MR-BEELDVORMING VAN DE PROSTAAT:
WELKE TUMOREN WORDEN GEMIST MET MRI+SPECTROSCOPIE?

Leslie NAESENS

Promotor: Prof. dr. G. Villeirs
Co-promotor: Dr. P. De Visschere

Masterproef voorgedragen in de 2de Master in het kader van de opleiding tot
MASTER OF MEDICINE IN DE GENEESKUNDE
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?
INHOUDSTAFEL

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Ingang</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I. INLEIDING</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1. PROBLEEMSTELLING</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2. EPIDEMIOLOGIE</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3. ANATOMIE EN HISTOLOGIE</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4. PROSTAATCARCINOOM</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4.1 Histopathologische subtypes</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4.2 Gleason-classificatie</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>5. DIAGNOSE</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5.1 Symptomen</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5.2 PSA-test</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5.2.1 Drempelwaarde</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5.2.2 Differentiaal diagnose</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5.2.3 PSA-screening</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5.3 Rectaal toucher</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5.4 Biopsie</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5.4.1 Bijwerkingen</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5.4.2 Bemonsteringsfouten</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>6. TNM-STADIERING</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6.1 T-stadium</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6.2 N-stadium</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6.3 M-stadium</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>7. RISICOFRATIFICATIE</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>7.1 Graadcompressie</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>7.1.1 Classificatie</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>7.1.2 Prognose</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>7.2 De D’Amico-risicostratificatie</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>8. BEHANDELING</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8.1 Waakzaam wachten en actieve opvolging</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8.1.1 Waakzaam wachten</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8.1.2 Actieve opvolging</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8.1.2.1 Laag-risico tumoren</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8.1.2.2 Selectiecriteria</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>8.1.2.3 Frequentie van de biopsieën</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>8.2 Radiotherapie en radicale prostatectomie</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

8.3 Hormoontherapie .. 17

9. BEELDVORMING VAN DE PROSTAAT ... 18
 9.1 Transrectale echografie (TRUS) .. 18
 9.2 Computertomografie (CT) .. 18
 9.3 Magnetische resonantie (MRI) .. 18
 9.3.1 Morfologische beeldvorming .. 18
 9.3.2 Functionele beeldvorming ... 19
 9.3.2.1 Spectroscopie (MRSI) .. 19
 9.3.2.2 Diffusieweging (DWI) .. 19
 9.3.2.3 Dynamisch contrastonderzoek (DCE) .. 19
 9.3.3 PI-RADS ... 20
 9.3.4 Diagnostische performantie van mpMRI ... 20
 9.3.5 Drempelwaarde bij mpMRI .. 22

10. ROL VAN mpMRI BIJ DE DETECTIE VAN PROSTAATKANKER 23

II. METHODOLOGIE .. 24
 1. PATIENTENSELECTIE ... 24

III. RESULTATEN ... 25
 1. ANALYSE VAN DE GEMISTE HOOGRADIGE TUMOREN .. 27
 2. ANALYSE VAN DE GEMISTE LAAG- EN INTERMEDIAIR-GRADIGE TUMOREN 29

IV. DISCUSSIE .. 31
 1. WAT IS EEN HOOG-, LAAG- EN INTERMEDIAIR-GRADIGE TUMOR? 31
 2. ANALYSE VAN DE GEMISTE TUMOREN ... 32
 2.1 Grootte van de tumor ... 32
 2.2 Gleason-score ... 33
 2.3 Histopathologisch subtype ... 34
 2.4 T-stadium .. 34
 2.5 Tijdsinterval ... 35
 2.6 MRI+MRSI retrospectief .. 36
 3. KLINISCHE RELEVANTIE VAN DE GEMISTE TUMOREN ... 37
 3.1 HOOGRADIGE PROSTAATTUMOREN ... 37
 3.2 LAAG- EN INTERMEDIAIR-GRADIGE PROSTAATTUMOREN 37
 4. CONCEPT KLINISCH SIGNIFICANTE TUMOR ... 38
 5. IMPLICATIES VOOR DE KLINISCHE PRAKTIJK .. 39
 5.1 mpMRI als triage-test ... 40
 5.2 Rol in actieve opvolging ... 40
5.3 Opportunistische screening voor prostaatkanker ... 41
6. BEPERKINGEN EN TOEKOMSTPERSPECTIEVEN .. 41
 6.1 Beperkingen ... 41
 6.2 Toekomstperspectieven .. 43
V. CONCLUSIE ... 44
VI. REFERENTIES ... 45
BIJLAGEN ... i
 Bijlage 1: TNM (Tumor Node Metastasis) classificatie voor PCa (2009) i
 Bijlage 2: De gemiste intermediair-gradige tumoren ... iii
 Bijlage 3: De gemiste laaggradige tumoren ... iv
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

GEBRUIKTE AFKORTINGEN

<table>
<thead>
<tr>
<th>Afkorting</th>
<th>Definitie</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdenoCa</td>
<td>Adenocarcinoom</td>
</tr>
<tr>
<td>ADT</td>
<td>Androgeen deprivatie therapie</td>
</tr>
<tr>
<td>AFS</td>
<td>Anterieur fibromusculair stroma</td>
</tr>
<tr>
<td>APD</td>
<td>Anatomopathologische diagnose</td>
</tr>
<tr>
<td>AS</td>
<td>Active surveillance</td>
</tr>
<tr>
<td>AUA</td>
<td>American Urological Association</td>
</tr>
<tr>
<td>BPH</td>
<td>Benigne prostaathyperplasie</td>
</tr>
<tr>
<td>CZ</td>
<td>Centrale zone</td>
</tr>
<tr>
<td>EAU</td>
<td>European Association of Urology</td>
</tr>
<tr>
<td>ERSPC</td>
<td>European Randomized Study of Screening for Prostate Cancer</td>
</tr>
<tr>
<td>ESMO</td>
<td>European Society For Medical Oncology</td>
</tr>
<tr>
<td>GS</td>
<td>Gleason-score</td>
</tr>
<tr>
<td>HG</td>
<td>Hooggradig</td>
</tr>
<tr>
<td>HT</td>
<td>Hormoontherapie</td>
</tr>
<tr>
<td>IG</td>
<td>Intermediair-gradig</td>
</tr>
<tr>
<td>ISUP</td>
<td>International Society of Urological Pathology</td>
</tr>
<tr>
<td>LG</td>
<td>Laaggradig</td>
</tr>
<tr>
<td>mpMRI</td>
<td>Multiparametric magnetic resonance imaging</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NCCN</td>
<td>National Comprehensive Cancer Network</td>
</tr>
<tr>
<td>NPV</td>
<td>Negatief voorspellende waarde</td>
</tr>
<tr>
<td>PCa</td>
<td>Prostaatcarcinoom of prostaatcarcinomen</td>
</tr>
<tr>
<td>PLCO</td>
<td>Prostate, Lung, Colorectal, and Ovarian cancer screening trial</td>
</tr>
</tbody>
</table>
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

<table>
<thead>
<tr>
<th>Acroniem</th>
<th>Vertaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPV</td>
<td>Positief voorspellende waarde</td>
</tr>
<tr>
<td>PZ</td>
<td>Perifere zone</td>
</tr>
<tr>
<td>RP</td>
<td>Radicale prostatectomie</td>
</tr>
<tr>
<td>RT</td>
<td>Rectaal toucher</td>
</tr>
<tr>
<td>RTHer</td>
<td>Radiotherapie</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumour Node Metastasis</td>
</tr>
<tr>
<td>TZ</td>
<td>Transitiezone</td>
</tr>
<tr>
<td>TRUS</td>
<td>Transrectale echografie</td>
</tr>
<tr>
<td>TURP</td>
<td>Transurethrale resectie van de prostaat</td>
</tr>
<tr>
<td>UZG</td>
<td>Universitair Ziekenhuis Gent</td>
</tr>
<tr>
<td>WW</td>
<td>Watchful waiting</td>
</tr>
</tbody>
</table>
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?
Doelstelling: In deze studie werd geanalyseerd welke tumoren gemist worden met MRI+MRSI. De vooropgestelde hypothese is dat het merendeel van deze gemiste tumoren klinisch niet-significant is of dat er een afdoende verklaring kan gevonden worden voor de fout-negatieve MRI+MRSI.

Methodologie: Uit de database werden alle tumoren verzameld die ontdekt werden binnen de twee jaar na een MRI+MRSI die negatief (normaal) geprotocolleerd werd. Aan de hand van de Gleason-score werden deze tumoren opgedeeld in laaggradige (Gleason-score 3+3 of lager), intermediaire (Gleason-score 2+4 of 3+4) of hooggradige (elke primaire Gleason-graad 4 en elke tumor met een Gleason-graad 5) tumoren. Van alle gemiste tumoren werden het histopathologisch subtype, het T-stadium, de kwaliteit van de MRSI en het tijdsinterval tussen MRI+MRSI en histologische diagnose geanalyseerd. De MRI+MRSI werd geobserveerd met voorkennis van het histopathologisch resultaat. Voor de gemiste hooggradige tumoren werden bovendien de histologische coupes herbekijken door de anatomopatholoog en gecorreleerd met de MRI+MRSI bevindingen. Het volume van de prostaat dat werd ingenomen door de tumor werd uitgedrukt in een score van 1 (<5% van de prostaat ingenomen door tumor) tot 5 (>50% van de prostaat ingenomen door tumor).

Resultaten: Er werden 847 patiënten gescand met MRI+MRSI waarbij een sensitiviteit en negatieve predictieve waarde van respectievelijk 90% en 95% werd bekomen voor hooggradige tumoren en van 78% en 65% voor alle tumoren. Bij 121 patiënten werd een prostaatcarcinoom ontdekt binnen de twee jaar na een negatieve MRI+MRSI. Bij 74 patiënten (61%) bleek het te gaan om een laaggradige tumor, bij 29 patiënten (24%) om een tumor van intermediaire graad en bij 18 patiënten (15%) om een hooggradige tumor. De gemiste tumoren vertoonden in 97% van de gevallen geen tumoruitbreiding buiten de prostaat (T1- of T2-stadiëring). Voor wat betreft de 4 gemiste T3-tumoren werd in 2 gevallen de extracapsulaire uitbreiding of zaadblaasinvasie pas vastgesteld na een interval van meer dan een jaar na de MRI+MRSI. In de 2 andere gevallen was de tumor retrospectief toch te zien. Van de gemiste hooggradige tumoren had 28% een primaire Gleason-graad 3 met slechts een beperkte hooggradige component (Gleason-score 3+5 of 3+4+5), betrof het in 72% om een
klein tumorvolume (nam minder dan 10% van de totale prostaat in) en was 11% van het colloïde subtype. De diagnose van hooggradige tumor werd in 28% van de gevallen pas gesteld na meer dan 1 jaar. Bij het herbekijken van de MRI+MRSI-beelden bleek de tumor in 28% van de gevallen wel degelijk zichtbaar op de MRI+MRSI en was er in 44% twijfel.

Conclusie: De tumoren die gemist worden met MRI+MRSI zijn nagenoeg allemaal klinisch niet-significant, worden pas ontdekt na een interval van meer dan een jaar of zijn retrospectief toch zichtbaar op MRI+MRSI. Een negatieve MRI+MRSI sluit het optreden van een klinisch significant prostaatcarcinoom binnen de twee jaar nagenoeg volledig uit. Door het bevestigen van de afwezigheid van een hooggradige prostaatkanker kan MRI+MRSI geïmplementeerd worden als triage-test voor prostaatbiopsie en de keuze voor “active surveillance” ondersteunen bij patiënten met een laaggradige prostaatkanker. Dit kan bijdragen tot de reductie van overdiagnosticering en overbehandeling van prostaatkanker.
I. INLEIDING

1. PROBLEEMSTELLING

Prostaatkanker (PCa) is de meest voorkomende kanker en de derde voornaamste oorzaak van kankersterfte bij mannen. De meeste PCa zullen echter niet leiden tot klinische symptomen of sterfte, men spreekt hierbij van ‘klinisch niet-significante tumoren’. De gemiddelde latentieperiode waarin de patiënt geen symptomen ondervindt is lang en bedraagt volgens Etzioni et al. gemiddeld 11 tot 12 jaar. Indien geen PSA-test zou bestaan, zou het merendeel van deze tumoren nooit tijdens het leven worden gediagnosticeerd (1). Deze tumoren vereisen in principe geen behandeling, in tegenstelling tot de meer agressieve tumoren die wel onmiddellijk behandeld moeten worden. Na de diagnose van prostaatkanker is het echter niet steeds eenvoudig te voorspellen of de tumor ooit aanleiding zal geven tot klachten of niet.

Beeldvorming kan mogelijks helpen om het onderscheid te maken en een veelbelovende techniek is de multiparametrische MRI (mpMRI), een techniek die een 15-tal jaar bestaat. mpMRI blijkt prostaatkanker te kunnen detecteren en uitsluiten, waarbij de beste resultaten gehaald worden voor hooggradige tumoren. Onderzoek is lopend om de waarde van mpMRI uit te klaren bij tumordetectie en stadiëring, maar net als bij elke andere beeldvormingstechniek in het lichaam blijkt ook mpMRI niet perfect te zijn. De sensitiviteit en specificiteit van deze techniek zullen nooit 100% bereiken met als gevolg dat er fout-positieve (onterecht verdachte beeldvorming) en fout-negatieve (gemiste tumoren) resultaten kunnen voorkomen.

In deze studie wil men onderzoeken of MRI+MRSI voldoende goed presteert om klinisch significante tumoren uit te sluiten bij patiënten met een verhoogde PSA-waarde. Het doel is om na te gaan in hoeverre een negatieve MRI, waarbij de radioloog geen afwijkingen ziet, voldoende betrouwbaar is.

Indien een negatieve MRI voldoende zekerheid geeft over de afwezigheid van een klinisch significante tumor kan deze beeldvormingstechniek een oplossing bieden voor de huidige overdiagnosticering van PCa. Het aantal biopsieën zal daardoor gereduceerd kunnen worden, enerzijds bij de diagnose en anderzijds bij de groep van laag-risico tumoren waarvoor “active surveillance” (AS) als therapeutische optie is gekozen.
2. EPIDEMIOLOGIE

De prevalentie van PCa is wereldwijd verschillend en wordt ook bepaald door het gebruik van screening, de beschikbaarheid van geneeskundige zorgen en kankerregistratie. Het “lifetime” risico in de VS op het ontwikkelen van PCa is ongeveer 1 op 6. Autopsiestudies hebben echter aangetoond dat de kans op het ontwikkelen van histologisch bewezen PCa nog groter is. Bij een groot deel van de oudere mannen vond men maligne prostaattumoren (20% bij 50-60-jarigen en 50% bij 70-80-jarigen) (2). In 2011 werden in België 9.036 nieuwe diagnoses gesteld van prostaatkanker. Bijna allen zijn 50 jaar of ouder (3).

3. ANATOMIE EN HISTOLOGIE

De prostaat is een orgaan dat bestaat uit een 30 tot 50-tal klieren die zowel organische als anorganische componenten van het seminaal plasma synthetiseren en afscheiden. Hij heeft een ovale vorm en een gewicht van ±20 gram bij jonge mannen. De ligging is caudaal van de urineblaas, in dwelke het craniale deel van de prostaat overgaat ter hoogte van de blaashals. Het afgeronde caudale deel, de apex, rust op het diafragma urogenitale. Het posterieur oppervlak is afgescheiden van het rectum door de fascia van Denonvilliers en is palpeerbaar. De vesiculae seminales aan de posterolaterale zijden van de prostaatbasis monden uit in de ducti ejaculatorii, die de urethra vervoegen aan het verumontanum.

In het concept van McNeal worden 4 zones onderscheiden (Fig. 1), waarvan de perifere zone (PZ) de grootste is en bekleed is met een dun kapsel van bindweefsel. De centrale klier bestaat uit de periurethrale klieren langsheen de proximale urethra, de transitiezone (TZ) (overgangszone) en de centrale zone (CZ). Door deze laatste lopen de ducti ejaculatorii. De TZ neemt bij jonge mannen 5-10% van de prostaat in, maar groeit tijdens het verouderen ten gevolge van benigne prostaat hyperplasie (BPH). De urethra en de CZ worden samengedrukt door BPH, wat ervoor zorgt dat de TZ de voornaamste zone wordt op oudere leeftijd. Anterieur onderscheidt men nog een vierde zone, het anterieur fibromusculair stroma (AFS), een band van fibromusculair weefsel dat aansluit op de blaasspier en de externe sfincter (4-6).

De klieren hebben een tubulo-acinaire architectuur, bestaande uit geclusterde acini met primaire en secundaire ductale gangen die uitmonden in de urethra. Het epitheel bevat een luminale laag columnaire secretiecellen en een laag cuboïdale basale cellen, die afgelijnd wordt door een basale membraan. De klieren liggen ingebed in ondersteunend stroma, dat grotendeels gladde spiercellen en elastisch bindweefsel bevat (4).
4. PROSTAATCARCINOOM

4.1 Histopathologische subtypes

Adenocarcinoom (adenoCa) van de prostaat is een maligne aandoening van de klieren en wordt gediagnosticeerd op basis van architecturale en cytologische kenmerken. Het overgrote deel (90-95%) van de prostaattumoren zijn adenocarcinomen van het conventioneel acinair type. Er bestaan evenwel een aantal varianten van het conventionele acinair type en niet-acinaire histologische varianten (7). Bij het mucineus (colloïd) adenocarcinoom, een acinaire variant, drijven de tumorcellen in grote hoeveelheden extracellulair mucine dat afgebakend is door het stroma (8). Naast de adenocarcinomen bestaan er ook andere maligne tumoren, die samen met de niet-acinaire histologische varianten 5 tot 10% van het totaal uitmaken (7).

4.2 Gleason-classificatie

De Gleason-classificatie is een architecturaal systeem, waarbij de tumoren van de prostaat door middel van histologisch onderzoek patronen krijgen toegewezen op een 5-gradige schaal. Deze graden stellen progressief meer complexe morfologieën voor. De gradatie loopt van “goed gedifferentieerd” (graad 1 en 2) over “matig gedifferentieerd” (graad 3) tot “slecht of bijna niet gedifferentieerd” (graad 4 en 5). De Gleason-score (GS) is de som van de twee meest voorkomende patronen van de tumor. Het eerste cijfer van de score komt overeen met de Gleason-graad van het meest voorkomende patroon (primair) en het tweede cijfer van de
score komt overeen met het tweede meest voorkomende patroon (secundair). De berekende score varieert van 2 (minst agressief) tot 10 (meest agressief) (9-11). Als de hoogste graad een klein volume heeft (tertiair patroon) moet deze als secundair patroon gerapporteerd worden bij naaldbiopsie, terwijl dit na radicale prostatectomie (RP) apart dient te worden vermeld (12).

In 2005 werd het Gleason-systeem door het International Society of Urological Pathology (ISUP) bijgestuurd. De Gleason-patronen 3 en 4 werden duidelijker gedefinieerd en een consensus over de varianten van adenoCa werd uitgewerkt om zo de betrouwbaarheid en reproduceerbaarheid van de GS te verhogen (12). De verdubbeling van het aantal cilinders bij naaldbiopsie en de bijsturing van de GS door het ISUP hebben de vergelijking van historische data bemoeilijkt.

In deze studie werden de Gleason-scores ingedeeld in drie verschillende graadklassen op basis van bestaande graadcompressiesystemen (Tabel 1). Hooggradige (HG) tumoren bestaan uit een primair Gleason-patroon 4, of een primair, secundair of tertiair Gleason-patroon 5. Tumoren met een intermediaire graad (IG) zijn deze die secundair een Gleason-patroon 4 bevatten en laaggradige (LG) tumoren bevatten enkel een Gleason-patroon 3 of minder. HG tumoren correleren met sterk agressief tumoraal gedrag (13).

<table>
<thead>
<tr>
<th>Gleason-score</th>
<th>LG</th>
<th>IG</th>
<th>HG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>2+4</td>
<td>3+5</td>
<td></td>
</tr>
<tr>
<td>2+2</td>
<td>3+4</td>
<td>4+3</td>
<td></td>
</tr>
<tr>
<td>2+3</td>
<td></td>
<td>4+4</td>
<td></td>
</tr>
<tr>
<td>3+2</td>
<td></td>
<td>4+5</td>
<td></td>
</tr>
<tr>
<td>3+3</td>
<td></td>
<td>5+5</td>
<td></td>
</tr>
</tbody>
</table>

LG = Laaggradig; IG = Intermediaire graad; HG = Hooggradig

Tabel 1: Tumorgraad volgens Gleason-score
5. DIAGNOSE

5.1 Symptomen

PCa geeft gewoonlijk maar in een laattijdig stadium aanleiding tot klachten. Ook patiënten met een agressieve PCa kunnen asymptomatisch zijn. PCa kan leiden tot obstructie van zowel de hogere als de lagere urinewegen. Bij doorgroei in de urethra en blaashals ontstaan straalvermindering, nycturia, residugevoel, mictie in twee tijden en mogelijk ook acute retentie. Obstructie van de hogere urinewegen ten gevolge van doorgroei in de uretermond(en) leidt tot nierinsufficiëntie. PCa metastaseert voornamelijk naar het bot, wat zich kan uiten in botpijn en pathologische fracturen. Uitzaaiing naar de lymfeklieren kan aanleiding geven tot peniel en/of scrotaal oedeem en lymfoedeem van de onderste ledematen. In de terminale fase kunnen algemene symptomen optreden zoals gewichtsverlies, cachexie en anemie (14).

5.2 PSA-test

De detectie van PCa komt meestal tot stand na bloedonderzoek waarin gestegen waarden van het Prostaat Specifiek Antigeen (PSA) gevonden worden. PSA is de aangewezen biomerker voor PCa-detectie, maar is niet PCa-specifiek. De positief predictieve waarde (PPV) van PSA-testing is laag: ± 25% (9, 15, 16).

PSA is een 33-kD glycoproteïne dat deel uitmaakt van de kallikreine familie van proteasen en wordt sterk beïnvloed door androgenen. Het is orgaanspecifiek omdat het voornamelijk door de secretiecel van de prostaat wordt gesynthetiseerd teneinde het semen vloeibaarder te maken. In het serum komt PSA voor in lage concentratie. Bij mannen van 50 tot 80 jaar zonder prostaataandoening bedraagt deze 1,0 tot 4,0 ng/ml. Naast de leeftijd varieert de PSA ook volgens ras en prostaatvolume. PSA is in het serum grotendeels gebonden aan macroglobulinen en antiproteasen, maar kan ook ongebonden voorkomen als vrij PSA (5% tot 35%). De oorzaak van een toename van PSA in het serum ligt waarschijnlijk in de verstoring van de cellulaire architectuur van de prostaatklieren met het verlies van de barrière van de basale membraan, waardoor meer PSA in de circulatie terecht komt. Deze barrière kan doorbroken worden ten gevolge van prostaataandoeningen zoals BPH, prostatitis en PCa, alsook bij manipulatie van de prostaat zoals gebeurt bij prostaatmassage en biopsie. De kankercellen produceren op zichzelf eerder minder PSA dan normaal weefsel. Dit PSA is meer gebonden en geeft verhoudingsgewijs een kleinere fractie vrij PSA (17).
5.2.1 Drempelwaarde

De historische drempelwaarde voor het PSA-niveau was 4 ng/ml (16), maar er is een tendens naar een lagere norm teneinde gemiste significante PCa te voorkomen. Het European Randomized Study of Screening for Prostate Cancer (ERSPC) screening protocol verlaagde de drempelwaarde van 4,0 ng/ml naar 3,0 ng/ml (18). Ook de European Society For Medical Oncology (ESMO) en de National Comprehensive Cancer Network (NCCN) hanteren deze laatste drempelwaarde (16, 19).

De American Urological Association (AUA) vindt dat de drempelwaarde afhankelijk moet zijn van diverse klinische factoren (15). Voor jongere mannen wordt vaak een drempelwaarde van 2-3 ng/ml gebruikt. Een eerste positieve PSA-meting dient geverifieerd te worden door een tweede na enkele weken (9).

Aangezien de verhoging van PSA niet kankerspecifiek is, zijn er een aantal verfijningen aan de PSA-test toegevoegd waaronder de PSA-ratio, -densiteit en -snelheid. De vrije/totaal PSA-ratio wordt gebruikt bij de differentiaal diagnose met BPH (9). Indien het prostaatvolume bekend is, kan ook de PSA-densiteit hiervoor gebruikt worden (19). Volgens de European Association of Urology (EAU) kunnen de PSA-snelheid en PSA-verdubbelingstijd nuttig zijn bij behandelde partiënten, maar hebben ze weinig toegevoegde waarde bij de primaire diagnose. Andere beloftevolle biomarkers zoals PCA3 kunnen gebruikt worden samen met PSA-testing, maar kunnen dit laatste nog niet vervangen (9).

5.2.2 Differentiaal diagnose

In de differentiaal diagnose van een gestegen PSA horen BPH en prostatitis. BPH is de meest voorkomende oorzaak van een hoog PSA-niveau. Het is een progressieve conditie gekenmerkt door prostaatvergroting die gepaard gaat met lagere-urinewegsymptomen. Het komt bij meer dan 50% van de mannen voor in de leeftijdsklasse 50-60 en bij meer dan 90% bij ouderen van meer dan 80 jaar. Meer dan 75% van de mannen ouder dan 50 jaar vertoont symptomen en 20-30% van de mannen ouder dan 80 jaar moet chirurgisch worden behandeld (20).

Prostatitis is de derde meest voorkomende urologische diagnose bij mannen ouder dan 50 jaar. Het syndroom behelst acute en chronische bacteriële prostatitis, het chronisch pelvisch pijnssyndroom en asymptomatische prostatitis. Het PSA-niveau kan merkelijk verhoogd zijn in de acute episode van bacteriële prostatitis en daalt langzaam gedurende de daaropvolgende
weken. Prostatitis gaat vaak gepaard met talrijke obstructieve en irritatieve urinaire klachten, zoals onder meer pollakisurie en strangurie (21).

5.2.3 PSA-screening

De vroegere richtlijnen met aanbeveling voor jaarlijkse screening in de VS hebben ertoe geleid dat patiënten met laaggradige PCa (GS≤6) in een vroeg stadium (cT1c) het meest prevalent type onder de PCa-patiënten zijn geworden.

Het nut van zowel populatiescreening als van te frequente (jaarlijkse) opportunistische screening met PSA wordt sinds 2009 in vraag gesteld, omdat screening overdiagnose en overbehandeling van mannen met indolente tumoren in de hand werkt. Om het nut van screening uit te klaren werden verschillende grote gerandomiseerde studies opgestart (ERSPC in Europa, PLCO in de VS en de Zweedse Göteborg-studie). De resultaten hiervan waren niet eenduidig. De ERSPC en de Göteborg-studie toonden allebei een significante daling van de kancerspecifieke sterfte aan, maar alleen de Göteborg-studie kwam tot een aanvaardbaar “number needed to treat” om populatiescreening te verantwoorden (22).

De meeste urologische verenigingen zijn het er nu over eens dat PSA-screening teveel nadelen heeft om populatiescreening te verantwoorden. Opportunistische screening, al dan niet in combinatie met RT, kan wel aangeboden worden aan goed geïnformeerd mannen met familiale belasting (9). De beslissing om te screenen dient nu door patiënt en arts in overleg te worden genomen (“shared decision making”) in het kader van een informatief gesprek (9, 15).

De ESMO adviseert screening tussen de leeftijd van 50 en 69 jaar (16). De AUA adviseert een interval van 2 jaar voor mannen van 55 tot 69 jaar met een gemiddeld risico en een interval van 4 jaar bij een PSA-waarde van <1 ng/ml. Bij personen met een hoger risico, zoals een positieve familiale geschiedenis en Afro-Amerikanen, mag de aanvangsleeftijd lager liggen (15). Bij mannen ouder dan 75 en PSA ≤3ng/ml mag PSA-screening stopgezet worden (9). De US Preventive Services Task Force geeft een afwijkende aanbeveling en raadt PSA-screening af voor alle leeftijden (23).

Indien bij screening een verhoogd PSA-niveau aan het licht komt, dienen ook bijkomende factoren in aanmerking te worden genomen om al dan niet over te gaan tot biopsie. Als factoren worden aangegeven: leeftijd, symptomen, prostaatvolume, familiale geschiedenis, ras, comorbiditeit, abnormaal RT, bevindingen op transrectale echografie en de therapeutische consequenties (9, 15, 16).
5.3 Rectaal toucher

Een rectaal toucher (RT) is imperatief bij het routineonderzoek, aangezien daarmee 15% van de kankers wordt ontdekt (vooral lokaal gevorderde tumoren). Volgens de NCCN en de EAU is een positief RT een absolute indicatie voor biopsie, zelfs bij een laag PSA-niveau. Bij palpatie worden de grootte, afgrensbaarheid, symmetrie, consistentie, drukpijnlijkheid en het oppervlak onderzocht. De AUA beschouwt RT niet als een primair diagnostisch middel voor kankerdetectie, maar wel als een nuttige secundaire test voor mannen met hoog PSA (9, 15, 19). Nadelig zijn de lage PPV (<50%) en de lage sensitiviteit (75% van de detecteerbare PCa is niet palpeerbaar) (16).

5.4 Biopsie

Histopathologisch onderzoek naar aanleiding van biopsie is de gouden standaard voor de diagnose van PCa (5, 24). De uitvoering van biopsie gebeurt meestal transrectaal onder echogeleide, maar kan ook transperineaal uitgevoerd worden. Bij de eerste biopsie wordt de PZ systematisch onderzocht en wordt ook bijkomend gebiopsieerd in de centrale klier. Bovendien kunnen bioppten worden genomen in verdachte gebieden die door echografie, MRI of RT zijn aangewezen (9).

Uitgebreid biopsiëren met 10-12 cilinders (absoluut minimum 8) wordt aanbevolen voor een basisbiopsie bij een prostaatvolume van 30-40 ml. Bij grotere prostaten kan voor een groter aantal cilinders gekozen worden. Een herhaalde biopsie dient voorzien te worden na de eerste negatieve biopsie op grond van hetzij klinische kenmerken, met name een verdacht RT en/of een hoog of stijgend PSA-niveau, hetzij histopathologische bevindingen suggestief voor maligniteit (9).

5.4.1 Bijwerkingen

De guidelines waarschuwen voor de lichamelijke bijwerkingen bij het nemen van biopsieën. De systematische review van Loeb et al. beschrijft volgende complicaties van een biopsie: pijn, hematurie, rectale bloedingen, hematospermie, hoge koorts, infecties die hospitalisatie vereisen, urinaire retentie en dysurie. Om complicaties als pijn en het risico op infectie te verminderen, worden vooraf maatregelen genomen onder de vorm van een analgeticum en antibiotica (25).
5.4.2 Bemonsteringsfouten

Het missen van PCa via transrectale biopsie kan grotendeels verklaard worden door bemonsteringsfouten (“sampling error”). Aangezien mannen met een negatieve biopsie daarna geen RP ondergaan, is het moeilijk om de precieze diagnostische sensitiviteit van een biopsie in een klinische context te bepalen. De enige mogelijkheid is de PSA op te volgen en/of nieuwe biopsie(ën) te verrichten. In deze studie werden deze patiënten minstens 2 jaar opgevolgd.

In de studie van Haas et al. werden de bemonsteringsfouten van verschillende biopsieschema's berekend aan de hand van 164 autopsiespecimen van patiënten die niet overleden waren aan PCa. De resultaten toonden aan dat de sensitiviteit eerder afhankelijk was van de biopsieplaatsen dan van het aantal biopten. Het huidige 12-bioptenschema gaf een significante verbetering van de sensitiviteit in vergelijking met het vroegere sextant schema. Voor een 12-bioptenschema in de midden en laterale PZ werd een sensitiviteit van 80% bekomen voor klinisch significante PCa (“insignificant”: GS ≤ 6 en dominante tumor met volume <0,5 cm³) (26). De detectiegraad kan men verhogen door te biopsiëren op vaak gemiste plaatsen zoals de anterieure PZ en anterieure TZ (27).

Om bemonsteringsfouten van de initiële biopsie op te vangen, wordt er bij een blijvend klinisch vermoeden van PCa opnieuw een biopsie uitgevoerd. Om de sensitiviteit van deze herhaalde transrectale biopsie te evalueren, hebben Barzell et al. een vergelijking gemaakt met een transperineale “mapping” van de prostaat. De sensitiviteit voor klinisch significante tumoren van een herhaalde transrectale biopsie bleek te variëren tussen 9% en 24% afhankelijk van de gebruikte definitie van klinisch significante kanker (28).

Biopsie heeft als bijkomend nadeel dat de GS vaak verkeerd wordt ingeschat. Dall’Era et al. ramen de klinische onderschatting met 12-cilinder biopsie op 20-30% (29). Studies van Sheridan et al. en Tosoian et al. stelden vast dat tumorprogressie binnen AS grotendeels plaatsvond tijdens de aanvangsperiode, wat de hypothese van onderschatting bij de initiële biopsie ondersteunt (30).
6. **TNM-STADIERING**

Het TNM-systeem (Bijlage 1) is de wereldwijde standaard om de uitbreiding van een tumor te beoordelen. Mede in functie van de stadiëring wordt de behandelingsmethode bepaald aan de hand van predictietabellen en nomogrammen. Het systeem wordt gedragen door het American Joint Committee on Cancer en de International Union for Cancer Control. De tumoren worden ingedeeld op basis van de omvang of aaneensluitende uitbreiding van de primaire tumor (T-component), invasie van regionale lymfeklieren (N-component) en metastasen op afstand (M-component). Op basis van de T-, N- en M-componenten, PSA en GS worden de patiënten verdeeld in prognostische groepen.

Vanaf stadium T3 is er extraprostatische uitbreiding. Bij de N- en M-component wordt de numerieke parameter 0/1 toegekend afhankelijk van de aanwezigheid van metastase. De N-component kan verhogen tot 2 of 3 in functie van het aantal betrokken lymfeklieren. Naargelang de stadiëring worden 3 klassen onderscheiden: lokale (T1-T2, N0, M0), lokaal gevorderde (T3-T4, N0, M0) en gemetastaseerde (N+, M1) PCa (9).

6.1 **T-stadium**

RT, echografie en MRI zijn de aangewezen middelen voor klinische T-stadiëring ofschoon RT vaak uitbreiding van de tumor onderschat. Men dient wel de bevindingen van de biopsie in aanmerking te nemen. Een MRI kan uitgevoerd worden indien curatieve behandeling een optie is en indien RT en biopsie niet volstaan voor een voldoende nauwkeurige T-stadiëring. Dit kan dienen voor de bepaling van het aantal aangetaste lobben en voor de identificatie van extraprostatische uitbreiding en invasie van de zaadbhaasjes (9).

Uit onderzoek van Augustin et al. is gebleken dat vroeg gedetecteerde PCa vaak tot één zone beperkt is (PZ: 64%, TZ: 8%, PZ-TZ: 28%) (6). PCa van de CZ komt weinig frequent voor, maar is agressiever. Dit uit zich in frequentere extraprostatische uitbreiding, hogere Gleasongraad en meer biochemisch falen van de behandeling (31).

6.2 **N-stadium**

N-stadiëring is alleen geïndiceerd in het vooruitzicht van curatieve behandeling van PCa met intermediair- of hoog-risico. CT en MRI hebben een lage sensitiviteit (40%) voor deze metastasen. Uitgebreide pelviene lymfeklierdissectie door middel van open of laparoscopische technieken is de gouden standaard voor N-stadiëring (9).
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

6.3 M-stadium

Uitvoeren van een botscintigrafie is imperatief voor M-stadiëring bij slecht gedifferentieerde en lokaal gevorderde tumoren, maar kan achterwege gelaten worden bij asymptomatische patiënten met PSA ≤20 ng/ml en goed of matig gedifferentieerde PCa. Een hoog botspecifiek alkalisch fosfatase toont botmetastasen aan bij 70% van de patiënten en in combinatie met een hoog PSA bij 98%. In geval van twijfel kan een PET/CT-scan worden gebruikt (9). Bij M-stadiëring geeft MRI een aanvulling op de botscan bij het detecteren van metastasen van zacht weefsel (16).

7. RISICOSTRATIFICATIE

7.1 Graadcompressie

7.1.1 Classificatie

Diverse modellen van graadcompressie, waarbij de Gleason-scores gehergroepeerd worden in drie of meer groepen, zijn reeds ontworpen. De update van 2007 door Partin et al. maakte een onderscheid tussen GS 5-6, 3+4, 4+3 en 8-10 voor biopsie. De Partin-predictietabellen, die een leidraad zijn voor therapeutische beslissingen, houden naast GS ook rekening met de PSA en het T-stadium. Het Kattan nomogram, eveneens veel gebruikt, maakt hetzelfde onderscheid tussen GS 3+4 en 4+3. In de Cancer of the Prostate Risk Assessment (CAPRA) worden de volgende drie groepen gehanteerd: GS 2-6, 3+4/3+5 en tumoren met een primair patroon 4 of 5 (30, 32).

7.1.2 Prognose

De Gleason-classificatie is een maatstaf voor de agressiviteit van PCa en wordt geruggesteund door de Wereldgezondheidsorganisatie. Het is één van de krachtigste prognostische indicatoren bij PCa omwille van zijn correlatie met het ziektestadium, de kans op herval en de kankerspecifieke overleving. Het is dan ook één van de hoekstenen in de huidige aanpak en behandeling van PCa (30).

Studies over conservatief management relateren kankerspecifieke overleving sterk aan Gleason-graad. Een patiënt met een slecht gedifferentieerde (GS 8-10) PCa heeft maar 2 kansen op 3 om zonder behandeling te overleven binnen de 5 jaar en 1 kans op 3 binnen de 10 jaar (9). Pierorazio et al. hanteerden een classificatie, gebaseerd op Partin, met vijf prognostische groepen. Zij bekwamen na RP een recidiefvrije 5-jaarsoverleving van 97% bij
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

GS≤6, 88% bij GS 3+4, 70% bij GS 4+3, 64% bij GS 8 en 35% bij GS 9-10. De belangrijkste predictoren waren volgens hen GS 9-10, GS 8 en GS 4+3 (33).

7.2 De D’Amico-risicostratifcatie

De D’Amico-risicostratifcatie en varianten daarvan worden zeer vaak gehanteerd, zowel bij wetenschappelijk onderzoek als in een klinische context. Deze maakt enkel gebruik van klinische risicofactoren (T-stadium, Gleason-score, PSA-niveau) en onderscheidt 3 strata met laag-, intermediair- en hoog-risico (34):

- Laag-risico: T1-T2a en GS≤6 en PSA≤10 ng/ml
- Intermediair-risico: T2b en/of GS=7 en/of PSA tussen 10-20 ng/ml
- Hoog-risico: ≥T2c of PSA>20 of GS 8-10

Het NCCN hanteert nog 2 bijkomende strata, meer bepaald tumoren met een zeer hoog-risico (T3b-T4) en een zeer laag-risico (T1c en GS≤6 en PSA<10 en aantal positieve biopsiecilinders <3 en elke cilinder voor ≤50% ingenomen) (34).
8. **BEHANDELING**

De behandelingsmogelijkheden voor PCa, aanvaard door de guidelines, zijn zeer uiteenlopend, maar zijn allemaal evenwaardig. De behandeling vereist een multidisciplinaire aanpak en de keuze moet afgestemd zijn op de klinische indicaties (stadiëring, GS, PSA, D'Amico risicostratifie), leeftijd, comorbiditeit, levensverwachting en levenskwaliteit. Hiernaast moet ook rekening worden gehouden met de voorkeur van de patiënt. De guidelines benadrukken dat de patiënt goed geïnformeerd moet worden en dat kennis en aanvaarding van de bijwerkingen essentieel is in de keuze van een welbepaalde therapie (9). Sommige individuen zullen curatief worden behandeld, terwijl anderen de behandeling zal worden uitgesteld.

8.1 **Waakzaam wachten en actieve opvolging**

8.1.1 Waakzaam wachten

Waakzaam wachten houdt in dat men geen curatieve therapie meer opstart, maar dat men start met palliatieve therapie bij het optreden van symptomen (35). Dit is standaard voor patiënten met levensverwachting <10 jaar, T1a, en GS≤7 (9).

8.1.2 Actieve opvolging

Bij AS worden patiënten opgevolgd met regelmatige PSA-controles, RT en prostaatbiopsieën. In geval van evolutie in tekenen van tumoragressiviteit zoals een toegenomen GS of snel oplopende PSA wordt alsnog een curatieve therapie ingesteld (35).

8.1.2.1 Laag-risico tumoren

De acceptatie van AS groeide op basis van gunstige resultaten met AS in de ERSPC-trial (36) en diverse klinische trial-studies. De medische guidelines erkennen sinds enkele jaren actieve opvolging als mogelijke optie die moet besproken worden bij patiënten met laag-risico of zeer laag-risico tumoren (9).

Voorstanders van AS voeren aan dat bij het merendeel van de lokale laag-risico tumoren geen progressie werd vastgesteld bij diverse cohortstudies en dat de doorlooptijd tussen diagnose en klinische progressie over het algemeen lang is (10 jaar). Ze geven eveneens aan dat patiënten, indien nodig, tijdig kunnen worden behandeld (36, 37). Er is een zeer hoge 10-jaarsoverleving (97–100%) doordat geïnterveneerd wordt bij kankerprogressie, wat bij ca. 1
op 3 patiënten het geval is. Bijkomend onderzoek is nodig inzake specifieke klinische triggers die behandeling vereisen bij patiënten in AS. De specifieke triggers die volgens de protocollen behandeling noodzaken, zoals de voorkeur van de patiënt, een GS≥7 vastgesteld bij herhaalde biopsie, een grenswaarde voor PSA-verdubbelingstijd tussen 2 en 4 jaar en een klinisch stadium ≥T3, hebben nog onvoldoende onderzoeksbasis (9, 36, 37).

8.1.2.2 Selectiecriteria

AS vereist strikte selectiecriteria voor de deelnemers en een gestandaardiseerd protocol voor opvolging. De meeste protocollen leunen dicht aan bij de zeer laag-risicogroep van het NCCN, terwijl de laag-risico definitie van D’Amico gehanteerd wordt in het protocol van Toronto (36, 37). Een ruimere benadering maakt participatie van een groter aantal patiënten mogelijk. Mits goede bepaling van alle criteria kan ook bij mannen met GS 7 een 6-jaarsoverleving van 100% worden bereikt (29).

8.1.2.3 Frequentie van de biopsieën

Regelmatisch routineonderzoek is vereist en binnen het eerste jaar dient een tweede biopsie te worden voorzien met inbegrip van de anterieure prostaat. Een globaal protocol rond de frequentie van biopsiën is niet voorhanden, met verschillen in de planning van herhaalde biopsieën als gevolg. Uit vijf belangrijke AS programma’s heeft het gemiddelde tijdstip van de tweede biopsie varieert van minder dan 3 maanden tot maximum 2 jaar en dat ook de frequentie van verdere biopsieën verschilt. In de Toronto studie ligt deze om de 3 à 5 jaar en in het Prias protocol (ERSPC) na 4, 7 en 10 jaar. Het Johns Hopkins protocol werkt met een jaarlijkse biopsie (29, 37, 38).

8.2 Radiotherapie en radicale prostatectomie

PCa is radiosensibel en primaire radiotherapie kan zowel inwendig als uitwendig gegeven worden. Brachytherapie (inwendige radiotherapie met radioactieve zaadjes) is een optie voor cT1b-T2a, prostaatvolume <50 cm³ en PCa met een zeer laag-risico (9).

Voor T1a-T2c met een laag- of intermediair-risico met levensverwachting >10 jaar zijn zowel radicale prostatectomie als externe radiotherapie geschikt. Voor intermediair-risico wordt aanbevolen de stralingsdosis te verhogen of, in het geval van lage stralingsdosis, neoadjuvante en concomitante androgeen deprivatie therapie (ADT) toe te passen (9).

Bij patiënten met een levensverwachting langer dan 5-10 jaar en met een hoog-risico tot zeer
hoog-risico (GS≥8 of PSA>20 of cT3-T4) is de context vaak multimodaal. Bij uitwendige radiotherapie voor hoog-risico tumoren zijn dosisescalatie en een combinatie met ADT aanbevolen. Deze maatregelen zijn noodzakelijk bij lymfeklierinvasie.

Er zijn aanwijzingen dat RP een optie kan zijn bij goed geselecteerde patiënten met een levensverwachting >10 jaar en (beperkte) cT3a, GS≤8 en PSA<20ng/ml, maar vaak zal nadien nog adjuvante therapie zoals hormoontherapie (HT) of radiotherapie nodig zijn wegens positieve snijranden, betrokkenheid van de lymfeklieren of salvage therapie bij optreden van biochemisch recidief (9).

8.3 Hormoontherapie

Bij significante lymfeklierbetrokkenheid of metastasering is onmiddellijke castratie met HT de gouden standaard en imperatief bij symptomatische metastasering. ADT is een vorm van hormoontherapie waarbij het testosteron, dat de groei van de PCa en zijn uitzaaiingen stimuleert, tot castratieniveau wordt gebracht (9).

Gemetastaseerde castratierefractaire PCa, met PSA-progressie na HT ten gevolge van biochemisch falen, wordt in eerste instantie bestreden met chemotherapie (bijv. docetaxel, mytoxantrone) of secundair hormonaal behandeld. Een palliatieve benadering voor pijnreductie en preventie van complicaties is eveneens geïndiceerd (9).
9. BEELDVORMING VAN DE PROSTAAT

9.1 Transrectale echografie (TRUS)

Een rectaal ingebrachte echozender met hoge frequentie kan gewoonlijk goed de contouren van de prostaat herkennen en een onderscheid maken tussen de PZ en de centrale klier. De accuraatheid van TRUS voor detectie van PCa is beperkt. Tumoren in de PZ zijn soms te visualiseren als hypo-echogene zones. Tumoren in de centrale klier zijn moeilijk te detecteren vanwege de histologische heterogeniteit van de centrale klier. TRUS kan wel nuttig zijn voor de schatting van het prostaatvolume en echogeleide transrectale biopsie (5, 24).

9.2 Computertomografie (CT)

CT-scan, met of zonder contrast, heeft weinig nut voor de detectie van PCa. De verschillende zones van de prostaat zijn moeilijk te onderscheiden. Het kan wel aangewend worden voor het bepalen van de N- en M-stadiëring bij geselecteerde patiënten met PCa (5).

9.3 Magnetische resonantie (MRI)

De waarde van MRI als diagnostisch middel is sinds de invoering van de endorectale spoel en de ontwikkeling van functionele beeldvormingstechnieken aanzienlijk verbeterd. Het gecombineerd gebruik van morfologische beeldvorming en functionele technieken wordt multiparametrische MRI genoemd.

9.3.1 Morfologische beeldvorming

Een morfologisch standaardonderzoek bestaat zowel uit 3-4 mm T2-gewogen opnames in drie richtingen (coronaal, sagittaal en axiaal) als uit 3-4 mm axiale T1-gewogen opnames. T2-gewogen beelden kunnen dankzij de hoge ruimtelijke resolutie de prostaatcontour, PZ, AFS en centrale klier duidelijk afbakenen. Op deze opnames hebben de normale weefsels van de centrale klier een heterogene lichte tot matige intensiteit, mede bepaald door de graad van hyperplasie. De normale vochthoudende weefsels van de PZ zijn homogeen hyperintens (hoge signaalintensiteit, wit) op de T2-gewogen opnames. Slecht gedifferentieerde tumorweefsels met hoge celdensiteit zijn hypointens (lage signaalintensiteit, zwart) en kunnen vaak herkend worden in de PZ op de T2-gewogen opnames. De nauwkeurigheid van MRI voor detectie van PCa in de TZ is lager dan in de PZ. T2-gewogen beelden geven de grootte van de tumor aan in de PZ en kunnen extraprostatische uitbreiding en invasie van de zaadblaasjes aantonen. Lage signaalintensiteit is evenwel niet specifiek voor PCa aangezien meerdere aandoeningen,
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

onder meer prostatitis, hetzelfde aspect kunnen vertonen. T1-gewogen opnames kunnen een onderscheid maken met bloeding na biopsie, dat met hoge signaalintensiteit weergegeven wordt \((24, 39)\).

9.3.2 Functionele beeldvorming

9.3.2.1 Spectroscopie (MRSI)

MRSI meet de relatieve concentraties van specifieke celmetabolieten. PCa is gekenmerkt door lagere concentraties van citraat, deels ten gevolge van oxidatie, en de verhoogde aanwezigheid van choline in celrijk weefsel. Polyamines en creatine worden gemeten om de berekening van choline te faciliteren. De metabolietindex is de ratio van choline plus creatine tot citraat \((CC/C)\). Een hoge metabolietindex wijst op maligniteit, aangezien PCa gepaard gaat met hogere cholinewaarden en lagere citraatwaarden \((5)\).

9.3.2.2 Diffusieweging (DWI)

Diffusieweging meet de willekeurige beweeglijkheid van watermoleculen. Deze is groter in normaal klierweefsel dan in tumorweefsel. De mate van beweeglijkheid van watermoleculen wordt uitgedrukt aan de hand van de “Apparent diffusion coefficient” (ADC). Ook prostatitis en BPH kunnen tot lage ADC-waarden leiden. Eerder dan absolute waarden, zijn relatieve verschillen van ADC-waarden van de weefsels binnen de prostaat van belang. DWI is veelbelovend voor N-stadiëring aangezien lymfeklieren met metastasen ook lage ADC-waarden vertonen \((24, 39)\).

9.3.2.3 Dynamisch contrastonderzoek (DCE)

DCE bestaat uit een aantal snelle, T1-gewogen sequenties die de hele prostaat scannen voor en na een intraveneus toegediende contraststof. De contraststof lekt tijdens zijn passage door de weefsels uit de bloedvaten en diffundeert nadien weer in de intravasculaire ruimte op basis van concentratiegradiënten. DCE brengt de verschillen in aankleuringenpatronen inzake snelheid en contraststerkte in kaart tussen normaal en tumoraal weefsel. Dit laatste wordt immers gekenmerkt door neoangiogenese en hogere wandpermeabiliteit van de bloedvaten. De resultaten worden visueel beoordeeld door middel van curves, die de veranderingen van signaalintensiteit weergeven in de tijd, of geanalyseerd aan de hand van verscheidene parameters \((24, 39)\).
9.3.3 PI-RADS

De European Society of Urogenital Radiology (ESUR) heeft in 2012 mpMRI guidelines opgesteld voor een optimaal gebruik en rapportering, tesamen met protocollen voor detectie, stadiëring en metastasering. mpMRI onderzoek houdt in dat minstens twee functionele technieken worden toegepast samen met morfologische T2-gewogen beelden. DWI en MRSI verhogen de specificiteit, terwijl DCE de sensitiviteit vergroot. Het gestructureerde rapportageschema omvat een uitgebreid score-systeem (PI-RADS) waarbij voor elke multiparametrische techniek een 5-puntenschaal op basis van bepaalde kenmerken wordt gebruikt. In de T2-gewogen opnames wordt er een onderscheid gemaakt tussen PZ en TZ. Een samenvattende globale score geeft de waarschijnlijkheid van klinisch significante kanker aan. Naast de PI-RADS score moet men ook pertinente incidentele bevindingen, de lokalisatie en extraprostatische extensie rapporteren (40).

9.3.4 Diagnostische performantie van mpMRI

Gezien de ernstige risico's van HG PCa is het essentieel dat een diagnostische test het aantal gemiste HG of fout-negatieve uitslagen zoveel mogelijk beperkt, wat weerspiegeld wordt door een maximale negatieve predictieve waarde (NPV) en maximale sensitiviteit. De performantie van de test wordt bepaald door de best mogelijke drempelwaarde met de hoogste sensitiviteit en specificiteit.

De verscheidenheid aan beeldvormingstechnieken in combinatie met de variabele interpretatie verklaren mede de verschillen in diagnostische performantie van mpMRI tussen de verschillende studies. Er werd naar meta-analyses van diagnostische performantie van de beeldvormingstechnieken gezocht (Tabel 2).
Rais-Bahrami et al. onderzochten in een prospectieve studie 583 patiënten, waarbij eerst mpMRI (T2WI+DCE+DWI+MRSI) en vervolgens een 12-cilinder biopsie werd uitgevoerd. Er werd aangetoond dat de accuraatheid van mpMRI voor detectie stijgt naarmate de agressiviteit van de kankers toeneemt. De AUC-waarde bij ROC-curve analyse, die de accuraatheid van een test weergeeft, bedroeg 0,64 voor alle kankers, 0,69 voor GS≥7 en 0,72 voor GS≥8 (47).

Abd-Alazeez et al. vergeleken de resultaten van mpMRI (T2WI + DWI + DCE) met transperineale biopsie op 129 patiënten, verdacht van PCa. Twee definities van klinisch significante PCa werden getoetst. Wanneer de twijfelgevallen op mpMRI als positief werden beschouwd bekwam men voor de eerste definitie (GS≥4+3 en/of maximale kankerlengte ≥6 mm) een hoge sensitiviteit (98%), lage specificiteit (22%) en hoge NPV (98%). Voor de tweede definitie (GS≥3+4 en/of maximale kankerlengte ≥4 mm) was er een sensitiviteit en specificiteit van resp. 94% en 23% per prostaathelft (48).

Villeirs et al. onderzochten de performantie van MRI in combinatie met spectroscopie bij een groep van 356 patiënten met een verhoogde PSA. Voor de beoordeling werd een 4-puntenschaal gehanteerd, waarbij score 3 en 4 als positief werden beschouwd. De tumoren werden ingedeeld in hooggradige PCa (GS≥4+3) en tumoren met een lagere graad. Er werd een gevoeligheid van 93% en een NPV van 98% voor de detectie van hooggradige PCa gevonden, waaruit men kon concluderen dat MRI+MRSI een belangrijk diagnostisch middel kan zijn om de aan- of afwezigheid van een hooggradige PCa aan te tonen bij mannen met een verhoogde PSA. Het uitsluiten van hooggradige PCa met behulp van MRI+MRSI zou de selectie van patiënten voor AS kunnen ondersteunen of een herhaalde biopsie kunnen

<table>
<thead>
<tr>
<th>Techniek</th>
<th>Sensitiviteit</th>
<th>Specificiteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2WI + DWI + DCE</td>
<td>74% (66-81%)</td>
<td>88% (82-92%)</td>
</tr>
<tr>
<td>DWI</td>
<td>55% (49-60%)</td>
<td>95% (93-96%)</td>
</tr>
<tr>
<td>DCE</td>
<td>51% (46-57%)</td>
<td>94% (92-95%)</td>
</tr>
<tr>
<td>DWI</td>
<td>77% (76-84%)</td>
<td>84% (78-89%)</td>
</tr>
<tr>
<td>T2WI + DWI + DCE</td>
<td>70% (69-72%)</td>
<td>83% (80-85%)</td>
</tr>
<tr>
<td>DWI</td>
<td>69% (67-72%)</td>
<td>89% (87-90%)</td>
</tr>
<tr>
<td>DCE</td>
<td>58% (53-62%)</td>
<td>82% (80-85%)</td>
</tr>
<tr>
<td>T2WI + MRSI</td>
<td>82% (59-94%)</td>
<td>88% (80-95%)</td>
</tr>
<tr>
<td>T2WI + DWI</td>
<td>76% (65-84%)</td>
<td>82% (77-87%)</td>
</tr>
</tbody>
</table>

Betrouwbaarheidsinterval: 95%
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

vermijden (49). Op basis van 131 patiënten met een fout-positieve beoordeling werd een specificiteit van 58% berekend voor hooggradige PCa. Slechts in 10 gevallen was er geen evidentie voor het bestaan van PCa en in de andere 121 gevallen betrof het tumoren met een lagere graad.

9.3.5 Drempelwaarde bij mpMRI

De keuze van een welbepaalde drempelwaarde zal afhangen van de gevolgen die fout-positieven of fout-negatieve met zich meebrengen en zal het doel van de test bepalen. Voor klinische beslissingen dient de score van een mpMRI classificatie met 3 klassen (lage, intermediaire en hoge verdenking) of een 5-puntenschaal (PI-RADS) omgezet te worden naar een dichotome positieve of negatieve indeling. Er zijn twee mogelijkheden om de middelste score onder te brengen: deze kan ofwel als ondergrens, ofwel als bovengrens genomen worden bij de keuze van de drempelwaarde.

Rais-Bahrami et al. stellen dat geen van beide grenzen tegelijk een hoge sensitiviteit als hoge specificiteit oplevert. Ofschoon hun sensitiviteiten van GS≥7 en GS≥8 hoog waren voor de ondergrens (94% resp. 98%), waren de specificiteiten voor GS≥7 en GS≥8 laag (28% resp. 24%) in vergelijking met het gebruik van de bovengrens (92% resp. 89%). Bij de bovengrens was de sensitiviteit echter merkelijk lager (33% resp. 45%). De onderzoekers besloten dat, naast een verdachte MRI, ook de leeftijd, PSA, prostaatvolume en andere prognostische parameters de specificiteit van screening voor klinisch significante tumoren kunnen doen verhogen (47).

In de studie van Abd-Alazeez et al. was er bij een lager gelegen drempelwaarde (radiologische score ≥3 op 5-puntenschaal) een hoge sensitiviteit (98%), maar lage specificiteit (22%) in vergelijking met een radiologische score ≥4 (sensitiviteit: 81% en specificiteit: 66%). Zij besloten dat een biopsie mag uitgesteld worden onder drempelwaarde 3, gezien de hoge kans op afwezigheid van een GS 4 component en een kankerlengte ≥6 mm (48).
10. ROL VAN mpMRI BIJ DE DETECTIE VAN PROSTAATKANKER

mpMRI kan een rol spelen in de detectie van PCa bij patiënten met verdachte biomarker en/of verdacht RT bij wie nog geen biopsie is verricht. mpMRI dient hierbij als triage-test om patiënten met klinisch significante kanker te selecteren voor initiële biopsie (50).

Om deze belangrijke rol bij de detectie te kunnen vervullen, moeten twee belangrijke aspecten uitgeklaard worden. Vooreerst moet men de klinische insignificantie kunnen aantonen van de laag- en intermediair-gradige tumoren waarvoor mpMRI een lagere sensitiviteit heeft. Ten tweede mogen de klinisch significante HG tumoren door mpMRI niet gemist worden. In dit onderzoek had mpMRI voor HG tumoren een sensitiviteit van 90% en een negatieve predictieve waarde van 95%. Gezien de ernstige risico's van het missen van HG PCa werden deze fout-negatieven geanalyseerd.
II. METHODOLOGIE

1. PATIENTENSELECTIE

Bij 1.794 patiënten werd een MRI+MR-spectroscopie (MRSI) uitgevoerd tussen 4/3/2002 en 29/12/2011 in het Universitair Ziekenhuis Gent (UZG). Ze werden verwezen voor MRI+MRSI naar aanleiding van een verhoogd PSA-niveau, een verdacht rectaal toucher, familiale belasting of in het kader van planning voor radiotherapie. Een histologische diagnose van PCa werd bekomen op basis van radicale prostatectomie, TURP of biopsie. Voor de patiënten zonder histologische diagnose van PCa gebeurde PSA-opvolging gedurende minstens 2 jaar. Tumoren die pas ontdekt werden op een tijdstip later dan 2 jaar na de MRI+MRSI werden beschouwd als nieuw opgetreden tumoren, nog niet aanwezig op het moment van de MRI+MRSI.

Exclusiecriteria waren:

- **Vroeger reeds behandeld voor PCa (37 patiënten):** Aangezien de klinische vraag verschillend zou zijn, werd detectie van recidieven uitgesloten uit de studie. Bovendien kan, bijv. na radiotherapie, de spectroscopie verstoord zijn en het prostaatweefsel van de PZ met lage signaalintensiteit weergegeven worden, wat de gevoeligheid van de MRI+MRSI verlaagt.

- **Vervolgonderzoeken (202 patiënten):** Deze patiënten ondergingen meermaals MRI+MRSI tijdens de studieperiode. Enkel het onderzoek met het kortste interval tot de histologische diagnose werd behouden, aangezien dit de beste correlatie weergeeft tussen de MRI+MRSI en het APD-verslag.

- **Diagnose PCa >100 dagen voor MRI+MRSI (39 patiënten):** Dit interval kwam voor bij patiënten naar aanleiding van RTher. Bij deze patiënten was de diagnose van PCa reeds gekend. Een korter interval werd wel geïncludeerd, aangezien de radioloog vaak niet op de hoogte was van het exacte APD-resultaat op het moment van de MRI+MRSI.

- **Opvolging van minder dan 2 jaar (315 patiënten)**

- **Onvolledige gegevens (354 patiënten):** Tumoren waarvan het APD-verslag of de gegevens van de MRI+MRSI verloren waren gegaan of waarvan het APD-verslag onvoldoende informatie bevatte (bijv. biopsie in een ander centrum verricht).
Uiteindelijk bleven er 847 patiënten over (Tabel 3), waarvan 177 (21%) patiënten met een HG PCa, 152 (18%) IG, 228 (27%) LG en 290 (34%) zonder PCa.

Tabel 3: Kenmerken patiëntenzorgpopulatie

<table>
<thead>
<tr>
<th>Graad-klasse</th>
<th>N</th>
<th>Leeftijd (jaar)</th>
<th>PSA (ng/ml)</th>
<th>Prostaatvolume (ml)</th>
<th>Diagnose naar aanleiding van</th>
<th>Biopsie</th>
<th>RP</th>
<th>TURP</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG</td>
<td>177</td>
<td>67,3 (51-85)</td>
<td>15,3 (2,5-96,0)</td>
<td>41,8 (9,4-198,0)</td>
<td>118</td>
<td>56</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IG</td>
<td>152</td>
<td>65,7 (40-80)</td>
<td>16,3 (1,0-200,0)</td>
<td>39,7 (11,9-137,5)</td>
<td>98</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LG</td>
<td>228</td>
<td>65,1 (42-83)</td>
<td>11,6 (2,2-67,5)</td>
<td>37,9 (12,4-155,3)</td>
<td>187</td>
<td>37</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neg.</td>
<td>290</td>
<td>62,8 (42-79)</td>
<td>7,9 (0,6-74,0)</td>
<td>51,7 (10,2-275,7)</td>
<td>n.v.t.</td>
<td>0</td>
<td>n.v.t.</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>847</td>
<td>64,9 (40-85)</td>
<td>11,9 (0,6-200,0)</td>
<td>43,8 (9,4-275,7)</td>
<td>403</td>
<td>147</td>
<td>7</td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>

N: aantal patiënten
N.v.t.: niet van toepassing
Follow-up: actieve opvolging gedurende 2 jaar (PSA-bepalingen en/of biopsie en/of TURP)

2. ANALYSE VAN DE GEMISTE TUMOREN

Voor de analyse van de gemiste tumoren werd beroep gedaan op het elektronisch patiëntendossier (EPD) van het UZG. Voor elke patiënt werden het type PCa (conventioneel acinair of colloïd), de GS, de stadiëring (TNM) en het interval tussen de MRI+MRSI en het APD-resultaat nagegaan.

De MR-beelden van alle gemiste tumoren werden retrospectief herbekeken door een ervaren radioloog, dr. P. De Visschere (met kennis van het APD-resultaat). Er werd een PI-RADS score toegekend en de spectroscopische kwaliteit van het MR-onderzoek werd beoordeeld.

In het geval van gemiste HG tumoren werden bovendien de histologische preparaten door patholoog prof. dr. L. Libbrecht herbekeken en samen met radioloog dr. P. De Visschere gecorreleerd met de MRI+MRSI.

Om de grootte van de gemiste HG tumoren te standariseren werd een vijfpuntenschaal uitgewerkt, dat het percentage prostaatweefsel ingenomen door de tumor weergeeft ten opzichte van de volledige prostaat (Tabel 4). De puntenschaal varieerde van score 1, toegekend voor een totaal volume van de tumoren <5% van de totale prostaat, tot score 5 die een inname >50% van de prostaat betekende. Voor de specimen die verkregen waren na RP werd een score toegekend op basis van de exacte grootte van de tumoren. Voor de biopten
MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

werd de tumorgrootte ingeschat op basis van het percentage dat door de tumor in de cilinders werd ingenomen.

Tabel 4: APD-score

<table>
<thead>
<tr>
<th>% inname prostaat</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>5-10</td>
<td>10-25</td>
<td>25-50</td>
<td>>50</td>
<td></td>
</tr>
<tr>
<td>Biopsie</td>
<td>1 of 2 cilinders <50% ingenomen</td>
<td>2 cilinders >50% ingenomen</td>
<td>>2 cilinders ingenomen</td>
<td>Alle cilinders in 1 prostaathelft ingenomen</td>
<td>Cilinders bilateraal ingenomen</td>
</tr>
<tr>
<td>Radicale prostatectomie</td>
<td>Tumor <5mm</td>
<td>Tumor <1cm</td>
<td>Tumor <1/2 prostaathelft</td>
<td>Volledige prostaathelft ingenomen</td>
<td>Bilateraal tumor</td>
</tr>
</tbody>
</table>
III. RESULTATEN

Voor de totale groep van 847 patiënten werd een gevoeligheid van 78%, een specificiteit van 77%, een accuraatheid van 78%, een positieve predictieve waarde van 87% en een negatieve predictieve waarde van 65% opgetekend voor alle PCa, van om het even welke Gleason-score. Wanneer enkel de hooggradige tumoren in acht werden genomen, werd voor MRI+MRSI een gevoeligheid van 90% en een negatief predictieve waarde van 95% bekomen.

Bij 121 patiënten werd de MRI+MRSI negatief geprotocolleerd, maar werd toch een prostaattumor gedetecteerd binnen een periode van 2 jaar na de MRI+MRSI. Deze groep vormt het onderwerp van deze studie. Bij 74 patiënten bleek het te gaan om laaggradige tumoren, bij 29 patiënten om tumoren met intermediaire graad en bij 18 patiënten om hooggradige tumoren.

1. ANALYSE VAN DE GEMISTE HOOGGRADIGE TUMOREN

Bij de gemiste hooggradige tumoren (Tabel 5) was er 6% (1/18) met Gleason-score 3+4+5, 22% (4/18) met 3+5, 22% (4/18) met 4+3, 22% (4/18) met 4+4, 6% (1/18) met 4+4+5, 11% (2/18) met 4+5 en was er 11% (2/18) met 5+4.

In 89% (16/18) van de gevallen ging het om tumoren van het conventioneel acinaire type en in 11% (2/18) van het colloïde type.

Bij 50% (9/18) van de patiënten werd de APD-score 1 (tumorvolume <5%) toegewezen, bij 22% (4/18) de APD-score 2 (tumorvolume 5-10%), bij 11% (2/18) de APD-score 3 (tumorvolume 10-25% van de prostaat), bij 11% (2/18) de APD-score 4 (tumorvolume 25-50% van de prostaat) en bij 6% (1/18) de APD-score 5 (tumorvolume >50%). Een gemiste tumor met een volume van 10% of meer van de prostaat werd bij 28% (5/18) gedetecteerd, waarbij mogelijk een andere verklaring voor het missen van de tumor kon gezocht worden. Bij 11% (2/18) van de patiënten met APD-score 3 was er 6% (1/18) voor wie de tijd tussen MRI+MRSI en APD-verslag 427 dagen bedroeg, de beelden retrospectief toch positief werden bevonden en de tumor een GS 3+5 had. Bij de andere 6% (1/18) met APD-score 3 werd retrospectief een tumorhaard vermoed, evenwel op de tegenoverliggende plaats die beschreven was in het anatomopathologisch verslag, wat als een rechts-links verwisseling werd beschouwd. Van de 11% (2/18) met APD-score 4 werd 6% (1/18) retrospectief toch positief bevonden en bestond er twijfel bij de andere 6% (1/18); in beide situaties ging het om

27
een tumor met T-stadium 2. De tumor met APD-score 5 was van het colloïde type.

Betreffende het T-stadium van de gemiste tumoren werd er bij 39% (7/18) een stadium T1c vastgesteld, bij 6% (1/18) een stadium T2a, bij 22% (4/18) T2b, bij 22% (4/18) T2c, bij 6% (1/18) T3a en bij 6% (1/18) T3b. De patiënt met T3a-stadiëring had retrospectief toch een positieve MRI+MRSI met vermoeden van een rechts-links verwisseling op het anatomopathologisch verslag. Bij de patiënt met stadiëring T3b bleek er een lang interval van 593 dagen te bestaan tussen de MRI+MRSI en het APD-verslag, waardoor het dus mogelijk was dat de zaadblaasinvasie nog niet aanwezig was op het moment van de MRI+MRSI. Bovendien bedroeg de APD-score 1 en de Gleason-score 3+4+5. Bij 11% (2/18) werden er ingenomen lymfeklieren vastgesteld, maar dit werd telkens pas ontdekt na een lang tijdsinterval, namelijk 593 en 609 dagen, tussen de MRI+MRSI en de histologische diagnose.

Bij 6% (1/18) vond de MRI+MRSI plaats binnen de 3 maanden na het APD-verslag. Bij de andere patiënten kwam het APD-verslag tot stand na de MRI+MRSI: bij 50% (9/18) binnen de 3 maanden, bij 11% (2/18) tussen de 3 en 6 maanden, bij 6% (1/18) tussen 6 en 12 maanden, bij 6% (1/18) tussen 12 en 18 maanden en bij 22% (4/18) tussen 18 en 24 maanden.

Met voorkennis van het bestaan van gemiste tumoren werden de MRI+MRSI-beelden door een ervaren radioloog retrospectief herbekeken. Uit deze analyse bleek dat bij 28% (5/18) de tumor wel degelijk te zien was. Bij 44% (8/18) was er sprake van twijfel of de tumor retrospectief te zien was. Bij 28% (5/18) was de tumor ook met voorkennis niet zichtbaar op de MRI+MRSI, maar bij 80% (4/5) betrof het een APD-score 1, en bij 20% (1/5) een colloïde tumor.

De kwaliteit van de spectroscopie werd eveneens nagegaan, welke bij 11% (2/18) als slecht, bij 28% (5/18) als matig en bij 61% (11/18) als goed werd beoordeeld.
2. ANALYSE VAN DE GEMISTE LAAG- EN INTERMEDIAIR-GRADIGE TUMOREN

Bij 74 patiënten (61%) ging het om een tumor met een lage graad (Bijlage 2), waarvan 1 patiënt met GS 2+2 en 73 patiënten met GS 3+3. Bij 29 patiënten (24%) ging het om een tumor met een intermediaire graad 3+4 (Bijlage 3). Alle gemiste tumoren waren van het conventioneel acinaire type.

Ook bij deze patiëntengroepen werd een APD-score toegekend: 27% (28/103) kreeg de APD-score 1, 4% (4/103) de APD-score 2, 33% (34/103) de APD-score 3, 9% (9/103) de APD-score 4 en 27% (28/103) de APD-score 5.

Bij 40% (41/103) van de fout-negativa gevallen werd er een T1c stadium vastgesteld, bij 28% (29/103) een T2a, bij 3% (3/103) een T2b, bij 27% (28/103) een T2c en bij 2% (2/103) een T3a.

Het tijdsinterval tussen afname van de MRI+MRSI en de histologische diagnose bedroeg bij 34% (35/103) 3 maanden, bij 7% (7/103) tussen de 3 en 6 maanden, bij 5% (5/103) tussen de 6 en 12 maanden, bij 4% (4/103) tussen de 12 tot 18 maanden en bij 3% (3/103) tussen de 18 en 24 maanden. Voor 48% (49/103) vond de MRI+MRSI plaats na het APD-verslag en dit
voor 92% (45/49) binnen de drie maanden en voor 8% (4/49) tussen de 3 en 4 maanden.

Bij het herbekijken van de MRI+MRSI waren 23 negatieve gevallen (22%) toch positief bevonden en werd er in 26 negatieve gevallen (25%) getwijfeld of de tumor retrospectief zichtbaar was. Bij 54 patiënten (52%) werd de conclusie van een negatieve MRI+MRSI voor PCa gehandhaafd.

De kwaliteit van de spectroscopie werd bij 19% (20/103) als slecht beschouwd, bij 16% (16/103) als matig en bij 65% (67/103) als goed.
IV. DISCUSSIE

PCa is de meest voorkomende kanker bij mannen, maar het merendeel daarvan zijn klinisch niet-significante, indolente tumoren. Klinische significantie is sterk gerelateerd aan de Gleason-graad, maar hiervoor is een prostaatbiopsie nodig. Beeldvorming zou dit op niet-invasieve wijze kunnen vermijden als het klinisch significante prostaatkankers kan uitsluiten.

mpMRI zou de rol van diagnosemiddel kunnen vervullen gezien de hoge sensitiviteit en hoge NPV voor agressieve tumoren (48, 49, 51). Bijkomend onderzoek is echter nodig om aan te tonen dat mpMRI klinisch significante PCa met voldoende betrouwbaarheid kan uitsluiten. In deze studie werd geprobeerd te verklaren waarom met MRI+MRSI geen 100% negatieve predictieve waarde werd bekomen voor de agressieve, hooggradige tumoren. De MRI-beelden werden herbekend met als vooropgestelde hypothese dat, met voorkennis van de tumor en...

1. WAT IS EEN HOOG-, LAAG- EN INTERMEDIAIR-GRADIGE TUMOR?

Het Gleason-systeem is een van de krachtigste prognostische indicatoren bij PCa omwille van zijn correlatie met ziektestadium, kans op herhalen en kankerspecifieke overleving (13). Tumoren werden in deze studie ingedeeld in laaggradige, intermediaire en hooggradige tumoren op basis van de GS.

Deze indeling van tumoren is vergelijkbaar met de modellen van graadcompressie beschreven in de Partin-tabellen en de nomogrammen van Kattan en CAPRA, en met de studie van Helpap et al. (13) die een indeling maakte op basis van de nieuwe ISUP-criteria. Rodrigues et al. wezen erop dat factoren zoals de hoeveelheid hooggradige PCa, Gleason-patroon 4+3 versus 3+4 en het percentage positieve cilinders geïntegreerd moeten worden in mogelijke wijzigingen van de bestaande risicostratificatiesystemen (34).

Laaggradige tumoren bestaan enkel uit een Gleason-patroon 3 of lager. De homogenisering van de groep met GS 6 door de ISUP bijsturing heeft voor een veranderde opvatting gezorgd wat betreft patroon 3. De bijna 100% 15-jaarsoverleving na RP van patiënten met enkel lokaal Gleason-patroon 3 is volgens Ahmed et al. het bewijs dat het Gleason 3 patroon niet de karakteristieken heeft van maligne tumoren en geen metastatisch fenotype is (52).
Dit laatste werd bevestigd door Ross et al. in hun onderzoek naar lymfemetastasen bij GS≤6, volgens de nieuwe ISUP-criteria. Uit de 14.123 gevallen met GS≤6 werden 22 gevallen geïdentificeerd met positieve klieren. De 19 gevallen die men histologisch kon herbekijken, bleken allemaal een component met Gleason-patroon 4 of 5 te bevatten (53).

Tumoren met een intermediaire graad bevatten een secundaire of tertiaire component met Gleason-patroon 4. Vanwege het patroon 4 in een GS 7 worden GS 6 en GS 7 best in aparte groepen ondergebracht in een compressieschema (10). Epstein et al. bevonden in al hun studies dat PCa met GS 6 en tertiair (<5%) patroon 4 een slechtere prognose heeft dan GS 3+3. Ze beklemden het verschil in progressie tussen GS 3+3 en GS 3+4 (54). Bij de tumoren 3+4 en 4+3 is gebleken dat de procentuele hoeveelheid patroon 4 een prognostische factor is voor metastasen; ze hebben een verschillende agressiviteit en worden daarom apart beschouwd in de Partin-tabellen (10, 11). Stark et al. bevonden, na RP, een driemaal hogere PCa sterftegraad per 1.000 persoonsjaren bij 4+3 ten opzichte van 3+4 (55).

Hooggradige tumoren (HG) hebben een GS≥3+5. Omwille van de correlatie van deze GS met sterk agressief tumoraal gedrag, werden mogelijke verklaringen gezocht voor het missen van deze tumoren op MRI+MRSI.

2. ANALYSE VAN DE GEMISTE TUMOREN

2.1 Grootte van de tumor

De grootte van de tumor werd als factor onderzocht, omdat verwacht werd dat de gemiste tumoren mogelijk te klein waren voor de resolutie van de gebruikte beeldvormingstechniek. De T2-gewogen opnames worden gescand met een snededikte van 3 à 4 mm en de diffusiegewogen opnames aan 5 mm. De spectroscopische voxels hebben een volume van ongeveer 5 à 6 mm³. Het is technisch onmogelijk om tumorale microfoci te visualiseren met MRI. In de studie van Villers et al. werden een sensitiviteit en specificiteit van 77% resp. 91% voor tumorfoci van >0,2 ml bevonden en van 90% resp. 88% voor tumorfoci >0,5 ml (56).

De grootte van de tumoren werd in deze studie weergegeven door middel van een APD-score, waarbij de scores 1 en 2 als kleine tumoren werden beschouwd. 50% (9/18) van de gemiste hooggradige tumoren kreeg een APD-score 1 toegewezen en 22% (4/18) een APD-score 2. Dit wijst erop dat 72% van de gemiste hooggradige tumoren inderdaad kleine tumoren waren, die minder dan 10% van de totale prostaat innamen.
Bij de fout-negatieve patiënten met LG en IG PCa werden daarentegen veel grotere tumoren aangetroffen. Zowel bij de IG als de LG had het merendeel een APD-score ≥ 3. Vermits de gebruikte definitie van klinisch significante PCa op de Gleason-graad is gebaseerd, werd de lage Gleason-score als voldoende verklaring beschouwd voor het missen van deze tumoren.

De endorectale spoel heeft reeds gezorgd voor een verbetering van de resolutie van MRI. Verdere verbetering kan worden verwacht van ondermeer scanners met hogere Tesla (7T MRI), die nog in volle ontwikkeling zijn.

De klinische significantie van microfoci kan echter in vraag gesteld worden. Primaire tumorvolumes die tot metastasen op afstand leiden zijn doorgaans minstens 4 cm³. Hoewel niet onbestaande, is het biologisch potentieel van kleine tumoren beperkt inzake metastasen op afstand (52). Lokale uitbreiding van kleine of niet-dominante tumoren is, in tegenstelling tot metastasering op afstand, niet gelinkt aan het volume van de foci. Extraprostatische uitbreiding werd reeds vastgesteld door Epstein et al. bij een volume van 0,2-0,5 cm³ (54). Bijkomend onderzoek moet bevestigen dat microfoci een zeer lage kans op metastasen op afstand hebben, maar wel kunnen leiden tot lokale uitbreiding. In dat geval zullen de microfoci bij de initiële mpMRI gemist worden, maar de uitbreiding niet. Deze tumoren zouden in een protocol voor actieve opvolging na negatieve mpMRI bij herhaalde mpMRI toch kunnen worden gedetecteerd. Het tijdsinterval met de herhaalde mpMRI zal hierin een belangrijke rol spelen.

2.2 Gleason-score

Het overgrote deel van de gemiste tumoren was LG of IG. Van de 847 gescande patiënten hadden slechts 18 gevallen gemiste HG tumoren. De sensitiviteit voor agressieve tumoren had nog hoger kunnen geweest zijn door gebruik te maken van DWI, waarvoor een goede correlatie met de GS is aangetoond. Verschillende onderzoekers hebben gewezen op de goede detectie van PCa-foci met DWI. Kitajima et al. vonden dat T2WI + DWI de agressiviteit van PCa even goed kon voorspellen als echogeleide transrectale biopsie. Deze techniek leverde bijna vergelijkbare resultaten op als biopsie voor zowel de discriminatie tussen HG en LG/IG PCa in de PZ en TZ als voor de onder- en overschatting van deze 3 graadklassen (57). Ook MRI-DCE, dat neo-angiogenese opspoor, kan zorgen voor een hogere sensitiviteit (39, 58).
2.3 Histopathologisch subtype

Het histopathologisch subtype werd nagegaan, omdat onder andere gekend is dat het colloïde subtype moeilijker te detecteren is vanwege hoge signaalintensiteit op T2-gewogen MRI en dit subtype volgens de ISUP per definitie hooggradig beschouwd wordt, ook al is het tumorvolume beperkt.

Alle LG en IG tumoren waren van het acinaire type. Van de patiënten met HG tumoren waren er 2 patiënten waarvan het subtype van de tumor colloïd en niet-klassiek acinair was. Het mucine van dergelijke tumoren heeft een hoge signaalintensiteit op T2-gewogen MRI-beelden en kan bijgevolg moeilijk onderscheiden worden van het normale prostaatweefsel van de perifere zone, dat ook een hoge signaalintensiteit heeft. In deze studie bleek één van de twee patiënten wel degelijk een uitgebreide tumor te vertonen (APD-score 5), dat ook niet te weerhouden was bij het herbekijken van de MRI+MRSI-beelden met voorkennis van het APD-resultaat. Chang et al. stelden ook een variabele signaalintensiteit vast vanwege een andere chemische samenstelling dan normaal of door een kleinere hoeveelheid mucine (in deze studie de patiënt met retrospectief twijfel op MRI+MRSI) (8). In overeenkomst met ISUP hadden beide patiënten een Gleason-patroon 4+4.

De 2 patiënten met een gemiste colloïde tumor hadden een PSA van 9,3 ng/ml en 7 ng/ml. Bij 1 daarvan was er retrospectief twijfel; bij de tweede werd geen andere verklaring gevonden. Dit soort tumoren staat bekend voor een verhoogd PSA (59) en de verdenking van PCa zal bijgevolg blijven. Indien na een negatieve mpMRI het PSA hoog blijft, kan net zoals bij een negatieve initiële biopsie een herhalingsbiopsie worden voorzien.

Deze factor kan niet verbeterd worden met morfologische MRI en het is wenselijk dat de detectie van dit zeldzame subtype met functionele beeldvormingstechnieken verder onderzocht wordt.

2.4 T-stadium

Het T-stadium werd nagegaan omdat verwacht werd dat de gemiste tumoren lage T-stadia zouden hebben en dus prognostisch gunstig zouden zijn.

Van de patiënten met HG tumoren hadden er 16 op 18 (89%) een T-stadium ≤T2. Van de 2 patiënten met T3 was er één waarvan de tumor retrospectief toch te zien was op MRI+MRSI en één waarvan de tumor pas ontdekt was bijna twee jaar na de MRI+MRSI, wat erop wijst
dat de extracapsulaire uitbreiding waarschijnlijk nog niet aanwezig was op het moment van de MRI+MRSI. Ook bij de 2 patiënten met lymfeklierinvasie bleek er een lang tijdsinterval te bestaan tussen MRI+MRSI en APD, wat erop kan duiden dat de lymfeklierinvasie nog niet aanwezig was op het moment van de MRI+MRSI. Van de patiënten met LG PCa was er maar 1 fout-negatieve met een T3-stadium; het tijdsinterval tussen MRI+MRSI en het APD was daarbij langer dan één jaar. Van de patiënten met IG PCa was er eveneens slechts 1 fout-negatieve met een T3-stadium; bij deze man werd de MRI+MRSI retrospectief toch positief bevonden.

Van de 847 gescande patiënten zijn er maar 4 fout-negativisten met een T3-stadium, wat reeds een zeer goed resultaat is. Voor deze 4 patiënten met gemiste tumoren werd bovendien een verklaring gevonden. De MRI+MRSI mist dus bijna geen prognostisch slechtere tumoren. Bijna alle gemiste tumoren blijven nog binnen het prostaatkapsel en kunnen dus nog veilig behandeld worden met minder kans op recidief na behandeling en vooruitzicht van een goede overleving.

Deze factor kan eventueel nog verbeterd worden als radiologen meer ervaring hebben met de stadiëring van PCa aan de hand van mpMRI en als de mpMRI technieken nog verder geoptimaliseerd worden. Dankzij hun goede performantie werden MRI-DCE of DWI inmiddels in de stadiëringprotocols opgenomen (40).

2.5 Tijdsinterval

Om het resultaat van de MRI+MRSI het meest correct te kunnen beoordelen, zou het tijdsinterval tussen het uitvoeren van de MRI+MRSI en de histologische diagnose zo kort mogelijk moeten zijn. Indien deze periode langer is, kan de tumor groeien en dus groter zijn dan op het moment van de MRI+MRSI. Vanwege de lagere sensitiviteit van mpMRI voor tumoren met een klein volume (Villers et al.) (56) is het mogelijk dat tumoren schijnbaar werden gemist, maar dat deze nog niet aanwezig waren door het lange tijdsinterval tussen MRI+MRSI en histologische diagnose. Bij de patiëntenselectie in deze studie werden tumoren die 2 jaar na MRI+MRSI ontdekt waren, als nieuw ontstane tumoren beschouwd. Tumoren ontdekt binnen het jaar na MRI+MRSI waren waarschijnlijk al aanwezig op het moment van afname. Dit interval van 2 jaar is ruimer genomen dan wat de meeste auteurs gebruiken; er is reden om aan te nemen dat een interval van meer dan 1 jaar voldoende lang is. In deze studie werden 5 van de 18 gemiste hooggradige tumoren (28%) pas aangetroffen na een interval langer dan 1 jaar.
Gezien dit feit kan men concluderen dat bij een negatief mpMRI vervolgonderzoeken noodzakelijk zijn bij blijvende verdenking (bijv. verhoogde PSA en/of verdacht RT). Dit vervolgonderzoek kan bestaan uit een nieuwe prostaatbiopsie en/of een nieuwe mpMRI. In deze studie werd niet in detail onderzocht of een herhaalde mpMRI nieuw opgetreden tumoren met zekerheid zal detecteren, omdat de 202 vervolgonderzoeken als exclusiecriterium werden gebruikt. Uit een voorlopige evaluatie van deze vervolgonderzoeken uit de database is wel gebleken dat een tussentijdse mpMRI in de meeste gevallen een tumor die pas na meer dan 2 jaar ontstaat wel al kon aantonen (niet-gepubliceerde data).

De factor tijdsinterval is afhankelijk van de snelheid waarmee PCa groeit. De meeste PCa groeien traag groeien, maar dit is voor HG tumoren duidelijk sneller. De ERSPC-studie trachtte het optimale interval voor screening naar IG en HG PCa te bepalen. In de centra die een PSA-test om de 4 jaar uitvoeren, indien nodig gevolgd door biopsie, bleek toch nog een groot aantal PCa met GS 8-10 gedetecteerd te worden bij de tweede en derde PSA-test. In het Göteborg-centrum, het enige centrum met een screeningsinterval van 2 jaar, bleek de detectie van PCa met GS 8-10 stabiel. De onderzoekers stelden vast dat de detectiegraad van PCa met GS 8-10 moeilijk nog verder kon gereduceerd worden tussen de opeenvolgende screeningrondes in het Göteborg-centrum vanwege de reeds lage prevalentie van GS 8-10 (60). Een duidelijk protocol voor actieve opvolging na negatieve mpMRI dient de limiet van het interval voor een herhaalde mpMRI te bepalen. Ervaringen met borstkancerscreening, waarbij om de 2 jaar opnames verricht worden, kunnen mogelijks helpen bij de opmaak van een protocol.

2.6 MRI+MRSI retrospectief

Deze factor werd onderzocht omdat een aantal fout-negatieve te wijten kon zijn aan de foutieve oorspronkelijke beoordeling van de radioloog. De tumor kon daarbij ten onrechte niet gedetecteerd zijn, of kon enkel mits voorkennis herkend worden.

In deze studie waren bij 5 van de 18 patiënten (28%) de HG tumoren wel degelijk zichtbaar op de MRI+MRSI. Voor 44% (8/18) bestond achteraf twijfel over de diagnose. Er restten dus 5 van de 18 patiënten (44%) met gemiste HG tumoren, die werkelijk niet zichtbaar waren; het bleek daarbij te gaan om 4 heel kleine letsels (APD-score 1) en 1 collöide tumor. Wat de LG en IG fout-negatieven betreft, werden bij ongeveer de helft van de patiënten tumoren gemist die retrospectief eveneens niet te zien waren.
Met behulp van praktische guidelines en dankzij toenemende kennis en ervaring van de radiologen, moet het mogelijk zijn het aantal beoordelingsfouten te reduceren in de toekomst. Van de negatieve gevallen zouden er 4 niet gebiopтеerd geweest zijn volgens de oorspronkelijke MRI+MRSI, maar mogelijk wel indien de beelden bekeken werden door iemand met meer ervaring.

De drempelwaarde is eveneens niet onbelangrijk bij twijfelgevallen. Bij het verlagen van de drempel voor een positieve mpMRI kan een zeer hoge gevoeligheid worden bekomen, evenwel ten koste van een lage specificiteit (groter aantal fout-positieve) (47). De bepaling van een ideale drempelwaarde is afhankelijk van de rol die mpMRI moet vervullen. Voor een triage-test is voornamelijk een hoge sensitiviteit en NPV van belang. Indien een triage-test met mpMRI uitgevoerd wordt met een lager gelegen drempelwaarde (twijfel=positief), zoals voorgesteld door Abd-alazeez et al. (61), worden de twijfelgevallen doorgestuurd voor biopsie en de negatieve gevallen niet. De twijfelgevallen in deze studie (8/18) zouden dus geen negatieve impact ondervonden hebben van mpMRI, maar er zou een voordeel geweest zijn omdat een gerichte biopsie kon uitgevoerd worden naar de afwijking gezien op mpMRI.

3. KLINISCHE RELEVANTIE VAN DE GEMISTE TUMOREN

3.1 HOOGGRADIGE PROSTAATTUMOREN

In deze studie werd onderzocht of MRI+MRSI HG PCa kan uitsluiten teneinde overdiagnose en overbehandeling tegen te gaan. Ofschoon MRI+MRSI geen 100% NPV heeft, blijkt uit de bevindingen dat het aantal fout-negatieve HG tumoren minimaal is. Eveneens blijkt dat voor elk van de fout-negatieven een verklaring bestaat en dat er oplossingen bestaan om de gemiste tumoren initiële of op een later tijdstip toch op te sporen. Om een betrouwbare techniek te kunnen zijn, zal mpMRI een zo hoog mogelijke NPV moeten hebben, zonder daardoor aan specificiteit in te boeten. Deze hoge NPV voor IG en HG PCa, bekomen met een drempelwaarde PI-RADS 3 (twijfel=positief), werd recentelijk bevestigd door Thompson et al. (51).

3.2 LAAG- EN INTERMEDIAIR-GRADIGE PROSTAATTUMOREN

Bevindingen van de laatste jaren werpen een ander licht op hoe men kijkt naar LG tumoren. Door de bijna 100% 15-jaarsoverleving en het onvermogen om te metastaseren naar lymfeklieren en weefsels kan men de behandeling van deze tumoren in vraag stellen. Voor PCa met een laag risico werd binnen de National Institutes of Health gepleit om de beladen
term “kanker” niet meer te gebruiken (52). Vanwege het uiterst kleine metastatisch potentieel van LG tumoren concludeerden Donin et al. dat men de detectie van deze tumoren moet trachten te vermijden (62). Het missen van LG tumoren door MRI+MRSI kan dus eerder als een sterkte, als antwoord op de huidige overdiagnosticering en -behandeling, dan als een zwakte worden beschouwd.

Aangezien de IG tumoren, secundair toch een component 4 bevatten, moeten deze onderscheiden worden van LG tumoren. Verder onderzoek naar het belang van het missen van deze tumoren is nodig en tevens dient hiermee rekening te worden gehouden bij het opstellen van een protocol voor implementatie van mpMRI. De definitie van klinisch significante tumor die door de guidelines in de toekomst zal worden gebruikt, zal bepalen of deze tumoren met intermediaire graad wel of niet klinisch significant zijn en dus in principe niet mogen gemist worden.

4. CONCEPT KLINISCH SIGNIFICANTE TUMOR

Door Stamey et al. werd het concept significante/insignificante PCa geïntroduceerd. Een klinisch niet-significante tumor is PCa die gediagnosticeerd is, asymptomatisch is en die zonder behandeling niet leidt tot overlijden. Een nieuwe pathologische definitie, op basis van RP-specimen, werd door Epstein et al. bepaald en is ruim ingeburgerd. Bij RP-specimen van diverse studies varieerde het percentage insignificante PCa tussen 2 en 25% (54). Wolters et al. hebben een belangrijke uitbreiding gemaakt van de Epstein definitie inzake tumorvolume (63). Tabel 6 toont aan dat verschillende definities worden gehanteerd. De klinische definitie, op basis van biopten, van Epstein wordt nog het meest gebruikt, ofschoon voorstanders van AS en mpMRI pleiten wordt voor een herziening.
Tabel 6: Definities van significante/insignificante PCa

<table>
<thead>
<tr>
<th>Pathologische definities</th>
<th>Definitie</th>
<th>Stadium</th>
<th>Gleason-score en volume</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamey et al.</td>
<td>Significante PCa</td>
<td></td>
<td>Tumorvolume > 0,5 cm³</td>
<td>Ploussard et al. (54)</td>
</tr>
<tr>
<td>Epstein et al.</td>
<td>Insignificante PCa</td>
<td>Lokaal (≤pT2)</td>
<td>GS ≤ 6 en geen patroon 4 of 5 en tumorvolume van dominante tumor < 0,5 cm³</td>
<td>Ploussard et al. (54)</td>
</tr>
<tr>
<td>Wolters et al.</td>
<td>Insignificante PCa</td>
<td>Lokaal (≤pT2)</td>
<td>GS ≤ 6 en geen patroon 4 of 5 en volume van dominante tumor < 1,3 cm³ en totaal tumorvolume < 2,5 cm³</td>
<td>Wolters et al. (63)</td>
</tr>
<tr>
<td>Van der Kwast</td>
<td>Insignificante PCa</td>
<td>Lokaal (≤pT2)</td>
<td>Uitbreiding definitie: insignificante PCa mag een tertiair patroon 4 < 5% van het tumorvolume bevatten</td>
<td>Van der Kwast (64)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klinische definities</th>
<th>Definitie</th>
<th>Stadium</th>
<th>Gleason-score en volume</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epstein et al.</td>
<td>Insignificante PCa</td>
<td>Lokaal (≤cT2)</td>
<td>PSAD ≤ 0,15 ng/ml per gram en GS ≤ 6 en < 3 positieve cilinders en < 50% PCa ingenomen in elke cilinder</td>
<td>Ploussard et al. (54)</td>
</tr>
<tr>
<td>University College London (definitie 1)</td>
<td>Significante PCa</td>
<td></td>
<td>GS ≥ 4+3 en/of maximale kankerlengte in cilinder ≥ 6 mm</td>
<td>Abd-Alazeez et al. (48)</td>
</tr>
<tr>
<td>University College London (definitie 2)</td>
<td>Significante PCa</td>
<td></td>
<td>GS ≥ 3+4 en/of maximale kankerlengte in cilinder ≥ 4 mm</td>
<td>Abd-Alazeez et al. (48)</td>
</tr>
<tr>
<td>European Consensus Meeting (2009)</td>
<td>Significante PCa</td>
<td></td>
<td>GS ≥ 4+4 en/of tumorvolume ≥ 0,2 cm³</td>
<td>Dickinson et al. (65)</td>
</tr>
<tr>
<td>European Consensus Meeting (2009)</td>
<td>Significante PCa</td>
<td></td>
<td>GS ≥ 4+3 en/of tumorvolume ≥ 0,5 cm³</td>
<td>Dickinson et al. (65)</td>
</tr>
<tr>
<td>European Consensus Meeting (2009)</td>
<td>Significante PCa</td>
<td></td>
<td>Tumorvolume ≥ 0,2 cm³</td>
<td>Dickinson et al. (65)</td>
</tr>
<tr>
<td>European Consensus Meeting (2009)</td>
<td>Significante PCa</td>
<td></td>
<td>Tumorvolume ≥ 0,5 cm³</td>
<td>Dickinson et al. (65)</td>
</tr>
<tr>
<td>Haffner et al.</td>
<td>Significante PCa</td>
<td></td>
<td>kankerlengte > 5 mm en/of GS patroon > 3</td>
<td>Haffner et al. (66)</td>
</tr>
</tbody>
</table>

5. IMPLICATIES VOOR DE KLINISCHE PRAKTIJK

De guidelines erkennen de waarde van mpMRI, maar beperken de rol ervan inzake screening, detectie en diagnose omdat nog bijkomend onderzoek omtrent de performantie nodig is. Inmiddels verschijnen alsmaar meer studies die belangrijke nadelen bevestigen van de huidige gouden standaard, namelijk histologische diagnose op basis van echogeleide biopsie. Deze omvatten de bijwerkingen van biopsieën en foute inschatting van twee voornaam prognostische indicatoren: de GS en het tumorvolume. Bovendien worden met transrectale biopsie niet alle klinisch significante tumoren ontdekt.
Uit de resultaten blijkt dat MRI+MRSI een heel goede negatieve predictieve waarde heeft, dat de weinige tumoren die gemist worden bijna allemaal heel erg klein zijn en dat voor de andere fout-negatieven een andere afdoende verklaring bestaat waarom ze gemist werden. Op basis hiervan kan bijna met zekerheid gesteld worden dat technisch goed uitgevoerde MRI+MRSI, dat beoordeeld wordt door een ervaren radioloog, nagenoeg geen klinisch significante tumoren mist.

5.1 mpMRI als triage-test

De vooralsnog lage positief voorspellende waarde van de test impliceert dat mpMRI niet gebruikt kan worden om tot een betrouwbaar besluit te komen omtrent de aanwezigheid van PCa (61). mpMRI wordt wel voorgesteld als triage- en detectietest om significante PCa uit te sluiten (50, 58). De huidige aanpak heeft overbehandeling bij patiënten met insignificante PCa tot gevolg. De techniek van mpMRI zou de pre- en post-biopsie detectie van klinisch significante PCa kunnen verhogen. In het geval van matig verhoogd PSA, normaal RT, geen familiale voorgeschiedenis voor PCa en een normale mpMRI kan de biopsie uitgesteld worden aan de hand van verdere monitoring met PSA en RT (50).

Op deze manier kan men onnodige biopsieën vermijden en overbehandeling tegengaan bij laag-risico patiënten. Implementatie van mpMRI als triage-test zal ook de gevoeligheid van de initiële biopsie voor intermediair- en hooggradige tumoren verhogen, het aantal cilinders per biopsie verminderen en een meer accurate beoordeling van Gleason-graad en tumorvolume toelaten. Bovendien kan een mpMRI de afwezigheid van HG PCa bepalen bij patiënten met een hoge PSA, maar een beperkte levensverwachting of verschillende negatieve biopsieën (50).

5.2 Rol in actieve opvolging

Ongeveer een derde van de nieuw gedetecteerde PCa maakt deel uit van de groep laag-risico tumoren (29). AS wordt de jongste jaren zeer vaak als therapeutische optie gekozen voor deze tumoren en zal in de toekomst wellicht nog veel aan belang winnen. mpMRI kan een bijdrage leveren voor problemen die zich kunnen stellen bij de selectie en opvolging van deze patiënten. Na een eventuele wachtijd van 6-8 weken teneinde de kans op post-biopsie artefacten te verlagen, volgt een mpMRI om de resultaten van de initiële biopsie te verfijnen wat betreft tumorvolume en graad. Een voorwaarde om een AS programma te volgen, is dat er geen HG tumor mag aanwezig zijn. Een negatieve mpMRI kan dus als extra voorwaarde
geïmplementeerd worden vooraleer AS als therapeutische optie voorgesteld wordt.

mpMRI kan daarenboven klinische significante tumoren in de anterieure prostaat detecteren die mogelijk gemist werden met biopsie. Ofschoon AS een antwoord biedt op overbehandeling van laaggradige tumoren, moeten de patiënten regelmatig transrectale biopsieën ondergaan die ernstige bijwerkingen kunnen hebben. Tijdens de AS-periode kunnen repetitieve mpMRI onderzoeken de afwezigheid van HG tumor bevestigen of eventueel morfológische veranderingen aantonen. Geruststellende mpMRI’s kunnen zo de frequentie van de herhaalde biopsie uitstellen (50).

5.3 Opportunistische screening voor prostaatkanker

Voor de opportunistische screening wordt een biomerker gebruikt, meestal PSA. Op basis van de bevindingen van deze studie kan de vraag worden gesteld of het zinvol is een aanvullende mpMRI uit te voeren. Bijkomend onderzoek zou gevoerd kunnen worden om na te gaan of de verhoging van de kostprijs, die de mpMRI met zich meebrengt, gecompenseerd kan worden door een daling van het aantal biopsieën.

6. BEPERKINGEN EN TOEKOMSTPERSPECTIEVEN

6.1 Beperkingen

Het aandeel patiënten zonder PCa in de patiëntenpopulatie van deze studie was kleiner dan wat normaal voorkomt in een klinische setting op basis van verhoogd PSA en/of verdacht RT. Dit valt vooral te verklaren gezien in deze studie ook een groep patiënten met reeds bewezen PCa is opgenomen. De hogere prevalentie van PCa in de patiëntenpopulatie kan daardoor tot een lagere NPV hebben geleid.

Een beperking van menige studie rond de diagnose van PCa is de transrectale biopsie als referentiestandaard. GS op biopsie kan verschillen ten opzichte van RP door inconsistentie in pathologische interpretatie, aantal cilinders, bemonsteringsfouten en hoeveelheid PCa in het biopsiemateriaal. De GS zou in 30% worden onderschat en in 7% overschat (49). Aangezien in deze studie de tumoren ingedeeld werden in graadklassen, was het mogelijk dat patiënten daardoor in een te lage klasse werden ondergebracht. Dit zou een invloed kunnen gehad hebben op de 29 fout-negatieven met een mogelijk onderschatte GS 3+4 en de 74 fout-negatieven met een mogelijk onderschatte GS 3+3.
De follow-up van 2 jaar was een sterkte in vergelijking met andere studies, maar hield ook een beperking in. Theoretisch gezien kan de afwezigheid van PCa enkel met zekerheid uitgesloten worden door een RP. Een negatieve biopsie kan wel geruststelling geven, maar geen uitsluitend bieden voor de afwezigheid van PCa. Daarom werd in deze studie gecoördineerd voor een langdurige klinische opvolging door middel van PSA-bepalingen. Afhankelijk van de PSA-evolutie werd al dan niet een nieuwe biopsie uitgevoerd. Een patiënt met gestegen PSA en een negatieve biopsie werd nooit ‘kankervrij’ verklaard, maar strikt opgevolgd. Dit kan geleid hebben tot fout-positieve, waarbij de tumor niet ontdekt werd ondanks een positieve MRI+MRSI, en tot fout-negatieve, waarbij de tumor niet ontdekt werd en de MRI+MRSI ook negatief was. Gezien de lange follow-up tijd van 2 jaar en de wetenschap dat de meerderheid van HG tumoren snel stijgende PSA-waarden veroorzaakt, lijkt een significante impact op de NPV niettemin hoogst onwaarschijnlijk. Naar analogie met borstkankerscreening werd een negatieve MRI+MRSI als echt-negatief beschouwd voor tumoren die na dit interval gedetecteerd werden.

Een bijkomende beperking was de voorkennis van de radioloog bij de MRI+MRSI bij een subgroep van de patiëntenpopulatie, met name bij de patiënten die radiotherapie zouden krijgen. Uitzonderlijk veel patiënten worden naar het UZG doorverwezen voor primaire RTher voor PCa. Patiënten met uitgebreide, inoperabele tumoren werden niet uitgesloten uit de onderzoeksgroep om geen vertekend beeld te krijgen over de gevoeligheid van MRI+MRSI. Dergelijke tumoren konden immers hoogstwaarschijnlijk goed gedetecteerd worden. Bij deze patiënten vond de biopsie plaats voor de MRI+MRSI. De radioloog had voorkennis van het bestaan van een tumor, maar was vaak niet op de hoogte van het exacte APD-resultaat op het moment van de MRI+MRSI.

mpMRI wordt volgens de ESUR gedefinieerd als de combinatie van een morfologische MRI (T2WI) met minstens twee functionele MRI-technieken (DCE, DWI en/of MRSI). De MRI-scans in deze studie hield een combinatie van T2WI+DWI+MRSI in, maar aangezien de kwaliteit van de DWI toen nog onvoldoende hoog was, werd dit in de huidige studie beperkt tot MRI+MRSI. Voor de meeste onderzoeken in deze studie werd eveneens geen dynamisch contrastonderzoek uitgevoerd. Dit had de sensitiviteit kunnen verhogen, met nog minder gemiste tumoren tot gevolg. De reden om geen dynamisch contrastonderzoek te doen was dat deze techniek toen nog niet zo goed ontwikkeld was. De gegevens dateren immers van een aantal jaren geleden, hetgeen inherent is aan een voldoende lange follow-up (minstens 2 jaar) na de MRI+MRSI.
6.2 Toekomstperspectieven

Deze studie opent perspectieven voor verder onderzoek. Het is aangewezen dat een dergelijke analyse uitgevoerd wordt door verschillende centra en ook bij patiënten die gescand zijn op een 3T MRI met inbegrip van DCE en DWI. Een alternatief voor een lange follow-up is de transperineale biopsie als diagnostisch middel. Aangezien het merendeel van de gemiste HG tumoren in deze studie uit een klein volume bestond, is het nuttig dat bijkomend onderzoek meer duidelijkheid brengt over hun verloop. Ten slotte is er nood aan onderzoek voor het herdefiniëren van klinisch significante prostaatkanker.
V. CONCLUSIE

Een negatieve MRI+MRSI sluit het optreden van een klinisch significant prostaatcarcinoom binnen de twee jaar nagenoeg volledig uit. Het heeft een NPV van 95% voor hooggradig PCa. De tumoren die toch gemist worden hebben voor resp. 15%, 24% en 61% een hoge, intermediaire en lage graad en vertonen in 97% van de gevallen geen tumoruitbreiding buiten de prostaat. Door het bevestigen van de afwezigheid van een HG PCa kan MRI+MRSI een rol spelen bij de triage voor prostaatbiopsie en de keuze voor “active surveillance” ondersteunen bij patiënten met een LG PCa.
VI. REFERENTIES

MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI+spectroscopie?

MR-beeldvorming van de prostaat: welke tumoren worden gemist met MRI-spectroscopie?
BIJLAGEN

Bijlage 1: TNM (Tumor Node Metastasis) classificatie voor PCa (2009)

T - Primary tumour

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumour cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumour</td>
</tr>
<tr>
<td>T1</td>
<td>Clinically inapparent tumour not palpable or visible by imaging</td>
</tr>
<tr>
<td>T1a</td>
<td>Tumour incidental histological finding in 5% or less of tissue resected</td>
</tr>
<tr>
<td>T1b</td>
<td>Tumour incidental histological finding in more than 5% of tissue resected</td>
</tr>
<tr>
<td>T1c</td>
<td>Tumour identified by needle biopsy (e.g. because of elevated prostate-specific antigen [PSA] level)</td>
</tr>
<tr>
<td>T2</td>
<td>Tumour confined within the prostate</td>
</tr>
<tr>
<td>T2a</td>
<td>Tumour involves one half of one lobe or less</td>
</tr>
<tr>
<td>T2b</td>
<td>Tumour involves more than half of one lobe, but not both lobes</td>
</tr>
<tr>
<td>T2c</td>
<td>Tumour involves both lobes</td>
</tr>
<tr>
<td>T3</td>
<td>Tumour extends through the prostatic capsule</td>
</tr>
<tr>
<td>T3a</td>
<td>Extracapsular extension (unilateral or bilateral) including microscopic bladder neck involvement</td>
</tr>
<tr>
<td>T3b</td>
<td>Tumour invades seminal vesicle(s)</td>
</tr>
<tr>
<td>T4</td>
<td>Tumour is fixed or invades adjacent structures other than seminal vesicles: external sphincter, rectum, levator muscles, and/or pelvic wall</td>
</tr>
</tbody>
</table>

N - Regional lymph nodes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

M - Distant metastasis

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
<tr>
<td>M1a</td>
<td>Non-regional lymph node(s)</td>
</tr>
<tr>
<td>M1b</td>
<td>Bone(s)</td>
</tr>
<tr>
<td>M1c</td>
<td>Other site(s)</td>
</tr>
</tbody>
</table>

1 Tumour found in one or both lobes by needle biopsy, but not palpable or visible by imaging, is classified as T1c.
2 Invasion into the prostatic apex, or into (but not beyond) the prostate capsule, is not classified as pT3, but as pT2.
3 Metastasis no larger than 0,2 cm can be designated pN1 mi.
4 When more than one site of metastasis is present, the most advanced category should be used.
Prognostic grouping

<table>
<thead>
<tr>
<th>Group</th>
<th>T1a-c</th>
<th>N0</th>
<th>M0</th>
<th>PSA < 10</th>
<th>Gleason ≤6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
<td>PSA < 10</td>
<td>Gleason ≤6</td>
</tr>
<tr>
<td>Group IIA</td>
<td>T1a-c</td>
<td>N0</td>
<td>M0</td>
<td>PSA < 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1a-c</td>
<td>N0</td>
<td>M0</td>
<td>PSA ≥ 10 < 20</td>
<td>Gleason ≤6</td>
</tr>
<tr>
<td></td>
<td>T2a-b</td>
<td>N0</td>
<td>M0</td>
<td>PSA < 20</td>
<td></td>
</tr>
<tr>
<td>Group IIb</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
<td>Any PSA</td>
<td>Any Gleason</td>
</tr>
<tr>
<td></td>
<td>T1-2</td>
<td>N0</td>
<td>M0</td>
<td>PSA ≥ 20</td>
<td>Any Gleason</td>
</tr>
<tr>
<td></td>
<td>T1-2</td>
<td>N0</td>
<td>M0</td>
<td>Any PSA</td>
<td>Gleason ≥8</td>
</tr>
<tr>
<td>Group III</td>
<td>T3a-b</td>
<td>N0</td>
<td>M0</td>
<td>Any PSA</td>
<td>Any Gleason</td>
</tr>
<tr>
<td>Group IV</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
<td>Any PSA</td>
<td>Any Gleason</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
<td>Any PSA</td>
<td>Any Gleason</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N M1</td>
<td>Any PSA</td>
<td>Any Gleason</td>
<td></td>
</tr>
</tbody>
</table>

Note: When either PSA or Gleason is not available, grouping should be determined by cT category and whichever of either PSA of Gleason is available. When neither is available prognostic grouping is not possible, use stage grouping.

Overgenomen uit: (9)
Bijlage 2: De gemiste intermediair-gradige tumoren

<table>
<thead>
<tr>
<th>Patiënt</th>
<th>APD-score</th>
<th>Type tumor</th>
<th>T-stadium</th>
<th>Tijdsinterval (dagen)</th>
<th>MRI-retrospectief</th>
<th>Kwaliteit MRSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-21</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>13</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>95</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-48</td>
<td>Positief</td>
<td>Slecht</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>36</td>
<td>Positief</td>
<td>Slecht</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-60</td>
<td>Twijfel</td>
<td>Slecht</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>328</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>73</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>56</td>
<td>Twijfel</td>
<td>Slecht</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>Acinair</td>
<td>1c</td>
<td>-44</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>4</td>
<td>Positief</td>
<td>Slecht</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>9</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>455</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>Acinair</td>
<td>3a</td>
<td>90</td>
<td>Positief</td>
<td>Matig</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>Acinair</td>
<td>1c</td>
<td>0</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>610</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>35</td>
<td>Positief</td>
<td>Matig</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>11</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>96</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>482</td>
<td>Positief</td>
<td>Slecht</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>347</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>46</td>
<td>Twijfel</td>
<td>Slecht</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>Acinair</td>
<td>2c</td>
<td>18</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>Acinair</td>
<td>1c</td>
<td>-23</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>406</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>65</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-16</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>69</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>55</td>
<td>Positief</td>
<td>Goed</td>
</tr>
</tbody>
</table>

Grijs: kan verklaren waarom de tumor gemist werd op MRI+MRSI
Bijlage 3: De gemiste laaggradige tumoren

<table>
<thead>
<tr>
<th>Patiënt</th>
<th>APD-score</th>
<th>Type tumor</th>
<th>T-stadium</th>
<th>Tijdsinterval (dagen)</th>
<th>MRI-retrospectief</th>
<th>Kwaliteit MRSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Acinair</td>
<td>2a</td>
<td>-23</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>14</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>52</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>110</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>-10</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>50</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>22</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Acinair</td>
<td>2b</td>
<td>15</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-41</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>Acinair</td>
<td>2b</td>
<td>-82</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-61</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-96</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-56</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>-73</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>-73</td>
<td>Positief</td>
<td>Slecht</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-49</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-81</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>117</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>46</td>
<td>Twijfel</td>
<td>Matig</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>42</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-49</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-44</td>
<td>Positief</td>
<td>Slecht</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>Acinair</td>
<td>2c</td>
<td>6</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-11</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>557</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-94</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>Acinair</td>
<td>2c</td>
<td>324</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>57</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-57</td>
<td>Positief</td>
<td>Matig</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>136</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-65</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>Acinair</td>
<td>1b</td>
<td>66</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-68</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-46</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>307</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>36</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-64</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-29</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-40</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>Acinair</td>
<td>1c</td>
<td>-27</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>Acinair</td>
<td>2b</td>
<td>7</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>41</td>
<td>5</td>
<td>Acinair</td>
<td>3a</td>
<td>461</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>7</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-51</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>11</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-13</td>
<td>Twijfel</td>
<td>Matig</td>
</tr>
<tr>
<td>46</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>201</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>Patiënt</td>
<td>APD-score</td>
<td>Type tumor</td>
<td>T-stadium</td>
<td>Tijdsinterval (dagen)</td>
<td>MRI-retrospectief</td>
<td>Kwaliteit MRSI</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>47</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>166</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>Acinair</td>
<td>2c</td>
<td>-83</td>
<td>Negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>49</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>25</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>Acinair</td>
<td>1c</td>
<td>-32</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-26</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>52</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-36</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>53</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>50</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>Acinair</td>
<td>2a</td>
<td>-89</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>Acinair</td>
<td>2a</td>
<td>65</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-38</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>57</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-100</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>58</td>
<td>4</td>
<td>Acinair</td>
<td>1c</td>
<td>-97</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>59</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>34</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-40</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-79</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>8</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-41</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>64</td>
<td>3</td>
<td>Acinair</td>
<td>1c</td>
<td>-53</td>
<td>Twijfel</td>
<td>Slecht</td>
</tr>
<tr>
<td>65</td>
<td>5</td>
<td>Acinair</td>
<td>1c</td>
<td>-52</td>
<td>Twijfel</td>
<td>Slecht</td>
</tr>
<tr>
<td>66</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>-13</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>67</td>
<td>2</td>
<td>Acinair</td>
<td>2a</td>
<td>-41</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>5</td>
<td>Twijfel</td>
<td>Matig</td>
</tr>
<tr>
<td>69</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>-47</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>Acinair</td>
<td>1c</td>
<td>-66</td>
<td>Negatief</td>
<td>Goed</td>
</tr>
<tr>
<td>71</td>
<td>3</td>
<td>Acinair</td>
<td>2a</td>
<td>645</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>72</td>
<td>5</td>
<td>Acinair</td>
<td>2c</td>
<td>62</td>
<td>Positief</td>
<td>Goed</td>
</tr>
<tr>
<td>73</td>
<td>1</td>
<td>Acinair</td>
<td>2a</td>
<td>38</td>
<td>Twijfel</td>
<td>Goed</td>
</tr>
<tr>
<td>74</td>
<td>1</td>
<td>Acinair</td>
<td>1c</td>
<td>-43</td>
<td>Negatief</td>
<td>Slecht</td>
</tr>
</tbody>
</table>

Grijs: kan verklaren waarom de tumor gemist werd op MRI+MRSI