KLINISCHE GEVOLGEN VAN SELENIUMDEFICIËNTIE EN -TOXICITEIT BIJ HONDEN

door

Nicole CROES

Promotor: Ir. Mariëlle van Zelst
Medepromotor: Prof. dr. Myriam Hesta

Literatuurstudie in het kader
van de Masterproef
Universiteit Gent, haar werknemers of studenten bieden geen enkele garantie met betrekking tot de juistheid of volledigheid van de gegevens vervat in deze masterproef, noch dat de inhoud van deze masterproef geen inbreuk maakt op of aanleiding kan geven tot inbreuken op de rechten van derden. Universiteit Gent, haar werknemers of studenten aanvaarden geen aansprakelijkheid of verantwoordelijkheid voor enig gebruik dat door iemand anders wordt gemaakt van de inhoud van de masterproef, noch voor enig vertrouwen dat wordt gesteld in een advies of informatie vervat in de masterproef.
KLINISCHE GEVOLGEN VAN SELENIUMDEFICIËNTIE EN -TOXICITEIT BIJ HONDEN

door

Nicole CROES

Promotor: Ir. Mariëlle van Zelst

Medepromotor: Prof. dr. Myriam Hesta

Literatuurstudie in het kader van de Masterproef
VOORWOORD

Hierbij wil ik graag iedereen bedanken die geholpen heeft met het realiseren van deze masterproef.

Speciale dank gaat uit naar mijn promotoren voor hun tijd, steun en controle. Aangezien ik nog nooit een literatuurstudie had geschreven waren hun tips en aanwijzingen onmisbaar en een goede houvast.

Daarnaast wil ik mijn familie bedanken voor hun onvoorwaardelijke steun en de mogelijkheid die zij mij hebben geboden om diergeneeskunde te studeren.

En niet te vergeten mijn vrienden voor hun praktische hulp in de vorm van verbetering van de spelling, lay out en de opbouw. En daarnaast dat zij altijd een luisterend oor boden in stress momenten en voor de nodige ontspanning zorgden.
INHOUD

SAMENVATTING ... 1
INLEIDING .. 2
LITERATUURSTUDIE .. 3
 1. SKELETSPIEREN EN HART- EN VAATZIEKTEN ... 3
 2. NEOPLASIE ... 5
 3. SCHILDKLIER ... 7
 4. REPRODUCTIE ... 8
 4.1. Vrouwelijk ... 8
 4.2. Mannelijk ... 9
 5. IMMUUNFUNCTIE .. 10
 6. HERSENEN EN GEDRAG ... 11
 7. VACHT EN HUID ... 12
 8. SELENOSIS ... 13
BESPREKING .. 15
REFERENTIELIJST ... 16
SAMENVATTING

In deze literatuurstudie worden de mogelijke klinische gevolgen besproken van een seleniumtekort of -intoxicatie bij de hond. Doordat selenium op verschillende organen en cellen inwerkt geeft een te hoge of te lage inname een verscheidenheid aan symptomen.

Eén van de belangrijkste functies van selenium is haar antioxidante werking en daarmee de bescherming van cellen (Wedekind, 2003). Bij seleniumdeficiëntie uit dit zich onder andere in beschadigingen van de spieren en het hart, wat ook al bekend was bij vee onder de naam witte spierziekte (Manktelow, 1963).

Selenium is nodig voor een normale schildklierwerking omdat enzymen die de schildklierhormonen kunnen activeren of deactiveren selenium nodig hebben om hun taak te kunnen uitvoeren (Braverman, 1994; Kohrle et al., 2005; Papp et al., 2007). Daarnaast beïnvloedt selenium de tumorontwikkeling (Chiang et al., 2010), kan het een negatieve werking op de reproductie hebben (Bedwal en Bahuguna, 1994; Behne et al., 1996) en daalt de immuunfunctie bij een te lage inname, wat dieren meer vatbaar maakt voor ziekten (Rayman, 2000). Bij mensen en ratten is uit onderzoeken naar voren gekomen dat selenium belangrijk is in de hersenen en bij het gedrag (Ramaekers et al., 1994; Finley en Penland, 1998). Ook wordt er een verminderde haargroei waargenomen bij zowel seleniumdeficiëntie als –intoxicatie (Yu et al., 2005).

Uit experimenten is gebleken dat honden met seleniumdeficiëntie symptomen kunnen vertonen van spierzwakheid, subcutaan oedeem, anorexie, depressie, dyspnee en uiteindelijk coma gevolgd door de dood (Van Vleet, 1975).

Seleniumintoxicatie wordt gekenmerkt door misselijkheid, overgeven, diarree, voedselweigering en afvallen, anorexie, groeistop, haarverlies en neurologische veranderingen (Simcock, 2004).
INLEIDING

De biologische beschikbaarheid, de hoeveelheid ingenomen selenium die geabsorbeerd wordt en beschikbaar is voor het lichaam, is hoger voor de organische vormen van selenium dan voor de anorganische vormen. De organische vormen worden actief opgenomen in het gastro-intestinaal stelsel terwijl de anorganische via passief transport worden opgenomen (Todd, 2012). Hierdoor lopen dieren die anorganisch selenium gesupplementeerd krijgen toch nog het risico om deficiëntieletsels te ontwikkelen (Sharadamma, 2011).

Selenium is vooral terug te vinden in paranoten, vlees, vis (vooral tonijn bevat hoge concentraties), dierlijke producten en granen (Rayman, 2000). In commerciële hondenvoeding is de meest gebruikte seleniumvorm sodiumseleniet of –selenaat (Sharadamma, 2011).

De F.E.D.I.A.F. - European Pet Food Industry Federation adviseert als minimale inname voor de volwassen hond 17,9 µg/MJ ME. Bij drachtige honden is het minimum op 20,9 µg/MJ ME gesteld. Voor pups is de minimale inname eigenlijk vastgesteld lager vastgesteld, maar voor de zekerheid en om problemen te voorkomen wordt dezelfde richtlijn aangehouden als voor drachtige honden. De maximale inname werd bepaald op 33,9 µg/ MJ ME, dit geldt voor alle levensfasen (FEDIAF, 2012). De cumulatieve toxische dosis van selenium voor de hond is niet bekend, deze is onder andere afhankelijk van de hoeveelheid en frequentie van inname en de biologische beschikbaarheid van het selenium in de voeding (Turk, 1980).

Honden met seleniumdeficiëntie kunnen symptomen vertonen van spierzwakheid, subcutaan oedeem, anorexie, depressie, dyspneu en uiteindelijk coma gevolgd door de dood.

Seleniumintoxicatie wordt gekenmerkt door misselijkheid, overgeven, diarree, voedselweigering en afvallen, anorexie, groeistop, haarverlies en neurologische veranderingen (Simcock, 2004).
LITERATUURSTUDIE

1. SKELETSPIEREN EN HART- EN VAATZIEKTEN

Selenium is een belangrijk onderdeel van het enzym glutathion-peroxidase (GPx). GPx zorgt voor de omzetting van waterstofperoxide naar water, gaat de oxidatieve verandering van vetten tegen en blokkeert op deze twee manieren het ontstaan van vrije radicalen (Papp et al., 2007). Vrije radicalen veroorzaken schade aan cellen, vetten (en hierdoor membranen), eiwitten en DNA. Door deze aangebrachte schade aan het lichaam zijn vrije radicalen mede verantwoordelijk voor een groot aantal ziektes en het verouderen van het lichaam. Actieve weefsels zoals de hartspier zijn gepredisponeerd om sneller dan andere weefsels oxidatieve stress te ondergaan omdat ze meer energie verbruiken en dus meer afvalstoffen produceren, waaronder vrije radicalen (Juniper et al., 2009). Daarnaast is bij oudere dieren aangetoond dat er een toegenomen gevoeligheid is van het hart voor pathofysiologische situaties, zoals oxidatieve beschadiging (Boucher et al., 1998; Tanguy et al., 2000).

In geval van seleniumdeficiëntie is er een verhoging van waterstofperoxide wat het enzym prostacycline-synthetase inhibeert. Prostacycline-synthetase zorgt voor de productie van het vasodilaterende prostacycline door de endotheelcellen en stimuleert daarnaast juist de productie van thromboxaan dat geassocieerd is met bloedplaatjesaggregatie en vasoconstrictie (Néve, 1996). Er is bekend dat er bij onevenwichtigheid tussen thromboxaan en prostacycline meer risico is op hart en vaatziekten.

Er zijn bij honden enkele gevallen beschreven uit de praktijk die grote gelijkenissen hebben met nutritionele spierdystrofie en daarnaast zijn er enkele experimenten uitgevoerd om dit bij honden te induceren.
Meier (1958) beschreef een klinisch geval van een 10 dagen oude pup waar waarschijnlijk door vitamine E of selenium tekort een aantasting van de spieren was ontstaan. Vooral de tong-, nek- en schouderspieren waren aangetast. Ook de intercostaal spieren, het diafragma en de hartspier waren hierbij betrokken maar in mindere mate.

Manktelow (1963) maakte de vergelijking tussen myopathie bij honden en de witte spierziekte bij schapen. Hij beschreef een geval van een 2 jaar oude collie die het gebruik van de achterpoten was verloren en de volgende dag totaal niet meer kon opstaan en verward overkwam. Op histologisch onderzoek bleek dat vrijwel alle spieren necrose hadden ondergaan en bij een klein aantal vezels was een beginnende calcificatie terug te vinden.

Van Rensburg en Venning (1979) beschreven een casus van een overleden 7 weken oude boxerpup. De pup was de kleinste van het nest en had een verleden van moeilijke ademhaling, kolkhalzen en soms overgeven. Er waren geen tekenen van spierzwakte waargenomen. Op autopsie werd ernstig longoedeem terug gevonden en degeneratie en calcificatie van het linkerventriculair myocard. De waargenomen letsels bewezen niet dat de pup was overleden door seleniumdeficiëntie, maar de letsels waren zeer gelijk aan de letsels terug gevonden bij dieren die leden aan witte spierziekte.

Bij een experiment van Van Vleet (1975) ontwikkelden twee honden die op een selenium- en vitamine E-arm dieet waren gezet na 40 tot 60 dagen symptomen. De progressief verlopende symptomen waren spierzwakte (net als bij de case beschreven door Manktelow, begon dit in de achterpoten), subcutaan oedeem, anorexie, depressie, dyspneu en uiteindelijk coma. Daarnaast werd er een gestegen plasma-activiteit van creatinine-fosfokinase (GPK) en aspartaat-aminotransferase (ASAT) gevonden. Een gestegen ASAT waarde kan onder andere veroorzaakt worden door spierschade. GPK is een enzym dat voorkomt in de hersenen, het hart en de skeletspieren. Bij schade van één van deze organen zal de GPK in het bloed stijgen. Aangezien er bij seleniumdeficiëntie op autopsie zowel necrose van de skeletspieren als van de hartspier werd teruggevonden is dit een ver klaarbare stijging. De honden in het experiment die selenium of vitamine E gesupplementeerd kregen, vertoonden geen symptomen.

Dus bij een te lage seleniuminname kan een verhoogde oxidatieve stress spierbeschadigingen veroorzaken van zowel de dwarsgestreepte spiercellen waardoor spierzwakte ontstaat, als van de hartspier waardoor sterfte kan voorkomen.
2. NEOPLASIE

Sinds 1970 hebben studies aangetoond dat er een link bestaat tussen het seleniumniveau en de incidentie en mortaliteit van kanker (Diplock, 1994; Sunde et al., 1997; Allan et al., 1999). Bij een onderzoek door The Nutritional Prevention of Cancer (NPC) op mensen met een geschiedenis van huidkanker, in de vorm van een basaalcel- of een plaveiselcel-carcinoma, werd er geen effect gevonden op niet-melanoom huidkanker. Er was een niet significant verschil tussen de groep mensen die elke dag 200 µg selenium kregen vergeleken met degene di een placebo kregen voor de totale kanker mortaliteit (50% minder) en een significant verschil voor de kancerincidentie (37% afname). Er werd 63% minder prostaatkanker, 58% minder colonkanker en 46% minder longkanker waargenomen bij de selenium gesupplementeerde groep. Het grootste verschil was te zien bij de groep mensen met een laag seleniumgehalte in het plasma (106 µg/L) bij aanvang van het onderzoek, seleniumsupplementatie verminderde bij deze groep het risico op kanker met 48%. Andere onderzoeken toonden aan dat selenium een beschermend effect heeft bij onder andere huid-, borst- en colonkanker (Papp et al., 2007). Seleniumdeficiëntie (plasma selenium level ≈ 1 µmol/L, bij de mens) geeft een verhoogd risico op sterfte ten gevolge van slokdarm- en maagkanker (Wei, 2004).

Een tumor kan ontstaan doordat cellen aan hun geprogrammeerde celdood ontsnappen en mogelijk kunnen prolifereren in tumoren. Sep 15 is een selenoproteïne dat invloed heeft op de geprogrammeerde celdood, apoptose genaamd. Een verlaagde concentratie van Sep 15 ten gevolge van verminderde seleniumopname kan het begin zijn van een kwaadaardige celverandering gezien het mogelijk is voor de cellen om aan hun geprogrammeerde dood te ontsnappen en te prolifereren in tumoren (Papp et al., 2007).

Chiang et al. (2010) onderzochten de invloed van een dagelijkse seleniumsupplementatie, in de vorm van selenomethionine, op het risico op prostaatkanker bij de hond. Uit het onderzoek bleek dat de anti-kanker effecten van selenium niet-lineair dosisafhankelijk zijn maar dat de dosis-respons-afhankelijke grafiek tussen de seleniumstatus en DNA-beschadiging van de prostaat een U-vorm heeft. Cellen met DNA-beschadiging hebben een verhoogd risico op transformatie in tumorcellen. De honden met een matig seleniumniveau (concentratie van 0.67 - 0.92 ppm in nagels) hadden 84% minder kans op een hoge DNA-beschadiging van de prostaat in vergelijking met honden met een laag seleniumgehalte (<.67 ppm). Er werd geen significant verschil gevonden tussen de grootte van de DNA-beschadiging bij honden met een laag seleniumniveau en honden met een hoog niveau (> .92 ppm). Ook de grafiek tussen het seleniumniveau in de nagels en de hoeveelheid apoptose bleek een U-vorm te hebben. Apoptose wordt onderdrukt bij kanker. Een verhoogde apoptose is nuttig voor het zuiveren van beschadigde cellen en wordt daarom gezien als een homeostatische schoonmaak. De hoeveelheid apoptose was bij honden met een matig seleniumniveau (0.67 - 0.92 ppm) significant hoger dan bij de honden met een laag (<.67 ppm) of hoog seleniumgehalte (> .92 ppm). Het onderzoek van Chiang et al. (2010) neemt aan dat de homeostatische schoonmaak de belangrijkste reden is voor de anti-kanker werking van selenium. De homeostatische schoonmaak stimuleert eerder apoptose in de beschadigde cellen dan in de niet-beschadigde cellen.
Figuur 1 (Chiang et al., 2010) laat zien dat seleniumsupplementatie niet altijd een beschermend effect heeft. Hieruit blijkt dat dieren met een laag selenium level (zone 1) baat hebben bij seleniumsupplementatie omdat de honden te weinig selenium hebben om selenoenzymen op een normaal niveau te houden. Bij supplementatie van deze groep stijgt de GPX expressie, die met zijn antioxidante werking beschermt tegen DNA beschadigingen. De zone 2 groep heeft een seleniumniveau dat voldoende is voor een maximale antioxidante werking. Toch geeft seleniumsupplementatie bij deze groep een anti-kanker werking. Deze anti-kanker werking ontstaat doordat de seleniumsupplementatie zorgt dat deze groep in een matig seleniumniveau terecht komt en dit zorgt voor een optimale homeostatische schoonmaak.

Supplementatie bij dieren die al op een goed niveau van selenium zitten veroorzaakt dus een te hoog seleniumgehalte. Bij een te hoog seleniumgehalte is de totale incidentie van de kans op kanker 88% gestegen vergeleken met individuen van de laagste klasse die gesupplementeerd werden omdat de honden in zone 4 op dat moment teveel selenium binnen krijgen en dit teveel veroorzaakt meer cellen met DNA-beschadiging in de prostaat (zie figuur 1). DNA-beschadiging kan leiden tot kanker (Duffield-Lillico, 2002).

![Diagram](image)

Figuur 1: U-vormige curve om het verband te leggen tussen de seleniumconcentraties, het nut van selenium-supplementatie en de waargenomen DNA-beschadiging.

Bron: Chiang et al. (2010)

Bij een onderzoek naar het effect van selenium op de ontwikkeling van hepatocellulair carcinoma (HCC) werd gevonden dat mensen met een gemiddeld plasma-seleniumniveau (tussen 138,5 en 162,3 µg/L) de minste kans hadden op de ontwikkeling van een HCC. Zowel bij hoger als lagere gehalten steeg de kans (Yu et al., 1999).
De anti-kankereffecten van selenium kunnen veroorzaakt worden door een verbeterde immuunrespons of de mogelijkheid om anti-tumor metabolieten te produceren (bijvoorbeeld methylselenol of de precursoren van anti-tumor metabolieten) die het metabolisme van de tumorcellen zullen gaan verstoren, angioogenese inhiberen en de apoptose van kankercellen induceren (Combs en Gray, 1998; Jiang et al., 1999).

Een experiment (Fico et al., 1986) op normale en neoplastische mammaire celculturen van honden toonde aan dat het verhogen van de seleniumconcentratie een verminderde groei veroorzaakte bij de cellen. Er werd echter geen volledige inhibitie waargenomen. De neoplastische cellen hadden een verschillende gevoeligheid voor de verschillende seleniumbronnen. Ze waren het gevoeligst voor selenoglutatione > natriumseleniet > selenocysteine > selenomethionine.

Thioredoxin-reductase (TrxR) is een selenoproteïne dat, net als GPx, selenocysteine moet bevatten om actief te kunnen zijn. TrxR wordt in hoge niveaus tot expressie gebracht in kankercellen en is waarschijnlijk vereist voor tumorcelproliferatie. Dit maakt TrxR een doelwit in anti-kankertherapie. Een aantal klinische anti-kankermedicijnen zijn inhibïtors van TrxR en bijgevolg mogelijke medicijnen in de toekomst (Papp et al., 2007).

Selenium heeft dus zowel een positieve als een negatieve uitwerking op tumorvorming. Een supplementatie is alleen gewenst als de seleniumconcentratie in het lichaam onder het niveau ligt waarbij de selenoenzymen volledig kunnen werken en de homeostatische schoonmaak optimaal is. Daarnaast is het wellicht mogelijk in de toekomst om door middel van selenoenzymen kanker te gaan behandelen.

3. SCHILDKLIER
De schildklier wordt op verschillende manieren beïnvloed en gecontroleerd via selenoenzymen (Braverman, 1994). Belangrijke enzymen voor de schildklier zijn iodothyronine-dejodasen (DIOs), deze enzymen bevatten selenocysteïne (Sec) en verklaren dat selenium essentieel is voor het schildklier hormoon metabolisme (Papp et al., 2007). Er zijn drie dejodasen bekend: DIO1, DIO2 en DIO3. Het zijn structureel gelijke integrale membraanproteïnes die Sec bevatten in hun actieve deel (Callebaut et al., 2003; Bianco en Larsen, 2005) Dit maakt de aanwezigheid van selenium voor de dejodasen noodzakelijk om te kunnen katalyseren (Kohrle et al., 2005). De mate waarin dejodasen voorkomen is afhankelijk van de concentraties van selenium, triodothyronine (T3), thyrotropine (TSH) en cAMP (Koenig, 2005). DIO1 en DIO2 katalyseren de activatie van de thyroïdhormonen, DIO3 daarentegen inactieve thyroxine (T4), T3 en rT3 (Papp et al., 2007). Als een dier al een jooddeficiëntie heeft, wordt er minder schildklierhormoon geproduceerd, een seleniumdeficiëntie verergerd in dat geval kropvorming of hypo thy roï disme hetgeen met jooddeficiëntie gepaard gaan.

Bij seleniumsupplementatie op oudere mensen kon men een vermindering van het T4-gehalte in plasma waarnemen en gelijk daarmee steeg de dejodase-activiteit en de omzetting naar het actieve schildklierhormoon T3 (Olivieri et al., 1995).
Uit onderzoek van Wedekind et al. (2004) bij puppy's bleek dat bij het verhogen van de seleniuminname het serum totaal triiodothyronine (TT3) lineair steeg terwijl het serum totaal thyroxine (TT4) onveranderd bleef. Hierdoor daalde ook de verhouding TT4:TT3 lineair als respons op de seleniumsupplementatie. T3 en T4 zijn hormonen die de stofwisseling van het lichaam stimuleren, bij een verhoging van T3 zal de stofwisseling verhogen. Dit kan gepaard gaan met hyperactiviteit, grotere eetlust en gewichtsverlies.

De veranderingen van schildklierhormonen door invloed van selenium kwamen eerder ook al naar voren bij een onderzoek van Arthur et al. (1992) uitgevoerd op ratten en een onderzoek van Wedekind et al. (2003) op kittens. Maar in tegenstelling tot bovenstaand onderzoek veranderde de TT4 concentratie bij deze onderzoeken wel. Dit verschil kan te wijten zijn aan de lager gebruikte seleniumsupplementatie bij de kittens en ratten.

Bij de werking van de schildklier spelen seleno-enzymen een belangrijke rol. De invloed die deze seleno-enzymen hebben, en op die manier ook selenium, verschilt per diersoort. In het geval van de hond ontstaat een stijging van het actieve schildklierhormoon door seleniumsupplementatie. Een seleniumtekort op zichzelf zal geen hypothyrodie veroorzaken maar versterkt wel het effect hiervan.

4. REPRODUCTIE

4.1. Vrouwelijk

Het is al sinds lange tijd bekend dat selenium een essentieel sporenelement is voor de reproductie (Underwood, 1977). Het benodigde seleniumniveau is tijdens de dracht en lactatie verhoogd omdat selenium getransporteerd wordt naar de foetus via de placenta en uitgescheiden wordt in de melk (Behne, 1996). Bij vrouwelijke dieren kan seleniumdeficiëntie onvruchtbaarheid, abortus en het ophouden van de nageboorte veroorzaken (Bedwal en Bahuguna, 1994). Bij runderen en varkens lijkt er een verband te bestaan tussen idiopathische miskramen en seleniumdeficiëntie (Stuart en Oehme, 1982). Ook bij schapen kan een vroege miskraam voorkomen worden door selenium te suppleren (Hidiroglou, 1979).
Manktelow (1963) beschreef congenitale myopathie bij pups. Een nest van vier schapenhondennepups overleden allemaal binnen vijf uur na de geboorte. Op deze locatie hadden alle teefjes een historie van verschillende overleden nesten vlak na de geboorte. Bij post-mortem onderzoek werd onder andere gevonden dat het ventriculair myocardium over een bepaald gedeelte kalkachtig en zeer bleek was. Bij de skeletspieren was geen recente spiernecrose te vinden. Op een boerderij waar een geval van polymyopathie bij een volwassen hond was gevonden bleek dat er ook een abnormaal verlies van jonge pups na de partus was. Er werd autopsie verricht op drie overleden pups van acht dagen oud waarbij dezelfde necroseletsels werden gevonden als in de hartspieren bij de vier schapenhondenpups. De gevallen die Manktelow (1963) beschreef, kregen geruimde volwassen schapen te eten van de boerderijen in een gebied dat bekend stond om seleniumtekort bij vee. Een teefje dat een nestje pups had verloren kort na de geboorte werd tijdens een volgende dracht op een andere locatie ondergebracht en beviel van zeven gezonde pups. Twee andere teefjes kregen een supplementatie van 1 mg natriumselenaat tijdens de dracht en kregen eveneens beide een gezond nest pups.

Jonge dieren geboren uit een seleniumdeficiënte moeder kunnen spierzwakheid vertonen omdat hun spieren door de seleniumdeficiëntie worden afgebroken. De seleniumconcentratie tijdens de zwangerschap heeft geen invloed op de drachtduur of het gewicht van de nakomeling (Bedwal en Bahuguna, 1994).

Dat selenium een rol speelt bij het ontstaan van een miskraam heeft waarschijnlijk te maken met te lage concentraties van de selenium-afhankelijke GPx. Hierdoor is er een verminderde antioxidante bescherming van de membranen en het DNA (Barrington et al., 1996; Barrington et al., 1997).

Als vrouwelijke honden een te lage seleniuminname hebben kan dit resulteren in zwakke of dode pups omdat de pups al spiernecrose hebben ondergaan, onder andere van de hartspier.

4.2. Mannelijk

Selenium is nodig voor de testosteron-biosynthese en voor de normale ontwikkeling van spermatozoa. Dit maakt selenium onmisbaar voor de mannelijke fertiliteit (Behne et al., 1996). Bij dieren die seleniumdeficiënt gevoederd worden, ontstaat er in het middenstuk van de spermacel een structurele abnormiteit waardoor de zaadcellen een verminderde motiliteit hebben en een hogere kans op afbrekende staarten (Wu et al., 1973). Deze abnormiteit ontstaat omdat een vorm van GPx polymeriseert in de mature spermatozoa tot een structureel eiwit in het mitochondriaal kapsel van het middenstuk. Als er onvoldoende selenium is, kunnen de selenoproteïnen niet optimaal werken. Daarnaast beschermt GPx de spermacellen tegen oxidatieve beschadigingen (Ursini, 1999).

Bij reuen kan een daling in fertiliteit dus veroorzaakt worden door seleniumdeficiëntie.
5. IMMUNFUNCTIE

Selenium is samen met zink, vitamine E, vitamine B6 en linoleenzuur een essentiële nutritionele factor in het immuunmechanisme (Sharadamma, 2011). Selenium wordt normaal in significante waardes teruggevonden in immuunweefsen zoals de lever, milt en lymfeklieren. Dat selenium daar meer aanwezig is, geeft de verwachting dat het daar meer nodig is (Rayman, 2000). Seleniumdeficiëntie gaat samen met een verminderde weerstand tegen ziektes en aantasting van de immuunfuncties.

Bij honden veroorzaakt seleniumdeficiëntie vooral onderdrukking van de T-cel afhankelijke antistofrespons, oftewel de celgemedieerde afweer (Sheffy en Schultz, 1979). Het serum van honden die een selenium en vitamine E-arm dieet kregen, had een negatief effect op de in vitro gestimuleerde blastogenese van lymfocyten en de lymfocytenproliferatie (Lessard et al., 1993). Bij toevoeging van tocopherol (cosmetische vitamine E) of 2-mercapto-ethanol (een stof die reageert met oxiderende stoffen) aan de lymfocytencultuur vermindert de suppressie. Hieruit blijkt dat de verminderde lymfocytenerespns gedeeltelijk veroorzaakt wordt door een verminderde antioxidante werking van het serum (Langweiler, 1983). Het vitamine E en seleniumdeficiënt dieret beïnvloedde daarnaast de regulatie van de prostaglandinesynthese. Prostaglandine is een belangrijke inhibitor van de T-cel blastogenese en de leukotriënen, die een belangrijke rol spelen bij de inflammatie (Lessard et al., 1993). Uit experimenten van Rayman (2000) is gebleken dat ook de B-cel functie gebreken vertoont bij selenium deficiëntie, B-lymfocyten hebben dan een verminderde antilichaamproductie.

Selenium- en vitamine E-tekort gaan gepaard met een destructie van membraanfuncties en inactivatie van celmembraanenzymen en -receptoren. Hierdoor interfereren ze met de productie van second messangers. Dit zijn moleculen in de cel die een signaal overbrengen van een receptor buiten de cel naar moleculen in de cel. Selenium en vitamine E interfereren tevens met stoffen gevormd door de arachidonzuurcascade, deze producten veroorzaken inflammatie. Zowel de second messangers als de stoffen die ontstaan door de arachidonzuurcascade spelen een grote rol bij de celregulatie en celproliferatie (Packer, 1992). Uit verschillende onderzoeken blijkt dat circulerende neutrofielen, peritoneale macrofagen en alveolaire macrofagen van selenium- en vitamine E-deficiënte dieren lage hoeveelheden van GPx-activiteit en een verminderte bactericide werking hebben (Serfass en Ganther, 1976). De GPx-activiteit bij fagocyten is nodig om de cellen te beschermen tegen de oxidatieve stress die ontstaat door de respiratory burst, wat een belangrijk afweermechanisme is. Deze studies suggereren dat de afweer van deficiënte dieren tegen infectieuze ziektes verminderd is (Holmes, 1970).

Het supplementeren van selenium heeft immuunstimulerende effecten. Selenium kan de expressie van groefactor-cytokine interleukine 2 aan het oppervlakte van de gecombineerde lymfocyten en Natural Killer (NK)-cellen verhogen zodat er meer kans is op binding met interleukine-2. Deze binding is essentieel voor de expansie en differentiatie naar cytotoxische T cellen (Rayman, 2000). De T-cellen worden aangezet actiever te reageren op antigenen. NK cellen worden aangezet tot vernietigen van tumorcellen (Kiremidjian-schumacher, 1994).
Bovengenoemde publicaties bewijzen dat een tekort aan selenium de natuurlijke afweer van het dier tegen ziekten kan verminderen.

6. HERSENEN EN GEDRAG

Seleniumdeficiëntie kan in verband gebracht worden met een negatieve gemoedstoestand (Rayman, 2000). In studies bij mensen is aangetoond dat een laag seleniumniveau geassocieerd is met een significant grotere incidentie van depressie en andere negatieve gemoedstoestanden zoals angst, verwardheid, vijandigheid en vermoeidheid (Benton en Cook, 1991; Hawkes en Hornbostel, 1996; Finley en Penland, 1998). Hoe lager de initiële seleniumstatus van de proefpersonen was, hoe groter het negatieve effect op de gemoedstoestand als resultaat van een laag seleniumdieet. Supplementatie met selenium verbeterde de gemoedstoestand (Finley en Penland, 1998).

Er zijn een aantal waarnemingen die aantonen dat selenium en selenium-bevattende enzymen een belangrijke rol spelen in de hersenen. Zo krijgen de hersenen tijdens een verminderd seleniumniveau in het lichaam voorrang voor de seleniumaanvoer (Hawkes en Hornbostel, 1996) en wordt de turnover snelheid van sommige neurotransmitters gewijzigd als gevolg van seleniumdeficiëntie (Castano et al., 1997). Bij oudere personen is een laag seleniumniveau in het plasma significant geassocieerd met senilitéit en versnelde achteruitgang van het denkvermogen (Hawkes en Hornbostel, 1996; Berr et al., 2000). In een studie van Hawkes en Hornbostel (1996) was de hersenseleniumconcentratie bij alzheimer-patiënten 40% lager dan bij de controle groep.

Bij hersenen van alzheimer patiënten werd een verminderde werking van catalase terug gevonden, het enzym dat normaal in het lichaam waterstofperoxide omzet naar zuurstof en water. Door het verlies aan catalase-activiteit worden de antioxidante seleno-enzymen belangrijker om de peroxidatieproducten zoals waterstofperoxide te verwijderen (Ramaekers et al., 1994). Gestegen oxidatieve stress wordt gesuggereerd als één van de mogelijke oorzaken bij neurodegeneratieve ziektes zoals de ziekte van Parkinson, epilepsie en bij herseninfarcten. Bij een gestegen GPx activiteit, door een verhoogde seleniumname, verloopt het ziektebeeld minder ernstig. Een genetische inactivatie van cellulaire GPx daarentegen vergroot de gevoeligheid voor neurotoxines en hypoxie in de hersenen (Ulrich et al., 2004). Aangezien een te lage seleniumname een daling van GPx geeft, kan dit mogelijk dezelfde gevolgen hebben voor de hersenen als een genetische inactivatie.

In een model van Fe$^{2+}$-geïnduceerde epileptische ontladingen zorgde toediening van 2 ppm selenium tot het normaliseren van het EEG patroon en reduceren van weefselbeschadigingen. (Rubin en Willmore 1980; Willmore en Rubin, 1981).

Oztas et al. (2001) toonde aan dat bij pentyltetrazole-geïnduceerde aanvallen de afbraak van de bloed-hersenbarrière verzwakt werd door toediening van selenium aan het dieet. Er werden ratten intraveneus geïnjecteerd met 4 ml/kg van 2% Evans-blauw oplossing als bloed-hersenbarrièreemerker. Vervolgens werden er door toediening van pentyltetrazole epileptische aanvallen geïnduceerd. Albumine met Evans-blauw bleek hierbij in de hersenen uit de bloedbaan te treden. Bij de ratten die drie maanden lang 4 pp natriumseleniet in hun water hadden gekregen was dit uittreden significant minder.

Selenium zou ook een rol kunnen spelen in het voorkomen van de ziekte van Parkinson. De ziekte van Parkinson ontstaat door een degeneratie van de dopaminerge zenuwcellen, het is algemeen aanvaard dat oxidatieve stress hierbij betrokken is. GPx heeft een antioxidante werking en vermindert hierdoor de aantasting van de zenuwcellen. Voor een optimale werking van GPx is selenium essentieel (Sian et al., 1999). De ziekte van Parkinson kan bij honden, in tegenstelling tot bij mensen, vooral bij jongere dieren voorkomen. De symptomen uiten zich net als bij mensen met tremor van de spieren, spierstijfheid, problemen met bewegen en hun evenwicht.

Cretinisme is een ontwikkelingsachterstand van het zenuwstelsel ten gevolge van een tekort aan het schildklierhormoon thyroxine. Het ontstaat door een ernstige jooddeficiëntie en kan neurologische ontwikkelingsdefecten veroorzaken, waaronder neuronale migratiedefecten, dendritische groeistoomnissen en myelinisatie defecten (Bernal, 2002). Cretinisme wordt onderverdeeld in een neurologische en een myxoedemateuze vorm. Myxoedemateus cretinisme wordt veroorzaakt door een combinatie van jood- en seleniumdeficiëntie. Symptomen van cretinisme zijn mentale achterstand, groei-achterstand en disproportionele dwerggroei. Cretinisme is nooit beschreven als gevolg van een alleenstaande seleniumdeficiëntie (Schweizer, 2004).

Alhoewel studies impliceren dat seleniumtekort een negatieve invloed heeft op de stemming van mensen is dit bij honden eigenlijk moeilijk vast te stellen. Bij verschillende hersenaandoeningen die ook bij honden voorkomen heeft selenium een invloed, seleniumsupplementatie zal wellicht geen totale behandeling zijn maar kan wel helpen om de ziekte minder erg te laten verlopen.

7. VACHT EN HUID

Een studie van Yu et al. (2005) toonde aan dat haargroei bij honden afhankelijk is van diëtaire seleniumconcentratie. Het bleek dat zowel een hoog als een laag seleniumdieet de haargroesnelheid bij volwassen honden verminderde. Het is bekend dat thyroidhormonen nodig zijn om de haarfollikel tot de anageenfase aan te zetten zodat haargroei mogelijk is. Beagles met hypothyroidisme hadden een tragere haargroei en een groter aantal haren in de telogeenfase (rustfase). Maar in de studie van Yu et al. (2005) werd alleen een lichte daling van TT3 terug gevonden bij de honden met een
selenium-arm dieet (0.04 tot 0.12 mg Se/kg, seleniumpmethione was de gebruikte seleniumbron) die vervolgens tijdens het onderzoek weer terugkeerde naar het normale niveau. Er werd daarentegen geen verandering gevonden in het serum TT4, free T4 (FT4) en free T3 (FT3) dus ondanks de al eerder bewezen rol die thyroidhormonen spelen in haargroei, kwam dat in deze studie niet naar voren en werd ervan uitgegaan dat de waargenomen vermindering haargroei door de verandering in selenium werd veroorzaakt.

Bij een studie van Van vleet (1975) had één van de honden die op een selenium- en vitamine E-arm dieet stond, acute pustulaire dermatitis die tot uiting kwam in verspreide kleine rode letsels op de abdominale huid.

Uit de literatuur is dus op te maken dat bij honden met een niet-optimaal seleniumniveau er een vachtverandering te zien kan zijn. In het geval van seleniumdeficiëntie kunnen ook huidletsels voorkomen.

8. SELENOSIS
Seleniumintoxicatie veroorzaakt misselijkheid, braken, diarree, anorexie, gewichtsverlies, gestopte haargroei, verhoogde ademhaling, cardiovasculaire veranderingen, haar- en nagelverlies, huidaesthesies en een knoflookachtige adem geur. In ergere gevallen zijn er pathologische letsels zoals necrose van de nier- en lever, miltstuwing en zenuwstoornissen, waaronder blindheid en incoördinatie. In de meest extreme gevallen volgt de dood (Griffiths en Matulka, 2006). De acute orale minimum letale dosis wordt voor de meeste dieren geschat tussen de 1 en 5 mg selenium per kg lichaamsgewicht. Wedekind et al. (2002) suggereren dat voor honden het max seleniumniveau op 5 ppm ligt. De cumulatieve dosis bij chronische intoxicatie is nog niet gekend.

Turk (1980) beschreef een geval van een parenterale selenium intoxicatie bij een twee jaar oud vrouwelijke yorkshire terrier die, na lethargisch te zijn geworden na een ongeluk, van haar baasje intramusculaire injecties kreeg van 0.2 ml burns-biotech (Bo-Se®) om de tien tot 21 dagen. Bo-Se® bevat 2.19 mg natriumseleniet per ml. De eigenaar gaf deze injecties vier maanden lang waarop de hond periodieke convulsies begon te vertonen. De aanvallen waren niet controleerbaar en de hond overleed. Histologisch onderzoek van de hond liet zien dat de lever een extensieve periportale fibrose en vetdegeneratie had. Bij de nieren werd een multifocale degeneratie en necrose van de renale tubuli terug gevonden. De hersenen waren gestuwd en er was multifocale cerebro-corticale necrose.

Bij een onderzoek naar acute en subchronische orale selenium intoxicatie bij de hond kregen honderd 28 of 90 dagen selenium gesupplementeerd (Griffiths en Matulka, 2006). De gesupplementeerde honden vertoonden verhoogd speeksel, dit wordt vaker gezien bij dwangvoederen maar bij de controlegroep kwam dit niet naar voren dus het kan een mogelijk effect van selenium zijn. Het speeksel was daarnaast dosisgebonden. Een reu braakte van dag 16 tot 19 en was niet actief op dag 17. Hij had dag 20 en 21 last van zachte feces. Een hogere incidentie van vloeibare en zachte feces was te zien bij de groep honden die Sel-Pex gesupplementeerd kreeg. Extreem gewichtsverlies
kwam bij de helft van de mannelijke honden die 300 mg/kg/dag Sel-Pex kregen voor. De teefjes in een 90 dagen studie die natriumseleniet kregen hadden een verminderde gewichtsaanzet. Na 29 dagen overleed een hond die een behandeling kreeg van 1.3 mg natrium seleniet/kg/dag.

Chronische seleniumintoxicatie bij de hond is onderzocht door Rhian en Moxon (1943). Bij een supplementatie van 7.2 ppm organisch selenium of 10 ppm natriumseleniet uitte de intoxicatie zich in symptomen van verminderde voedselopname en een sub-normale groei. Bij een 20 ppm natrium seleniet was er geen voedselopname en sterfte op korte termijn. Een supplementatie van 20 ppm organisch selenium veroorzaakte ernstige zenuwaandoeningen. Bij autopsie waren vooral de lever en de milt ernstig aangetast. De meeste honden hadden ascites ontwikkeld die samen ging met extreme dilatatie van de abdominale bloedvaten. Uit deze studie bleek dat arseen (in de vorm van natrium arseniet) chronische seleniumintoxicatie kon voorkomen. Bij een organische seleniumsupplementatie van 13 ppm werkte een 5 ppm arseensupplementatie aan het drinkwater preventief tegen symptomen. Arseen bindt namelijk aan selenium waardoor het selenium niet meer beschikbaar is voor het lichaam en zo daalt de biologische beschikbaarheid. Vanwege deze binding wordt selenium ook juist gebruikt bij arseenvergiftiging.
BESPREKING

Uit studies en casusbesprekingen over de invloed van selenium op honden blijkt dat selenium diverse symptomen geeft bij zowel intoxicatie als deficiëntie. Het probleem met deze symptomen is dat het beeld niet enkel pathognomisch is voor de seleniuminname. Het zijn symptomen die bij een zeer brede waaier van aandoeningen voor kunnen komen. Seleniumintoxicatie of -deficiëntie zullen bij de differentiaaldiagnoses niet bovenaan de lijst staan omdat het een sporenelement is en het niet de meest voorkomende oorzaak van het symptoom zal zijn. Daarnaast zijn seleniumdeficiëntie en -intoxicatie in de praktijk geen bekend probleem bij de meeste dierenartsen in gebieden waar geen abnormale seleniumconcentraties voorkomen.

De besproken gevallen van honden met een niet-optimaal seleniumniveau zijn niet van de laatste decennia. Dit komt omdat het overgrote deel van de honden tegenwoordig commerciële hondenvoeding krijgt waarin minstens een minimale hoeveelheid aan selenium zit. (Simcock, 2004) Zolang er commerciële voeding wordt gevoerd kan men er in principe van uit gaan dat er voldoende selenium aanwezig is, tenzij een minimale hoeveelheid selenium met een lage biologische beschikbaarheid in de voeding aanwezig is. In dat geval is deficiëntie als nog mogelijk. Honden die alleen karkassen van vee uit seleniumarme gebieden en vee met witte spierziekte gevoerd krijgen, lopen wel een risico om seleniumdeficiëntie te ontwikkelen (Manktelow, 1963). Verder onderzoek naar de seleniumdosis in hondenvoeding is nog nodig om de precieze seleniumbehoeften per levensfase te bepalen. Het is duidelijk dat bepaalde fasen meer selenium vereisen maar het is niet duidelijk hoeveel die stijging in behoefte precies is. Bij seleniumsupplementatie moet men goed letten op klinische symptomen die kunnen wijzen op een seleniumvergiftiging. Selenium heeft een zeer nauwe therapeutische breedte en op die manier kan een goed bedoelde supplementatie omslaan naar een intoxicatie.

Daarnaast is het belangrijk om het seleniumniveau in het oog te houden omdat, zelfs als er geen klinische symptomen zijn, uit meerdere studies is gebleken dat seleniumsupplementatie een beschermende functie voor het dier kan hebben door een verminderde kans op hartaandoeningen, kankerontwikkeling en verhoging van de afweer. Afhankelijk van de hoeveelheid en biologische beschikbaarheid van selenium in een hondenvoeder kan een kleine verhoging in de voeding helpen in het behoud van een langer en gezonder leven.
REFERENTIELIJST

