn: levetiracetam, felbamaat, topiramaat, gabapentine, pregabaline en zonisamide (BCFI, 2008; Dewey, 2009; Rusbridge, 2013b; Bhatti et al., 2015). Fenyoïne, carbamazepine en valproïnezuur zijn eerste generatie anticonvulsiva bij de mens, maar hebben geen gunstige farmacokinetiek bij de hond wegens hun veel te snelle eliminatie (BCFI, 2008; Rusbridge, 2013b; Rundfeldt et al., 2014; Bhatti et al., 2015).

Het gebruik van benzodiazepines (volle agonisten, zoals diazepam) bij idiopathische epilepsie is beperkt tot de acute behandeling van epileptische aanvallen en is niet geschikt voor de chronische preventie van idiopathische epilepsie (BCFI, 2008; Rusbridge, 2013b; Rundfeldt en Löscher, 2014). Het snelle optreden van metabole tolerantie, de snelle eliminatiefhalfwaardetijd en de adaptatie ter hoogte van de receptor is ongeschikt voor het gebruik als chronisch geneesmiddel (BCFI, 2008; Rusbridge, 2013b; Rundfeldt en Löscher, 2014).
BESPREKING

Jaren werd er gewerkt met een verschillende nomenclatuur en zonder altijd correcte diagnostische technieken voor idiopathische epilepsie toe te passen. Hopelijk kunnen de recent opgestelde consensus statements van IVETF hier verandering in brengen. In de meeste wetenschappelijke artikels verschilden de definities niet zo veel, het was vaak enkel de benaming die anders was. Men wist dus vaak wel dat idiopathische epilepsie een genetische oorsprong had, maar de diagnose voor de selectie van dieren voor de proefopzet was soms enkel beperkt tot een vragenlijst. Men zal op deze manier wel de meerderheid van dieren met idiopathische epilepsie mee hebben in het onderzoek. Op deze manier kunnen er wel nog altijd gevallen van structurele epilepsie of reactieve aanvallen tussen de studiepopulatie zitten en honden met idiopathische epilepsie uit de studiepopulatie vallen. Ideaal gezien moet men structurele epilepsie en reactieve aanvallen met alle mogelijke diagnostische technieken proberen uit te sluiten, maar hier is natuurlijk een hoge kost aan verbonden. In de meeste gevallen werden de goedkopere diagnostische technieken wel uitgevoerd, wat een stap in de goede richting is. Het kan zijn door de oprichting van de IVETF dat het inzicht in idiopathische epilepsie lichtjes gaat veranderen met kleine veranderingen in de resultaten van het onderzoek tot gevolg.

In de studies omtrent de effectiviteit, toxiciteit en veiligheid van fenobarbital en imepitoïne werden er, naar mijn mening, voldoende maatregelen getroffen om de bias zo klein mogelijk te houden. Dit werd gedaan door de populaties eerlijk te verdelen over meerdere centra en geblindeerd te werk te gaan. Het enige nadeel is dat de effectiviteit bijna altijd werd getest in gespecialiseerde centra, waardoor de gemakkelijk te controleren patiënten al geëlimineerd zijn uit de studiepopulatie bij de gewone dierenarts. Misschien is de effectiviteit dan toch een onderschatting en kan men in de praktijk betere resultaten verwachten dan in de wetenschappelijke studies.

Een nadeel bij epilepsie is dat niet alle honden een gelijk ziektebeeld vertonen: de aanvallsfrequentie, de ergheid van de aanvallen, de duur van de aanvallen en de vorm van de aanvallen kan sterk variëren tussen individuen. Aangezien deze parameters niet in gelijke mate voorkwamen in de geteste populaties kan dit de uitkomst van de studie beïnvloeden. Wat men zou kunnen proberen is het graderen van een aanval en per graad de effectiviteit te bepalen. Hierdoor zou men ook in de praktijk kunnen graderen en op basis daarvan een prognose kunnen meegeven aan de hand van de klinische studies uitgevoerd op die specifieke graad.

Niet altijd wordt er vanaf de eerste aanval die optreedt een behandeling ingesteld, al zou dit beter kunnen zijn voor de aanvalscontrole te bereiken met een lage dosis van anticonvulsiva en minder neveneffecten. BCFI (2008) en Bhatti et al. (2015) raden zelfs aan om pas te beginnen met de therapie vanaf dat aan bepaalde voorwaarden wordt voldaan. Vaak is men dan al een paar aanvallen verder en dus heeft men een moeilijker aanvalscontrole, door de reeds toegebrachte schade aan de hersenen en een verlaagde aanvalsdrempel. De hogere kans dat men op dit moment een hogere dosis en eventueel combinaties van anti-epileptica nodig heeft, zorgt ervoor dat de kans op neveneffecten hoger wordt.

De prevalentie van idiopathische epilepsie is in de globale hondenpopulatie nog maar een schatting, aangezien elke populatie honden zijn eigen prevalentie heeft. Dit valt moeilijk te extrapoleren naar de globale populatie, want er zit veel variatie in de prevalentie tussen verschillende populaties. Hiernaast is het zeer moeilijk om de prevalentie van epilepsie om te zetten naar die van idiopathische epilepsie, omdat er altijd nog een deel van structurele epilepsie bij zit.
Ras predisposities zijn niet met een grote zekerheid te bepalen, aangezien niet van elk ras prevalenties bekend zijn. Meestal is er maar een bepaalde populatie van het ras dat een verhoogd voorkomen van idiopathische epilepsie heeft en valt deze prevalentie moeilijk te extrapoleren naar het hele ras.

Therapieresistentie is een niet te onderschatten probleem en men probeert meerdere combinaties van anticonvulsiva uit om honden zo goed mogelijk te controleren. Een betere situatie zou eigenlijk zijn dat het oorzakelijke gen bij die hond wordt opgespoord en het dan geweten is in welk deel van het fysiologische systeem een gebrek zit en daar gericht op kan behandeld worden. De meest ideale oplossing is dat honden geen oorzakelijk gen gen met meer hebben, door genetisch fokadvies te leveren en niet te kweken met aangetaste dieren en dragers. Het grote probleem is dat er blijkbaar talrijke oorzakelijke genen kunnen aanwezig zijn en het heel moeilijk is om deze op te sporen. Men zou een DNA-test moeten hebben en hopelijk is dit iets voor in de toekomst, zodat men geen behandeling meer moet opstarten en geen problemen meer krijgt met therapiresistentie. In dezelfde context vind ik het nogal vreemd dat men de effecten op de voortplanting en dracht nagaat, omdat het eigenlijk niet verantwoord is om deze dieren te laten voortplanten.

Zowel de diagnose als de behandeling zijn niet zo simpel en als men een fout in 1 van de 2 processen maakt, kan men een dier foutief therapieresistent benoemen. Therapieresistentie is, denk ik, ook niet zo’n goede term, aangezien de honden waarschijnlijk wel een aanvalscontrole kunnen krijgen als men een hele hoge dosis toedient. Men kan dit jammer genoeg niet doen, omdat men gelimiteerd is door de neveneffecten. Indien de honden toch niet zouden reageren op een zeer hoge dosis zou men zich toch eens moeten afvragen of men de juiste diagnose heeft gesteld en dan kan men, volgens mij, pas spreken over therapiresistentie.

Remissie kan optreden, maar de vraag is of men beter kunt in de melody of van de 2 processen deconcentratie van de fenobarbital de eenheden versus verschillen. Men zou verwachten dat de getallen zich ook aanpassen, maar niets is minder waar. Ik vermoed dat het hier over tyfipotten gaat, want mg/l en mg/ml ligt toch al 10³ uit elkaar, wat een verschil maakt tussen een toxische dosis of geen effect van de behandeling. De concentraaties van mg/ml, komt overeen met g/l en dit is volgens mij toch een zeer hoge concentratie om realistisch te zijn. Dan blijft er nog µg/l of mg/l over, en daarbij lijkt mg/l ook meer waarschijnlijk omdat er nog andere studies deze eenheid hebben gebruikt.

Het moment voor de hematologische en biochemische bepalingen voor de eerste keer uit te voeren verschilt tussen twee wetenschappelijke artikels: de ene wil dit al laten uitvoeren op 14 dagen, de andere pas na 3 maanden. Op 14 dagen moet er ook bloed afgenomen worden voor de serumconcentratie van fenobarbital te bepalen, het zou geen overbodige luxe zijn om dan ineens de twee andere testen mee uit te voeren. Nadien kan men nog eens op 3 maanden de hematologie en biochemie herhalen. De reden dat ik het geen overbodige luxe vind, is doordat hepatotoxiciteit en pancytopenie toch wel ernstige aandoeningen zijn, ook al komen ze zelden voor. Het is wel het vermelden waard dat hepatotoxiciteit pas optreedt indien er meer dan de maximale dosis wordt toegepast, wat normaal gezien niet mag
gebeuren. Geneesmiddeleninteracties die de plasmaconcentratie van fenobarbital doen verhogen zijn daarom risicovolle situaties.

Bepaalde onderzoeken, moeten volgens mij toch nog eens herhaald worden. Zoals het effect van de maaltijd op imepitoïne, want men zag wel een daling in de AUC, maar volgens de auteurs was dit een gevolg van artefacten. Het zou aangewezen zijn dat men met een andere studie kan bevestigen dat het effectief artefacten waren, zodat er zekerheid wordt geschept.

Een groot voordeel van imepitoïne is dat het niet enkel een anticonvulsivum is, net zoals fenobarbital, maar ook anxiolyse bewerkstelligd (aangezien het een benzodiazepine is) en dat bovenal met minimale sedatie. Deze anxiolyse kan ook een positief effect hebben op de levenskwaliteit, waar men tegenwoordig meer de aandacht op wil vestigen. Imepitoïne geeft geen enzyminductie en als men de correcte dosering heeft gevonden, hoeft deze niet meer aangepast te worden, in tegenstelling tot fenobarbital.

Een nadeel voor imepitoïne is dat het enkel geregistreerd is voor gegeneraliseerde epileptische aanvallen. Het effect op focale aanvallen is momenteel nog onvoldoende onderzocht en hopelijk wordt hier in de toekomst verandering in gebracht, want er was wel een studie die een reductie had waargenomen in partiële aanvallen. Een ander nadeel is dat er niet geweten is of het bij therapieresistente dieren zeer effectief werkt en of het bijvoorbeeld onderhevig is aan de werking van P-gp.

De orale biologische beschikbaarheid van zowel fenobarbital als imepitoïne lijken vergelijkbaar, maar fenobarbital heeft een snelle absorptie die trager op gang komt. Voor imepitoïne is dit omgekeerd: het heeft een trage absorptie, maar die binnen de 30 minuten na opname van start gaat. Imepitoïne heeft het voordeel dat de evenwichtsconcentraties snel worden bereikt en niet pas na 2 weken tot 1 maand in tegenstelling tot fenobarbital. Het distributievolume van beide is vergelijkbaar, alleen wordt imepitoïne meer gebonden aan plasma-eiwitten. Fenobarbital heeft een veel langere eliminatiehalfwaardetijd dan imepitoïne en deze kan sterk variëren tussen individuen, terwijl deze voor imepitoïne nagenoeg constant is. Imepitoïne en fenobarbital hebben dus een vergelijkbare farmacodynamiek, maar een aantal verschillen in hun farmacokinetiek waardoor ze op bepaalde punten van hun werkzaamheid en veiligheid gaan verschillen.

Zoals voor de meeste nieuwe geneesmiddelen zou men verwachten dat imepitoïne wat duurder is. Als men een hond van 20 kg neemt die men de dosis van 2 mg/kg BID toedient, dan zal de maandelijkse kost 8,87 € bedragen (Medibib, 2016). Voor dezelfde hond een maand met imepitoïne te behandelen aan een dosis van 10 mg/kg BID, betaalt men 49.61 € (Pharmacy4pets, 2016).

De conclusie die ik tijdens de verwerking van mijn literatuurstudie heb opgesteld, zal ik in de volgende alinea proberen te verwoorden. Het is moeilijk om imepitoïne en fenobarbital te vergelijken, omdat ieder individu zijn individueel afgestelde dosis nodig heeft. Epilepsie is namelijk zeer variabel tussen individuen en als men honden met een verschillende expressie van epilepsie vergelijkt, is men te maken met peren met appels bij het vergelijken. Een groot onderzoek dat moet gebeuren is dat de effectiviteit van imepitoïne en fenobarbital zo goed als vergelijkbaar is en men op deze basis geen besluit kan maken welke van de twee nu beter is. Beiden voeren ze hun anti-convulsieve werking uit via de GABAa-receptor, maar imepitoïne heeft hiernaast nog een anxiolytische werking. De farmacokinetiek tussen beide geneesmiddelen is Weinig afwijkend, enkel de inductie van microsomale leverenzymen door fenobarbital en de excretieweg maken het verschil. Voor de toxiciteit heeft imepitoïne een stapje voor op fenobarbital, omdat de TD50 vele hoger ligt en de neveneffecten zijn meestal mild en voorbijgaand.
van aard. Daarentegen heeft fenobarbital een nauwere toxisch-therapeutische marge en zijn niet alle neveneffecten mild en voorbijgaand van aard, zoals de hepatotoxiciteit en de pancytopenie. Ook de geneesmiddeleninteracties zijn veel geringer dan voor fenobarbital en dit is een goede eigenschap als een individu nog andere medicaties moet toegediend krijgen. Als men fenobarbital en imepitoïne op basis van het gebruik vergelijkt, zit men met het probleem dat een dosisaanpassing van fenobarbital niet meteen een effect heeft op de serumconcentratie. Op lange termijn moet er opgepast worden met de auto-inductie van fenobarbital, welke bij imepitoïne tot nu toe nog niet is gezien. Imepitoïne kan dan wel duurder dan fenobarbital zijn, maar de op regelmatige basis uit te voeren hematologie, biochemie en serumconcentratie gaan ook doorwegen in de kostprijs. Hieruit kan men afleiden dat imepitoïne zeker de potentie heeft om beter te zijn dan fenobarbital, maar dit is afhankelijk van de patiënt, de eigenaar en de dierenarts. Jammer genoeg heeft imepitoïne de wind tegen in zijn gebruik, omdat fenobarbital al jaren ingeburgerd is in de praktijk en de dierenartsen vertrouwd zijn met de toepassing ervan. Hopelijk zal het toekomstige gebruik van imepitoïne meer informatie leveren over zijn eigenschappen en het chronische gebruik in de praktijk. Het is natuurlijk onnodig om een hond die het uitstekend doet met fenobarbital over te zetten op imepitoïne.
REFERENTIELIJKST

