HET SCHOENGEDRAG VAN DE VLAMING

Masterproef voorgelegd tot het behalen van de graad van
Master in de Revalidatiewetenschappen en de Kinesitherapie

Inge GOVAERT

Promotor: Prof. Dr. P. Roosen
Co-promotor: Lic. S. De Mits
Voorwoord

Waarover gaat uw thesis? Als je dan het antwoord geeft, fronsten velen de wenkbrauwen. Als men er dan even over nadenkt, beginnen de verhalen te vloeien dat het eigenlijk wel een probleem is om goed schoeisel te vinden. Nochtans dragen we allemaal schoenen om onze voeten te ondersteunen en te beschermen. Het is een gegeven die ons allen aanbelangt. Aandacht gaat naar specifiek schoeisel zoals onder andere loop- en dansschoenen en naar aangepast orthopedisch schoeisel maar de dagelijkse schoen uit de gewone winkel blijft onopgemerkt. Nochtans zijn onze voeten zo belangrijk.

Dat ik de kans heb gekregen om dit te kunnen schrijven, heb ik te danken aan heel veel mensen.

Mijn ouders,
Jullie zijn me, ondanks alles, blijven steunen. Jullie toonden me om nooit op te geven, altijd te blijven vechten en door te gaan.

Mijn grootouders, broer en vrienden,
Er waren vele periodes waarin jullie mij hebben moeten missen en toch zijn jullie er altijd voor mij geweest. Jullie zijn me dierbaar en tonen me hoe kostbaar vriendschap is.

Mevrouw De Mits en Prof. Roosen,
Bedankt voor de kans die ik kreeg om dit onder uw leiding te mogen maken, voor alle tijd die u voor ons vrijmaakte, voor de vele hulp en om zelfs ’s avonds terug te keren.

Veerle en alle mensen die ons geholpen hebben met de testings,
De testdagen hebben mijn ogen geopend. Ik was enorm verrast hoeveel mensen ons spontaan hebben willen helpen, zelfs mensen die ik al jaren niet meer had gezien. Dit was een ongelooflijke ervaring!

Vandaag, exact tien jaar geleden, begon mijn enkelrevalidatie en iets later het besef wat ik wou en zou doen: kiné worden om mensen zo goed mogelijk te kunnen helpen. Hopelijk lukt het mij om dit doel ooit te verwezenlijken.

Moetje…, deze is van jou!

Inge
Inhoudsopgave

Voorwoord ... 1
Inleiding .. 2
A. Literatuurstudie .. 3
 1. De voet ... 3
 1.1. De verschillen ter hoogte van de voet .. 3
 1.1.1. Volgens voettype ... 3
 1.1.2. Volgens etniciteit ... 6
 1.1.3. Volgens geslacht .. 7
 1.1.4. Volgens leeftijd ... 10
 1.1.5. Volgens lateralisatie ... 11
 1.1.6. Volgens BMI ... 12
 1.1.7. Volgens de mate van belasting of het gewicht op de voet ... 13
 1.1.8. Door beweging ... 14
 1.2. Het opmeten van de voet ... 14
 1.2.1. De mogelijke dimensies ... 14
 1.2.2. De mogelijk te gebruiken toestellen ... 16
 1.2.2.1. 1D- metingen .. 16
 1.2.2.2. 2D- informatie ... 20
 1.2.2.3. Een 3D- beeld uit 2D- informatie ... 20
 1.2.2.4. 3D- informatie ... 21
 a) Afdrukken .. 21
 b) 3D- laser scanners ... 22
 - De verschillende 3D- laser scanners ... 24
 - Plaatsing en registratie van de landmarks .. 26
 - Werking scanner .. 28
 c) Dynamische scanner ... 29
 d) RX- opnamen .. 30
 e) Waterverplaatsingsmethode ... 30
 f) Free Form Deformation techniek .. 30
 1.2.2.5. Foot Posture Index ... 31
 2. De schoen ... 31
 2.1. Soorten schoenen vermeld in de literatuur .. 31
 2.2. Schoenontwerp ... 34
 2.2.1. De leest .. 35
 2.2.1.1. De flare of curve van de leest .. 37
 2.2.2. De voorvoetregio .. 38
 2.2.2.1. De teenboks ... 38
 2.2.2.2. De clearance .. 38
 2.2.2.3. De flexiegroeve ... 38
 2.2.3. De middenvoetregio .. 39
 2.2.3.1. De hoogte .. 39
 2.2.3.2. Termen in de middenvoet ... 40
 2.2.4. De hielregio .. 40
 2.2.5. De zool .. 41
2.2.6. De hak

2.2.7. Het materiaal

2.3. Veranderingen van de voetdimensies waarmee men bij het maken van de schoen rekening moet houden

2.4. Het opmeten van de schoen

2.4.1. De mogelijke schoenmaatsystemen

2.4.2. Schoenmaat verdeling

2.4.3. Aandachtspunten bij het meten

2.4.4. De mogelijk te gebruiken toestellen

2.4.4.1. De schuifpasser

2.4.4.2. Brannock, Ritz en Scholl toestel en Clarks measuring stick

2.4.4.3. Voetuitlijning

2.4.4.4. FFD techniek

2.4.4.5. 3D- scanner en oppervlaktemodel zolen

2.4.4.6. Computer Aided Design system

3. Het schoengedrag

3.1. Schoencomfort

3.2. Comfortabele pasvorm

3.2.1. Schoenlengte

3.2.2. Voorvoetbreedte

3.2.3. Hakhoogte

B. Experimenteel onderzoek

1. Onderzoeksvraag

2. Proefpersonen

3. Protocol van het onderzoek

3.1. De enquête

3.2. Het opmeten van de voeten

3.3. Het opmeten van de schoenen

4. Statistische methodes

C. De Resultaten

1. Onderzoeksvraag 1: het schoengedrag aan de hand van de enquêtevragen en de soort schoen

1.1. De soorten schoenen

1.1.1. Soorten open schoenen

1.1.2. Soorten gesloten schoenen

1.1.3. Soorten sluitingen

1.2. De hakhoogte

1.2.1. Hakhoogte in groep met steunzolen

1.2.2. Hakhoogte in groep zonder steunzolen

1.3. Het schoengedrag aan de hand van de enquêtevragen

1.3.1. Verdeling aantal personen met en zonder steunzolen

1.3.2. Verdeling schoenmaten

1.3.3. Verdeling bezit van aantal paar schoenen
1.3.4. Verdeling frequentie wisselen van schoenen

1.3.5. Pijn ter hoogte van de voeten door de schoenen die men droeg

1.3.6. Verdeling problemen bij aankoop schoenen

1.3.7. Verdeling belang bij schoenkeuze

2. Onderzoeksvraag 2: vergelijking van de antropometrische maten van de voet en de schoenmaten voor lengte, voorvoetbreedte en hielbreedte

2.1. Betrouwbaarheid toestellen schoenmetingen

2.2. Het verband tussen de antropometrische voetlengte en schoenlengte

2.2.1. Algemeen

2.2.2. Indeling volgens geslacht

2.2.2.1. Man

2.2.2.2. Vrouw

2.2.3. Indeling volgens soort schoen

2.2.3.1. Sportieve schoenen

2.2.3.2. Laarzen

2.2.4. Besluit

2.3. Het verband tussen de antropometrische voorvoetbreedte en voorvoetbreedte schoen

2.3.1. Algemeen

2.3.2. Indeling volgens geslacht

2.3.2.1. Man

2.3.2.2. Vrouw

2.3.3. Indeling volgens soort schoen

2.3.3.1. Sportieve schoenen

2.3.3.2. Laarzen

2.3.4. Besluit

2.4. Het verband tussen de antropometrische hielbreedte en hielbreedte van de schoen

2.4.1. Algemeen

2.4.2. Indeling volgens geslacht

2.4.2.1. Man

2.4.2.2. Vrouw

2.4.3. Indeling volgens soort schoen

2.4.3.1. Sportieve schoenen

2.4.3.2. Laarzen

2.4.4. Besluit

D. Discussie

E. Conclusie

F. Referentielijst

G. Bijlagen

1. Bijlage 1: De vragenlijst

2. Bijlage 2: Grafieken en tabellen
Inleiding

Als men de literatuur naleest, komt men al snel tot de conclusie dat de meeste onderzoeksresultaten over het passen van de schoen uit Japan, Australië en China komen. Rekening houdend met de verschillen tussen rassen onderling, mogen deze resultaten niet zomaar overgenomen worden voor het Kaukasische ras. Daarom was het nuttig om een grote groep Vlamingen te meten. Alleen door te meten, zal men uiteindelijk weten.

De voeten hebben nood aan vrije ruimte of clearance voor de tenen die ook weer niet teveel mag zijn omdat dat leidt tot een te losse voorvoet en ook niet te weinig omdat het dan te strak is (Witana et al., 2004). Zoals eerder vermeld, zijn de exact goede dimensiele verschilens tussen beiden niet geweten.
Aan de hand van scantechnologie werd het de laatste jaren gemakkelijker om te onderzoeken of voet en schoen op elkaar zijn afgestemd (Witana et al., 2004). Ondanks deze technologie, blijft het moeilijk om alle informatie over de voetvorm die de scanner aanreikt, te integreren in het schoenleestontwerp (Witana et al., 2006). In de literatuur vindt men ook weinig referenties terug over de interactie tussen de schoen en de voet (Ruperez et al., 2009).

In deze studies houdt men echter geen rekening met het subjectieve gevoel van goed passen (Witana et al., 2004). Om een schoen te beoordelen is niet alleen het objectieve ontwerp van belang maar ook de subjectieve perceptie (Shackel et al., 1969; Corlett, 1981). Beide testen bieden nuttige informatie om het comfort en de kwaliteit van de schoen te onderzoeken (Ruperez et al., 2009). Daarom werd voor dit onderzoek een enquête ontwikkeld om een beeld te krijgen over het schoengedrag van de Vlaming. In deze enquête werd gepeild naar de schoenmaat, de pijnperceptie, het wisselen van schoenen, het aantal paar schoenen en de zaken naar men belang aan hecht bij het aankopen van schoeisel.

Op basis van deze gegevens wordt het mogelijk een beeld te krijgen over de voetvorm van het Kaukasische ras. Het wordt eveneens mogelijk om een beeld te krijgen over het nodige aanbod voor fabrikanten van bepaalde schoenmaten. Tot slot kan men door het dragen van goede schoenen heel wat voetletsels vermijden, wat dan op zich weer een grote kost minder is aan de maatschappij (Coughlin en Thompson, 1995).
A. Literatuurstudie

1. De voet

1.1. De verschillen ter hoogte van de voet

1.1.1. Volgens voettype

De natuurlijke variatie verklaart onder andere de eigenschappen in voetdimensies (Hawes et al., 1994; Ashizawa et al.; 1997). Voetproporties veranderen naarmate de maat verandert (Mochimaru, 2000). In de literatuur zijn er verschillende classificaties te vinden om de voettypes in te delen.

Er zijn verschillende benaderingen om voeten in te delen. Door een aantal auteurs gebeurde dit op basis van een visuele beoordeling zoals bv. platvoet, pes valgus,... (Debrunner, 1965; Rossi en Tennant, 1984; Hefti en Brunner, 1999; Razeghi en Batt, 2002). Anderen deelden voeten in op basis van één karakteristiek van de voet zoals de mediale longitudinale boog, waaruit men een goede voetfunctie afleidde (Rose et al., 1985; Gould et al., 1989; Forriol en Pascual, 1990; Hawes et al., 1992; Bordin et al., 2001; Echarri en Forriol, 2003). Slechts enkele studies (Bataller et al., 2001; González et al., 2005; Krauss et al., 2008) vergelijken verschillende voetmetingen en maken een classificatie in voettypes op basis van factor- of clusteranalyses. Recent wordt er gewerkt met de 3D- voetvorm. Mochimaru et al. (2000) ontworpen hiervoor de Free Form Deformation methode en Luximon et al. (2005) ontworpen een methode om 3D-informatie uit 2D-informatie te regenereren (Mauch et al., 2009).

De voorvoetmetingen worden als één van de hoofdkarakteristieken gezien om veranderingen in voetdimensies te verklaaren (Krauss et al., 2008). Dit wordt bevestigd door Anil et al. (1997) die een afname van voorvoetbreedte en –omtrek zagen bij stijgende voetlengte. Mauch et al. (2008) zagen dat een langere afstand van het eerste metatarsophalangeaal gewricht tot hiel gepaard ging met een grotere voorvoethoek (ball angle) en omgekeerd.

Jung et al. (2001) maakten drie types voor de voetvorm gebaseerd op de ratio van de voetlengte ten opzichte van de voetbreedte in zijn populatie. Dit is de voetindex. Deze types waren breed, standaard en dun. Aan de hand van de matarsus phalanx angle (MPA: 180°- hoek 1e teen) werd nagegaan of het een normale of vervormde voet was.
Bataller et al. (2001) gebruikten factor en clusteranalyses om de voeten bij zijn Spaanse populatie in drie types in te delen. Aan de hand van een clusteranalyse tracht men de homogeniteit over de metingen binnen eenzelfde voetlengte groep te analyseren. Het eerste type had als kenmerken een wijde voor- en middenvoet, een lage ratio van de voorvoet- tot de achtervoetbreedte en een korte MBL. Het tweede type had een wijde voor- en achtervoet. Het derde type had als kenmerken dat de eerste metatarsaalkop voorwaarts gelokaliseerd is en een smalle hielbreedte.

Rossi en Tennant (1984) beschreven de verschillende voettypes in overeenstemming met classificaties van de lichaamsbouw van de mens die door het phenotype bepaald worden. Zij merkten op dat een persoon niet 100% in een bepaald phenotype kan ingedeeld worden maar elke persoon heeft wel een bepaald phenotype dat dominant is in zijn of haar lichaamsbouw. Het type ectomorph beschrijft een groot en dun phenotype met lange botten en smalle spieren. Het mesomorph type heeft zware, korte botten en is gespierd. Het endomorph type is vlezig en mollig en heeft smalle botten.

Mauch et al. (2008) beschreven een classificatie met vijf types: platte, robuste, dunne, lange en korte voeten. Ze baseerden zich op vier componenten: volume, bogen, hoeken en lengte. Bij platte voeten is de afstand mediaal gemeten van pterion tot aan de eerste metatarsaal afgevlakt. De booghoek is hierdoor klein en de Chippaux-Smirak Index en Staheli Index hoog (zie tabel 1). Dunne voeten hebben een klein volume, een smalle voorvoet- en hielbreedte, een lage dorsale booghoogte, lange tenen en een relatief hoge boog. Robuste voeten hebben een groot volume, korte tenen en een gemiddelde boog. Korte voeten worden gekenmerkt door een proportioneel korte achtervoet tot een lange voorvoet. De afstand van de hiel tot aan het 1e metatarsophaalangeaal gewricht is klein. De lange voet is de grootste voet van de vijf types. Ze wordt gekenmerkt door een korte lengte van de tenen en een kleine afstand van de hiel tot aan het 1e metatarsophaalangeaalgewricht. Dezelfde auteur maakte later drie clusters. De eerste cluster, de roboste voet, werd gekenmerkt met brede voorvoet- en hielbreedte, korte lengte van hiel tot bal van de voet (ball length) en kleine voorvoethoek. De voetvorm is vierkant en de voet heeft lange tenen. In de tweede cluster, intermediate, beschreef men een gepunte voetvorm met korte tenen. Er is een brede voorvoetbreedte en gemiddelde hielbreedte en instaphoogte. De ball lengte is lang en de voorvoethoek is groot. In de derde cluster, slender, omschrijft men een smalle vorm met smalle voorvoet- en hielbreedtes en kleine instaphoogte. De voorvoethoek is groot en de ball lengte is lang. Deze nieuwe benadering liet toe om een duidelijker contrast in de variabiliteit van voettypes aan te tonen (Mauch et al., 2009).
Tot slot kan men nog een onderscheid maken op basis van de langste teen. Dit kan ook een invloed hebben op het al dan niet goed passen van een schoen. In de eerste groep is de eerste teen de langste. In de tweede groep is de tweede teen langer dan de eerste (Kreighbaum en Smith, 1996). Griekse voeten zijn een andere benaming voor voeten waarvan de tweede teen langer is dan de eerste (Helal en Greiss, 1984). Egyptische voeten staat voor het langer zijn van de eerste teen ten opzichte van de tweede.

1.1.2. Volgens etniciteit

Als men verschillende voeten vergelijkt, ziet men dat de Japanse voet breder is dan de Australische en Kaukasische voet met dezelfde voetlengte. De Oriëntaalse (Japanse en Koreaanse) voet en de Amerikaanse voet vertoonden geen verschil in breedte maar wel een verschillende voorvoethoek waardoor de Oriëntaalse voorvoet vierkanter is. De afkomst zou een invloed hebben op de voetvorm (Hawes et al., 1994).

Wanneer men Duitse kinderen met Australische kinderen vergeleek (rekening houdend met BMI, geslacht en leeftijd), zag men dat de voeten van Duitse kinderen langer en vlakker waren. De vorm van de Australische kindervoet is vierkanter omdat de voorvoethoek kleiner is. Buiten genetische factoren zouden ook factoren zoals klimaat en levensstijl deze verschillen kunnen verklaren (Mauch et al., 2008). Kouchi en Mochimaru (2007) schreven dat de verschillen in voetvorm bij kinderen te wijten kan zijn aan een verschillend tempo in groei en ontwikkeling.

Onderzoek heeft aangetoond dat mannen die in een warm klimaat leven eerder wijdere voeten met rechte tenen hebben. Het warme klimaat heeft ook invloed op de levensstijl: men loopt blootsvoets of er wordt open schoeisel gedragen zoals sandalen of tenslippers. Dit heeft als gevolg dat er tijdens het stappen voldoende ruimte is om de voorvoet te spreiden. De voet wordt wijder wanneer er een gewicht op geplaatst wordt en gesloten schoenen kunnen dit anders afremmen. De breedte ontwikkeling van de voorvoet wordt niet belemmerd (Kusumoto 1990; Echarri en Forriol 2003) en doordat de
tenen niet opgesloten zitten in een teenboks, blijven de tenen rechter. Het blootsvoets
lopen geeft een bredere voorvoet en een langere voet als resultaat. Blootsvoets
wandelen zorgt er ook voor dat de actieve (spieren) en passieve
componenten (fascia en ligamenten) meer versterkt worden. De behandeling van
platvoeten gebeurt ook door oefeningen op blote voeten te geven zodat deze
componenten versterkt kunnen worden. Kinderen die voortdurend schoenen dragen,
versterken deze componenten minder en presenteren hierdoor ook vlugger platvoeten
(Lin et al. 2001 ; Kadambande et al, 2006).

1.1.3. Volgens geslacht

Vrouwen en mannen verschillen zowel in structuur als biomechanica van elkaar. Het
verschil in structuur zorgt ook voor een verschil in biomechanica. Zo is het pelvis van de
vrouw wijder dan deze van de man. Hierdoor is er een grotere mate van varus in de
heup. Het gevolg hiervan is dat het achterste deel van de voet de neiging heeft om in
pronatie te gaan. Wat ervoor zorgt dat het lichaamszwaartepunt binnen de grenzen van
het zwaartevlak blijft. (Frey, 2000)

In oudere studies focuste men zich niet op het verschil tussen man en vrouw (Freedman
et al., 1946; Dahlberg en Lander, 1948; Oargal et al., 1992). Andere studies
onderzochten enkel mannenvoeten. (Hawes en Sovak, 1994; Bataller et al., 2001).
Meerdere auteurs gaven reeds aan dat het geslacht een invloed heeft op de voetvorm.
(Voracek et al., 2007; Fessler et al., 2005; O’ Conner et al., 2006).

In studies die verschillen tussen man en vrouw willen aantonen, is het belangrijk dat men
de gemiddelde waarden van de absolute voetdimensies binnen een bepaalde voetlengte
vergelijkt (Manna et al., 2001, Ozden et al., 2005); Agnihotri et al., 2007) of de
verschillen in voetvorm in verhouding tot de lichaamsbouw (Anil et al.,1997; Wunderlich
en Cavanagh, 2001; Fessler et al., 2005). De conclusies over één enkele voetmaat, die
voortvloeien uit het gebruik van gemiddelde waarden van genormaliseerde
voetdimensies over meerdere maten , kunnen onnauwkeurig zijn (Manfio en Avila,
geslacht niet alleen de vergelijking van absolute voetdimensies binnen een bepaalde
voetlengte belangrijk zijn maar ook de relatieve voetdimensies in % van de voetlengte
over alle maten.
Hoewel de proportionele veranderingen in voetdimensies in beide geslachten gelijkmatig zijn voor lengte, breedte en hoogte, ziet men dat de voetproporties niet dezelfde zijn voor man en vrouw binnen eenzelfde schoenmaat. De definitie van smal is geslachtsgereleateerd aangezien smal bij een vrouwenvoet drie maten korter is dan smal bij een mannenvoet. Als men bv. EU 39 vergelijkt ziet men bij mannen een volumineuze voet terwijl bij vrouwen dit eerder een smalle en platte voet weergeeft. Voetmetingen zouden voor elke maat en geslacht apart verkregen moeten worden (Krauss et al., 2008).

Als men op basis van dezelfde schoenmaat man en vrouw vergeleek, zag men dat de gemiddelde voet bij de man hoger en breder is vergeleken met de voet van de vrouw (Krauss et al., 2005). Ook in een latere studie stelde (Krauss et al., 2008) stelden deze auteurs vast dat de voeten van mannen breder en hoger waren: bij de absolute voetlengtes binnen 250 en 270 mm was dit respectievelijk 1,3 mm en 5.9 mm. Men zag ook dat de vrouw een smallere achillespees had. Als men vervolgens de gemiddelde metingen vergeleek (in % van de voetlengte), kon men geen significante verschillen tussen de geslachten vaststellen.

Volgens Krauss et al. (2008) zijn er in dezelfde voetlengte grotere waarden voor breedte en hoogte dimensies bij mannen. Wanneer men percentages van voetlengte bekijkt, ziet men significante verschillen tussen man en vrouw. Deze konden echter niet bewezen
worden in de gemeenschappelijke voetlengtecategorieën. De verschillen zijn klein en praktisch nutteloos om voor een schoenfabrikant in vraag te stellen.

In de studie van Chanteleau en Gede (2002), die zich uitsluitend op de oudere populatie toespitste, rapporteerde men dat mannen en vrouwen met dezelfde schoenlengte ruwweg dezelfde voetbreedte vertoonden.

Luo et al. (2009) zagen dat de gemiddelde lengte afstand van aan de hiel tot aan de voorvoet (heel to ball length of MBL) bij de man (181.5mm) significant langer was dan bij de vrouw (165mm). De heel to ball lengte was gemiddeld 16.5 mm langer terwijl de totale voetlengte gemiddeld 23.5 mm langer was. Heel to ball en totale voetlengtes zijn statistisch niet significant verschillend van elkaar. Voorvoetomtrek was groter en voorvoet-, instap- en hielbreedte waren significant breder bij de man als men vergeleek op basis van gelijke heel- to- ball lengte. De vrouw toonde hogere waarden voor de hoogtes van de teenregio, instap en mediale en laterale malleolus. De vrouw heeft significant een relatief smallere en hogere voet dan de man. Net als Manna et al. (2001), die ruwe data gebruikte, kan men bij Luo et al. (2009) zien dat de mannenvoet groter is dan de vrouwenvoet. Luo et al. (2009) schreven dat in de studie van Wunderlich en Cavanagh (2001), waar de conclusie was dat de mannenvoet langer en breder was, ook een normalisatie gebeurde maar op een andere methode (op voetlengte) dan in deze studie (op heel to ball lengte).

Anil et al. (1997) zag dat de voetbreedte bij mannen breder was dan bij vrouwen met dezelfde voetlengte. Krauss et al. (2008) merkten op dat deze auteur de ene voet op een verhoogje van 25 mm plaatste ten opzichte van de voet die gemeten werd. Parham et al. (1992) toonden aan in hun studie dat vrouwen ook smallere voeten hadden vergeleken met de mannen telkens binnen dezelfde voetlengtes.

Ashizawa et al. (1997) schreven dat Javaanse mannen wijdere voeten hadden in vergelijking met hun vrouwelijke landgenoten. Japanse meisjes hadden bredere voeten dan jongens terwijl de Japanse vrouwenvoet terug smaller was dan deze van de Japanse man.

Ook Xiong et al. (2008) wezen op de verschillen in voetlengte, voorvoetbreedte en -omtrek tussen de geslachten: bij de Chinese vrouwen was dit ongeveer 93 % vergeleken
met Chinese mannen en bij de Amerikaanse en Japanse vrouwen ongeveer 90% van de mannen.

Het verschil in voetvorm is voornamelijk te zien in de hoek gevormd door de metatarsaalkoppen en in de dimensies van de voetboog. De geslachtsverschillen in voetvorm veranderen naargelang de populatie en worden ook beïnvloed door gewoontes en door het dragen van onaangepaste schoenen (Wunderlich en Cavanagh, 2001). Zo zorgt het veelvuldig dragen van hoge hielen (> 25 mm) voor een verhoging van de druk op de metatarsaalkoppen. Dit veroorzaakt naast voetklachten ook veranderingen in de voetmorfolgie (Menz en Morris, 2005).

1.1.4. Volgens leeftijd

Kindervoetjes gedurende de groei reageren gevoeliger en zeker op externe factoren (Rossi en Tennant, 1984). Mauch et al. (2009) schreven dat de invloed van druk schadelijk kan zijn omdat de voetstructuur nog niet geconsolideerd is. Accurate pasvorm is dus essentieel.

Ashizawa et al. (1997) zagen dat Japanse meisjes bredere voeten hadden in vergelijking met jongens met dezelfde voetlengte terwijl Japanse vrouwen smallere voeten hadden in vergelijking met mannen met dezelfde voetlengte. Zij schreven ook dat de Japanse jonge vrouw smallere voeten had dan een oudere dame met dezelfde voetlengte.

Leeftijd heeft een effect op de kracht- en drukverdeling onder de voet bij het wandelen. Zo ziet men een verminderde grootte in de kracht en drukken onder de hiel, de laterale voorvoet en de hallux. Verschillen in voetstructuur zouden leeftijdsgerelateerde verschillen in plantaire kracht- en drukverdeling kunnen verklaren. Oudere mensen hebben plattere en meer pronerende voeten, de bewegingsuitslag van de enkel en het eerste metatarsophalangeaal gewricht is gereduceerd, de tactiele sensitiviteit is verminderd en er is een hogere prevalentie van hallux valgus, teendeformiteiten en zwakte van de plantairflexoren van de tenen (Scott et al., 2007).

1.1.5. Volgens lateralisatie

De rechtervoet was significant breder dan de linker onder de drie gewichtsdragende condities in de studie van Tsung et al. (2003). Deze studie stelde vast dat de linker en rechtervoet niet noodzakelijk symmetrisch zijn. De breedte van de schoen mocht twee tot drie mm breder zijn aan de rechtervoet voor een betere passing. In die studie werden
wel alleen rechtshandigen getest. Het is dus nuttig om telkens de schoen eerst aan de rechtervoet te passen.

Er kon echter wel opgemerkt worden dat de proefpersonen meer voetklachten hadden aan de rechtervoet dan aan de linkervoet. Dit schreef men toe aan het meer voorkomen van rechter dominantie, wat ervoor zorgt dat men meer druk uitoefent op de rechtervoet in het stappatroon (Manna et al., 2001).

Xiong et al. (2009) bepaalden de voetdominantie door de deelnemer te vragen welke voet ze bij voorkeur gebruikten om tegen een bal te schoppen en met welke voet ze het meeste kracht ervaarden.

1.1.6. Volgens BMI

Otsuka et al. (2003) schreven dat body mass index (BMI) ook een invloed heeft op de voet. BMI werd door Quetelet vastgelegd als de waarde die men bekomt door het gewicht, uitgedrukt in kilogram, te delen door het kwadraat van de lichaamslengte, uitgedrukt in centimeters (Mauch et al., 2008). Men heeft een gezonde BMI als deze waarde tussen de 20 en 25 ligt.

Uit vorige studies met volwassen proefpersonen (Dowling et al., 2001 ; Riddiford-Harland et al. 2000) bleek dat de BMI een matige factor was in het bepalen van de voetvorm. Ook in de studie van Manna et al. (2001) beweerde men echter dat er geen relatie was tussen de BMI en de voetvorm.
1.1.7. **Volgens de mate van belasting of het gewicht op de voet**

De vorm van de voet verandert door lange tijd frequente belastingen zoals extreme last, zwangerschap, hormonale veranderingen, e.a. te ondergaan (Jelen et al. 2005). Zij schreven ook dat er tijdens zwangerschap geen duidelijke tendens is in het verminderen van de voetboog. Wel zou de snelheid van het verminderen in volume lager zijn bij een hoge dan bij een lage voetboog. Houston et al. (2006) onderzochten de implicaties die gewichtstoenames teweeg brengen op de voetgeometrie en merkten op dat studies hieromtrent beperkt zijn. Houston et al. (2006) scanden de voet terwijl Tsung et al. (2003) gipsafdrukken van de voet in niet, halve en volledige gewichtsdragende posities scanden en Cheng et al. (1997) gebruikten elektronische callipers. De veranderingen in de latere fases (van 25% tot 100% lichaamsgewicht) zijn minder groot dan de veranderingen die optreden bij initiële belasting (van geen naar 25% lichaamsgewicht) (Houston et al., 2006). Zowel Houston, Tsung en Cheng zagen dezelfde veranderingen bij volledige belasting met aanneembare verschillen. De voetlengte (1.5%; 3.4%; 3.1%), de voorvoetbreedte (4.3%; 6%; 4.8%) en de hielbreedte (4.8%, 8.7 %, niet gemeten) namen toe en de instap hoogte daalde. Houston et al. (2006) zag geen aanneembare correlatie tussen toenamer van voorvoet- en hielbreedte, wat erop wijst dat de voetvorm en -maat tussen mensen onderling varieert en de leest niet zomaar wiskundig geschaald mag worden.

Tsung et al. (2003) vergeleken de voetvorm in niet, halve en volledige gewichtsdragende posities. Resultaten toonden aan dat de lengte, de voorvoet- en hielbreedte toenamen en het contactoppervlak van de voet met de grond nam toe bij een hogere gewichtsdragende positie. De gemiddelde hoogte en booghoek namen af. In halve gewichtsdragende positie nam het contactoppervlak toe met 35.1%, de voetlengte met 2.7%, de voorvoetbreedte met 2.9% en de hielbreedte met 5.9%. Deze bevindingen over de verandering van voetvorm kan men in overweging nemen bij het bepalen van de schoenmaat en het ontwerp van de binnenzool van een schoen.

De studie van Tsung et al. (2003) toonde aan dat het contactoppervlak van de achtervoet regio niet significant verandert tussen semi en volledige gewichtsdragende condities. De voetlengte en de voetbreedte stegen significant als men overging van non naar semi naar full weight bearing. De stijging van de voetlengte hangt grotendeels samen met de vermindering in booghoogte en in gemiddelde hoogte (Tsung et al., 2003).

Xiong et al. (2009) deden een gelijkaardige studie. Zij rapporteerden relatief grote veranderingen ter hoogte van de middenvoet in breedte en hoogte vergeleken met de
voorvoet en achtervoet. Bij stijgende gewichtsbelasting (van geen, halve naar volledig gewichtsdragend) zag men zowel bij man (14.94%; 15.10%; 15.13%) als vrouw (14.56%; 14.72%; 14.77%) een toename in de voetlengte, uitgedrukt in percentage van de lichaamsomvang.

1.1.8. Door beweging

De voet moet mobiel zijn. Hij moet zich kunnen aanpassen aan veranderingen op het terrein. Tijdens het gaan zorgt de voet voor een roteren en deroteren van het onderste lidmaat door een elevatie en depressie van de longitudinale boog (Houston et al., 2006). De vorm van de voet verandert bij wandelen en bij sport. (Jelen et al. 2005)

Kayano (1986) mat de mediale boog gedurende de gang en stelde vast dat de lengte 3.7 tot 9.5 mm varieerde tijdens de gang.

Fysieke activiteit, zoals wandelen en lopen leidt tot een verhoging in voetvolume. (Cloughly et al., 1995; Mc Worther et al., 2003). Mc Worther et al. (2003) toonde aan dat het voetvolume significant 2% hoger was na 10 minuten wandelen en 3% hoger na 10 minuten lopen. Chalk et al. (1995) vonden geen significante veranderingen in voetvolume. Toch mag men concluderen dat fysieke activiteit tot een toename in voetvolume leidt. (Kunde et al., 2007).

1.2. Het opmeten van de voet

1.2.1. De mogelijke dimensies

Nauwkeurige, consistent metingen van de voet en enkel geometrie zijn essentieel voor het ontwerpen en fabriceren van goedpassend, functioneel en comfortabel schoeisel.
Lengtes, breedtes en omtrekken van schoen en voet moeten overeenkomen (Clarks, 1976; Pivecka en Laure 1995; Venkatappalah 1997; White 1982). De voetvorm en -maat varieert echter significant van persoon tot persoon. Dit weerspiegelt zich in het benaderen van een verdeling volgens de Gausscurve (Houston et al., 2006).

Witana et al. (2006) benadrukten het belang van klaar en duidelijke definities voor een hoge betrouwbaarheid van metingen. Dit is niet alleen belangrijk voor de reproduceerbaarheid maar ook handig voor de schoenfabrikant. De definitie bepaalt ook precies hoe de waarde fysiek bepaald wordt. Zo kan bv. de voetlengte effectief gemeten worden langs de lengteas van de voet (Kouchi, 2003 ; Baba 1975) of langs een lijn parallel aan lengteas van de voet (Freedman et al., 1946 ; Pheasant, 1988). In de onderstaande tabel volgt een overzicht van de mogelijk te meten afstanden en hoeken met bijhorende definities die in de literatuur beschreven zijn.

<table>
<thead>
<tr>
<th>Afstand (in mm of % FL)</th>
<th>Uitleg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte</td>
<td></td>
</tr>
<tr>
<td>FL = Foot Length</td>
<td>Dit is de afstand van het pterion (meest posterieure punt van de hiel) tot de top van de langste teen.</td>
</tr>
<tr>
<td>MBL = Medial Ball Length</td>
<td>Dit is de afstand van het pterion tot het meest uitstekende punt van het eerste MTP (metatarsophalangeaal) gewricht.</td>
</tr>
<tr>
<td>Of: ball of foot length</td>
<td></td>
</tr>
<tr>
<td>Of: arch length</td>
<td></td>
</tr>
<tr>
<td>LBL = Lateral Ball Length</td>
<td>Dit is de afstand van de hiel tot het vijfde MTP gewricht.</td>
</tr>
<tr>
<td>Of: outside ball of foot length</td>
<td></td>
</tr>
<tr>
<td>Of: heel to fifth toe</td>
<td></td>
</tr>
<tr>
<td>TL = Toe Length</td>
<td>Dit is de afstand van het midden van de ABW tot het einde van de langste teen.</td>
</tr>
<tr>
<td>IL = Instep Length</td>
<td>Dit is de lijn van het dorsale voetuiteinde tot het kruispunt van het scheenbeen met de wreef van de voet.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Heel to medial malleolus</td>
<td>Dit is de afstand van het pterion tot het meest uitstekende punt van de mediale malleolus.</td>
</tr>
<tr>
<td>Heel to lateral malleolus</td>
<td>Dit is de afstand van het pterion tot het meest uitstekende punt van de laterale malleolus.</td>
</tr>
<tr>
<td>Breedte</td>
<td></td>
</tr>
<tr>
<td>BB = Ball of foot Breadth</td>
<td>Dit is de breedste afstand op de voorvoet namelijk de verbindingsslijn tussen MTP I en MTP V.</td>
</tr>
<tr>
<td>Of: ABW = Anatomical Ball Width</td>
<td></td>
</tr>
<tr>
<td>Of: Foot width</td>
<td></td>
</tr>
<tr>
<td>AHW = Anatomical Heel Width</td>
<td>Dit is de parallelline met de ABW, op het wijdste deel van de hiel.</td>
</tr>
<tr>
<td>Bimalleolar width</td>
<td>Dit is de afstand tussen het meest uitstekende punt van de malleolus medialis en lateralis.</td>
</tr>
<tr>
<td>Midfoot width</td>
<td>Dit is de maximale horizontale breedte door de voet op 50% van de voetlengte, gerekend van het pterion.</td>
</tr>
<tr>
<td>Hoogte</td>
<td></td>
</tr>
<tr>
<td>IH= Instep Height</td>
<td>Dit is de hoogte, mediaal gemeten, vanaf het kruispunt van de voetrug met het scheenbeen tot aan de vloer.</td>
</tr>
<tr>
<td>Of: Dorsal arch height</td>
<td></td>
</tr>
<tr>
<td>TH= Toe Height</td>
<td>Dit is de afstand van de hoogte tussen de lijn aan de plantaire zijde en de lijn aan de dorsale zijde van de voet.</td>
</tr>
<tr>
<td>Medial malleolus height</td>
<td>Dit is de verticale afstand van de vloer tot het meest uitstekende punt op de mediale malleolus.</td>
</tr>
<tr>
<td>Lateral malleolus height</td>
<td>Dit is de verticale afstand van de vloer tot het meest uitstekende punt op de laterale malleolus.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Height at 50% foot length</td>
<td>Dit is de maximale hoogte op 50% van de voetlengte, gerekend vanaf het pterion.</td>
</tr>
<tr>
<td>Girth</td>
<td></td>
</tr>
<tr>
<td>BG = Ball Girth</td>
<td>Dit is de maximale omtrek over het eerste en vijfde MTP gewrichtsuitsteeksel.</td>
</tr>
<tr>
<td>Of: Ball of foot circumference</td>
<td></td>
</tr>
<tr>
<td>AG = Ankle Girth</td>
<td>Dit is de horizontale omtrek van de enkel, op het kruispunt van de voet met het been.</td>
</tr>
<tr>
<td>Instep Girth</td>
<td>Dit is de smalste omtrek over het uitsteeksel thv van het middelste cuneiforme.</td>
</tr>
<tr>
<td>Long heel Girth</td>
<td>Dit is de omtrek vertrekkend van het instappunt (het kruispunt van de voetrug met het schenenbeen) over het uiterste dorsale en distale hielpunt.</td>
</tr>
<tr>
<td>Short heel Girth</td>
<td>De minimale omtrek vertrekkend vanaf de voetrug over het uiterste dorsale en distale hielpunt.</td>
</tr>
<tr>
<td>Waist Girth</td>
<td>De omtrek rond het geschatte midden van de metatarsalen.</td>
</tr>
<tr>
<td>Hoek</td>
<td></td>
</tr>
<tr>
<td>Footprint angle (°)</td>
<td>Dit is de hoek tussen de mediale lijn van de voorvoet naar de hiel en de lijn getekend naar het punt van de mediale concaviteit van de boog.</td>
</tr>
<tr>
<td>BA = Ball Angle (°)</td>
<td>Dit is de hoek tussen de horizontale lijn en de schuine breedtelijn van de voorvoet. Hierbij maakt met gebruik van de sinusregel: de lengte van de overstaande zijde (=MBL-LBL) gedeeld door de lengte van de schuine zijde van de driehoek (= ABW) Het is ook de hoek tussen de ABW- lijn en de loodlijn op de mediale lengte as door de eerste metaatarsaalkop.</td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>SI= Staheli Index</td>
<td>Dit is het quotiënt tussen de plantaire boogbreedte en de hielbreedte.</td>
</tr>
</tbody>
</table>
Chippaux-Smirak Index Dit is het quotiënt tussen het smalste deel van de mediale longitudinale boog en het wijdste deel van de voorvoet.

Arch Index Dit is de verhouding van 1/3\textdegree{} van de mediale ball lengte op de volledige ball lengte van de voet.

Tabel 1: Overzicht definities van mogelijk te meten dimensies (Krauss et al., 2008; Mauch et al. 2008; Yu en Tu et al., 2008; Witana et al., 2006; Pivecka en Laure, 1995; Menz en Munteanu, 2005).

1.2.2. De mogelijk te gebruiken toestellen

Er zijn vele studies die de verschillende technieken beschrijven om de dimensies van de voet te meten (Freedman et al., 1946; Rossi 1983; Hawes en Sovak, 1994; Kouchi 2003; Bunch 1988; Liu et al. 1999). Toch is er geen techniek die duidelijk beter is dan de andere (Billes et al., 2007). Elke klinische methode meet hoofdzakelijk in één bepaald vlak. Daarom zijn verschillende methoden nodig om een volledig beeld van een voet te krijgen wat veel tijd in beslag neemt (Billes et al., 2007).

Het ISO of de Internationale Organisatie voor Standaardisatie stelde het nauwkeurigheidsniveau voor voetmetingen vast op 0.2 cm (Yu en Tu, 2008).

1.2.2.1. 1D- metingen

Anthropometers en plastieken meetlinten worden gewoonlijk gebruikt om metingen bij mensen te verkrijgen (Hu et al., 2007). Met behulp van een vlakke liniaal, schuifpasser en meetlint kan men de belangrijkste antropometrische maten, namelijk voetlengte, -breedte, - hoogte en -omtrek, bepalen. De meetresultaten kunnen echter variëren door onregelmatigheden in positionering (Liu et al., 1999; Rossi 1983; Parham et al. 2007).
Voetafdrukken, callipers en meetlinten hebben als nadeel dat ze veel tijd vragen en een lage reproduceerbaarheid hebben (Liu et al., 1999).

Cheng et al. (1997) bepaalden voetlengte en voetbreedte bij kinderen met behulp van elektronische callipers. Deze twee maten kunnen ook bekomen worden door een Brannock toestel te gebruiken of de afstand op een voetomlijning te bepalen zoals bij Luximon et al. (2003; 2005). Naast het Brannock toestel (Brannock, 2006; Xiong et al., 2009) bestaan er nog andere toestellen zoals de Ritz stick (Ritz, 2006) en het Scholl toestel (Hawes en Sovak, 1994; Rossi, 1983).

Als men de voet in een toestel met Warehouse Management Software (WMS) plaatst, wordt de schoenmaat automatisch bepaald volgens het French systeem. Dit toestel heeft twee elektrische motoren die twee metalen baren aan een constante kracht voortduwen. Door de ene wordt de voetlengte bepaald terwijl de andere de voorvoetbreedte meet (Chanteleau en Ede, 2002).

Manna et al. (2001) gebruikten een standaard anthropometer om de voetlengte en de calliper om de voorvoet-, hielbreedte en enkelhoogte te bepalen. Dit gebeurde volgens een standaard anthropometrische methode die beschreven is door Ernakova et al. (1982). De schoenmaker gebruikt traditioneel een tape of meetlint om de omtrekmetingen te bepalen. Tape heeft echter zijn nadelen. Het kan uitgerokken worden en door de oneffen contouren van de voet kan tape deze niet volledig bedekken. Er zitten altijd wel hoeken en spleten tussen de tape en het huidoppervlak. Om dit te minimaliseren, tracht men de vorm na te bootsen door convexe omhulsels of splines te gebruiken (Witana et al. 2006; Zhao et al., 2008).

Kayano (1986) en Umeki (1991) maten de veranderingen van de mediale booglengte met een toestel dat op de huid was gevestigd. Door mogelijke verschuivingen op de huid, wordt de nauwkeurigheid van de metingen echter beperkt (Maslen en Ackland, 1994; Cheze et al. 1995; Reinschmidt et al. 1997).
1.2.2.2. 2D- informatie

In de studie van Mauch et al. (2008) gebruikte men een pedograph om de voetafdrukken vast te leggen.

Menz en Munteanu (2005) maakten een statische voetafdruk te maken en met behulp van carbonpapier, een computer graphics tablet en graphics. Aan de hand hiervan werd de Arch Index berekend.

Mochimaru en Kouchi (1997) tekenden de voetuitlijning met een scriber en duidden 5 landmarks aan. Dit werd gescand met een digitizer. Hieruit kon men de middenas van de voet in een anterieur, een midden en posterieur deel indelen waaruit men vervolgens de flexiehoek met de drie regressiellijn met de middenas van de voet.

1.2.2.3. Een 3D- beeld uit 2D- informatie

In de geologie bestaan er vele methodes om een 3D- beeld uit 2D- informatie te verkrijgen. Technieken zoals photogrammetry, Synthetic Aperture Radar Interferometry (InSAR), radar altimetry en Light Detection And Ranging (LIDAR) zijn echter enorm duur. (Liu et al. 2003) Dit geldt ook voor scanners. Daarom zoekt men alternatieven om deze dure apparatuur te omzeilen en toch een driedimensioneel beeld te verkrijgen.

Liu et al. (2003) gebruikte de shading- from- shading techniek waarbij de schaduwinformatie van een enkel beeld gebruikt werd om de oppervlakte topografie te bepalen. Deze techniek werd ook reeds gebruikt om het gezichtsoppervlak in kaart te brengen (Choi et al. 2002).

Een tweede techniek is de herkenningsmethode waarbij simpele geometrische figuren zoals bv. cilinders herkend en gelokaliseerd worden. Met behulp van een computer- aided design wordt het mogelijk om 3D- modellen te maken van orthogonale beelden. De afstanden worden dan met infrarood bepaald (Triboulet en Chavand, 1996; Tam en Atkinson, 2003).

Luximon en Goonetilleke (2004) maakten gebruik van deze methode om een standaardvorm van de voet te maken. De centrumlijn van de hiel werd bepaald en de voet werd in 99 zones ingedeeld die telkens 1% van de voetlengte voorstelden. In de zone op 52% van de rechter voetlengte en 55% van de linker voetlengte werd de hoogte
bepaald en op die manier werd de hoogte per zone berekend. Deze voorspelde vorm had een nauwkeurigheid van 2.1 mm voor de linker en 2.4 mm voor de rechtervoet. Om deze standaardvoetvorm te maken had men de voetlengte, de voetbreedte, de voethoogte en de curvatuur van de voet nodig. Hung et al. (2004) namen hiervoor digitale foto’s, maar op die manier gaat, volgens Luximon et al. (2003), veel waardevolle informatie over de voetvorm verloren. Deze foto’s kunnen effectiever gebruikt worden door op basis van een boven- en onderaanzicht een voetuitlijning te maken en op basis van een zijnaanzicht het profiel of de hoogte over de hele voetlengte te bepalen. Luximon et al. (2003) beschreef twee methodes: bij de eerste had men de voetuitlijning en de dorsale voethoogte nodig en bij de tweede de voetuitlijning en het profiel van de voet. De tweede methode bleek preciezer te zijn.

1.2.2.4. 3D-informatie

a) Afdrukken

De vorm van de voet wordt verkregen wanneer de persoon in een boks met schuimrubber gaat staan (Pribanic et al., 2010).

Vele auteurs maken gebruik van het ingipsen om een negatieve impressie van de voetvorm te krijgen voor bv. het maken van orthesen (Kogler et al., 1996).
Het gebruik van gipsvormen van de voet minimaliseert de artefacten die men verkrijgt door menselijke bewegingen of voetdeformaties die bekomen worden door de sway tijdens het scannen en meten (Corner en Hu, 1998; Tsung et al., 2003; Winkel en Jorgensen, 1986; Witana et al., 2006).

Tsung et al. (2003) namen gipsafdrukken van de voet in volledige, halve en niet-gewichtdragende condities. Deze gipsafdrukken werden vervolgens gescand met een optical digitizer en geïmporteerd in een prosthetics-orthotics computer aided design system om een reeks metingen uit te voeren.

In de studie van Luo et al. (2009) bracht men een elastisch gipsverband aan onder minimale spanning volgens de techniek van Henderson en Cambell (1969) om vervorming van de zachte weefsels en verplaatsing van de tenen te voorkomen. Wanneer dit hard was, verkreeg men snel een positief model met gips die normaal voor afdrukken van tanden gebruikt wordt.

b) 3D- laser scanners

De scanner heeft vele voordelen. Het is meer gestandaardiseerd dan andere klinische metingen (De Mits et al., accepted 2010). Zo rapporteerden Xiong et al. (2008) dat de 3D-foot scanner geschikter was om de hoogte van de middenvoet te meten. Een manuele hoogtemeting werd ervaren als onbetrouwbaar. De manuele meting is tijdsrovend waardoor de proefpersoon te lang zou moeten stilstaan. Doordat men in één scan alle metingen kan nemen die nodig zijn om een volledig beeld van de voet te creëren, bespaart men heel wat tijd. De patiënt wordt niet blootgesteld aan ioniserende stralen en er zijn minder financiële middelen nodig dan bij een RX foto (De Mits et al., accepted 2010). Deze 3D-meettoestellen maken het ook economisch
mogelijk om een grote populatie onder de loep te nemen (Mauch et al., 2009) en zijn niet invasief (Jelen et al., 2005).

Laser scan technologie heeft een nauwkeurigheid binnen de 1mm (Blais et al., 2000; Gartner 1999; Houle et al. 1997; Wehr 1999; Witana 2006). De nauwkeurigheid van een scanner hangt af van het te scannen object en de gebruikte methode (Luximon en Goonetilleke, 2004). Waar men bij het scannen echter geen rekening mee houdt, is het mogelijke effect van body sway. Dit zou de betrouwbaarheid van het beeld en de nauwkeurigheid van de verkregen informatie kunnen beïnvloeden (Corner en Hu, 1997).

Lange tijd is er weerstand geweest om gecomputeriseerde technieken te gebruiken omwille van twijfels over de nauwkeurigheid en bleef men vertrouwen op manuele metingen. Men stelde de mogelijkheid om de exacte anatomische plaatsen te lokaliseren voor de metingen in vraag (Zhao et al. 2008; National Research Council, 1997). Er is geen absolute zekerheid dat de herkenningstechnieken de absoluut juiste anatomische locaties bepalen (Zhao et al., 2008). Yahara et al. (2005) schreven dat het juist lokaliseren van de punten afhangt van de vaardigheden van de onderzoeker. Zij toonden ook aan dat, vergeleken met manuele palpation, de onderlinge variaties in voetvorm het gebruik van algoritmen moeilijker maken. Collier en Nurre (1999) schreven dat de fouten, gemaakt door het gebruik van triangulatie, de nauwkeurigheid van de laser scanner kan beïnvloeden maar dit is maar in de grote orde van micrometers.

Zhao et al. (2008) toonden aan dat het verschil tussen resultaten van simulatied en manuele metingen kleiner is dan 4 mm. Manuele metingen geven over het algemeen kleinere waarden dan gesimuleerde (Witana et al., 2006). Mogelijke redenen voor deze verschillen zijn de mogelijke discontinuïteiten bij het verzamelen van de te meten punten: de gekozen punten die op de lijn van een meetlint of tape liggen zijn niet noodzakelijk die punten die de scanner neemt om een omtrek te bepalen (Zhao et al., 2008).

Bij manuele metingen heeft men meer controle over de stand van de tenen terwijl men
bij het scannen geen controle heeft over de spreiding en flexie van de tenen. Dit kan de meetwaarde van de breedte en lengte van de voet beïnvloeden (Xiong et al., 2008). Bij gecomputeriseerde systemen wordt de omtrek bepaald door de totale punt-tot-punt afstand te berekenen. Deze benadering zorgt voor een gehoekte lijn omheen de omtrek. Dit in tegenstelling tot een tape die, met behulp van een splint, een vloeiende curve maakt zonder abrupte veranderingen (Zhao et al., 2008).

- **De verschillende 3D- laser scanners**

Houston et al. (2006) scanden met een *3D- Pedorthics Optical Digitizer* (*Cyberware Inc, Monterey California*). Dezelfde digitizer werd gebruikt in de studie van Luo (2009) om de gipsvormen van voeten te scannen. De data werden ingebracht in het VA Pedorthics
CAD System. Dit toestel heeft een nauwkeurigheid van 0,5 mm of groter. (Houston et al., 2006) Wanneer dit toestel gecombineerd werd met een computer aided design system in digitizing and measuring fiducial pedal dimensions kon men een nauwkeurigheid van 0.67 mm of beter langs de longitudinale x-as van de voet en van 0.23mm of beter langs de y en z-as noteren. Het toestel bezit een krachtenplatvorm en een leuning die de patiënt steun geeft en waarmee hij zijn gewicht van het platvorm kan onttalen. Meer dan 60 000 punten over het oppervlak van de voet werden in minder dan 9 seconden gecapteerd (Houston et al., 2006; Luo et al., 2009).

Mauch et al. (2008; 2009) en Krauss et al. (2007; 2008) maten met de 3D-foot scanner Pedus (Human Solutions Inc., Kaiserslautern, Germany) en ze analyseerden de data met Scan Worx software 2.8.5 SL1 (Human Solutions, Inc, Kaiserslautern, Germany). Deze scanner bevat de voet in 150 000 punten (Mauch et al., 2009).

Liu et al. (1999; 2004) gebruikten de FastSCAN (Polhemus, Colchester Vermont, USA) om op een snelle manier de 3D punten op het oppervlak te verzamelen. Dit is een electromagnetisch digitizing toestel.

Yu en Tu (2008) maakten gebruik van de Gemini 3D-foot scanner (by ITRI, Technology Research Institute of Taiwan) en voor de verwerking TriD software. De Gemini 3D foot scanner (by ITRI, Technology Research Institute of Taiwan) had 6 seconden nodig om een scan te vervolledigen. De nauwkeurigheid was groter dan 0.1 mm (Yu en Tu, 2008).

Borchers et al. (1995) gebruikten een commercial light striping laser digitizer. Tsung et al. (2003) hanteerden een commercial optical 3D digitizing system (COMET 100, Steinbichler, Germany) die een beperkte scanhoek bezat waardoor het geheel in Poly Work (innov Metric Canada) moest worden geïmporteerd om een volledig 3D beeld te creëren. De verkregen puntenwolk werd met Surfacer Version 10.0 (Imageware, EDS, USA) getransformeerd in het voetoppervlak. De commercial optical 3D digitizing system (COMET 100, Steinbichler, Germany) had volgens de fabrikant een nauwkeurigheid van 0.025mm (Tsung et al, 2003).

nauwkeurigheid van 1 mm werden verkregen (I-Ware Laboratory Co. Ltd, Osaka, Japan). De Mits et al. (accepted, 2010) onderzochten de validiteit en betrouwbaarheid van de Infoot digitizer (Infoot USB, standard type, I-Ware Laboratory Co., Ltd, Osaka, Japan). Om de validiteit te meten, werden de verkregen data vergeleken met een gouden standaard, namelijk dorso- plantaire en sagitale RX foto’s genomen onder belasting. De data werden ook met enkele klinische metingen vergeleken. Hiervoor mat men de voetlengte en de voorvoetbreedte met een caliper of schuifpasser (Seca GmbH, Hamburg, Germany). De hoogte van het os naviculare en van de mediale malleolus werden met een meetlat gemeten (Seca GmbH, Hamburg, Germany). Resultaten uit deze studie toonden een goede validiteit aan en een goede betrouwbaarheid. De hoogste betrouwbaarheid (ICC>0.9) zag men voor de lengte, breedte en omtrekmetingen. Goede betrouwbaarheid (ICC>0.8) voor de hoogtemetingen en een lagere betrouwbaarheid voor de hoekmetingen. Men mag de Infoot 3D foot digitizer als een waardevol middel zien om metingen te doen (De Mits et al., accepted 2010).

- Plaatsing en registratie van de landmarks

Anatomische landmarks kunnen volgens de klassieke methode manueel worden aangebracht. Het is ook mogelijk om dit automatisch door het toestel te laten doen. Slechts enkelen kunnen automatisch gedetecteerd worden. De landmarks komen dan niet exact overeen met de manuele methode. Bij de automatische methode laat de complete puntenwolk, verkregen door de scanner, het toe om de initiële landmarks te reconstrueren. Hierna wordt het mogelijk om de wolk te splitsen langs de x- en z- as in drie subwolken: een bovenste, een onder-achteraan en een onder- vooraan. Vervolgens worden de meer specifieke punten gezocht in elke subwolk (Garcia-Hernandez et al., 2005).
Liu et al. (2004) benadrukten dat de anatomische landmarks belangrijk zijn om de voetvorm en -bewegingen te analyseren. Men gebruikt dezelfde principes als bij stereophotogrammetrie. De landmarks kunnen duidelijk van elkaar onderscheiden worden door de onderliggende spieren en botstructuren. De laterale en mediale malleolus zijn makkelijk te herkennen. Ook de onderzijde van de voet heeft vier typische landmarks. Deze zijn: de convexe regio gevormd door de distale uiteinden van de eerste en tweede metatarsaal, het distale uiteinde van de vijfde metatarsaal, de concave regio onder de boog en de hiel. Hiervoor kan men de Koenderink shape index gebruiken. Deze index maakt het mogelijk om de vormen van het oppervlak zoals convexiteit en concavititeit van elkaar te onderscheiden. (Koenderink en van Doorn, 1992) Liu et al. (2004) vereenvoudigden de Koenderink shape index van negen naar drie oppervlaktetypes. Elk vormtype kreeg een bepaalde kleur waarbij de mate van donkerheid verandert naargelang de diepte. Rood staat voor convexe regio’s en blauw voor concave regio’s. De groene zones zijn zadelvormig en de witte kleur benadrukt de overgangszones tussen deze drie regio’s. Deze kaart met krommingen is een efficiënte manier om het voetoppervlak dat door de FastSCAN of andere 3D-laser scanners gescand wordt, te karakteriseren. De landmarks kunnen gemakkelijk gelokaliseerd worden met een goede nauwkeurigheid. Om de nauwkeurigheid van een meting uit te zoeken, gebruikt men een testmodel van plastiek. Toch zijn verdere studies naar de mate van reproduceerbaarheid nodig. Deze studie stelde dat er minimum 10 punten nodig zijn. Een te klein aantal zorgt er anders voor dat de coëfficiënten onbetrouwbaar zijn. Een dichtheid van 40 punten per vierkante cm is een vereiste om gemakkelijk te meten. De fout bij de studie met de FastSCAN was 0.02 mm. Dit is goed als men weet dat er een ruis met een standaarddeviatie van ongeveer 0.2 mm nog aanvaardbare landmarks oplevert (Liu et al., 2004).

Figuur 1: De Infoot (Garcia-Hernandez, 2005)
- Werking scanner

Bij de Yeti I foot scanner (Vorum Research Corporation, 2000) zenden vier lasers een lichtstraal uit op het oppervlak. Acht camera’s leggen de beelden van het gereflecteerde laserlicht vast op elke sectie langs het oppervlak. Deze camerabeelden worden verwerkt door de 3D- coördinaten van de punten op elke sectie te bepalen. De punten worden gelokaliseerd op verschillende doorsneden over de lengte van de voet met een tussenruimte van 1mm. Elke doorsnede bevat 360 punten (Xiong et al., 2008; Witana et al., 2006; Zhao et al., 2008).

De 3D- Pedorthics Optical Digitizer (Cyberware Inc, Monterey California) heeft drie laser scankoppen, gemonteerd op twee synchroon gestuurde horizontale rails. De ruimtelijke geometrie en de oppervlakte topografie van de voet werd verkregen door een straal infrarood licht van de twee dorsale scankoppen en de plantaire scankop te projecteren op de voet van de proefpersoon, die op de transparante plaat stond. Aan de hand van de verschillen in intensiteit van het licht dat gereflecteerd wordt van de huid en de geplaatsde photoreflecterende markers is het mogelijk om de ruimtelijke locaties van anatomische punten te detecteren (Houston et al., 2006; Luo et al., 2009).

De 3D- Infoot laser scanner (Scanner Infoot, IWL Inc., Minoh City, Osaka, Japan) is een actieve scanner die stralenbundels laserlicht uitzendt en de reflecties op het object detecteert met acht camera’s. Deze scanner bevat vier semiconductor lasers van klasse 2M (CW 650 nm) met een maximale power van 3 mWW. Het heeft acht CCD camera’s die een maximale resolutie van 1mm voorzien (Hömme et al., 2007). Ook Krauss beschreef een ruimtelijke verdeling van ongeveer 1 mm. Leng en Du (2005) beschreven de Infoot met vier 670 nm Semiconductor Laser projectors. In het artikel van Rupérez et al. (2009) beschrijft men dezelfde scanner maar zou het twee laser diodes en acht camera’s hebben. Het scanen duurt volgens Kouchi en Mochimaru (2001) 10 seconden terwijl bij andere auteurs (De Mits et al., accepted) vijf seconden genoteerd werd.

In de studie van Pribanic et al. (2010) wordt het scanprincipe grondiger uitgelegd. Een 3D scanner werkt door het beeld te scannen vanuit verschillende hoeken. Dit is om het probleem van schaduw of niet zichtbare regio’s te vermijden. Het 3D- scannen is gebaseerd op gestructureerd licht om de driedimensionale vorm te registreren. De codes die over het algemeen gebruikt worden om sleutels te decoderen kunnen uit enkel- of meervoudige vormen bestaan zoals bv. strepen of spleten (Tehrani et al., 2008; Pagés et al., 2005), lijnen (Kawasaki et al., 2008; Koninckx en Van Gool, 2006), cirkels (Griffin et al., 1992; Albitar et al., 2007), vierkanten (Ito en Ishii, 1995) welke elk een bepaalde kleur of grijssintentsiteit hebben. Het hoofdprobleem is de hoge
sensitiviteit voor gekleurde oppervlakken en de misinterpretatie van oppervlakdiscontinuïteiten (door te scherpe veranderingen in de diepte van het object). Dit kan grotendeels verholpen worden dankzij kleuren of reflectie calibratie (Caspi et al., 1998; Forster, 2006) en dynamisch programmeren (Fechteler en Eisert, 2009; Zhang et al., 2002). Een andere categorie is het direct coderen waar puntenpatronen gecodeerd zijn door het gebruik van een grijsspectrum intensiteit (Carrihill en Hummel, 1985) of kleuren (Wust en Capson, 1991), waardoor deze methode enkel gebruikt kan worden bij neutraal gekleurde objecten. Soms heeft men nood aan ingewikkelde software om het kleurenspectrum te projecteren (Tajima en Iwakawa, 1990).

De puntenwolk, die door de scan verkregen werd, wordt vervolgens geimporteerd in een programma om de coördinaten te reconstrueren. Deze coördinaten worden beschreven als volgt: de x-as beschrijft de coördinaten langs de longitudinale as., de y-as langs de breedte-as en de z-as langs de hoogte-as van de voet (Hömme, et al., 2007).

Het basisprincipe van de scantechnologie bestaat uit driehoeksmetingen om de voetvorm aan de hand van de coördinaten van het oppervlakte te reconstrueren. Om deze coördinaten te verkrijgen worden curve fitting technieken toegepast. Dit gebeurt na het verwerken van eventueel gekende fouten van het scansysteem (Carocci et al., 1997).

c) Dynamische scanner

Kimura et al. (2005) ontwikkelden een systeem dat het mogelijk maakt om, in tegenstelling tot alle andere 3D scansystemen, tijdens het wandelen de voetvorm te registreren. De gewone 3D laser scanmethoden hebben enkele seconden tijd nodig om
aan de hand van driehoeksmetingen tussen de camera en de laserprojector een beeld van de voetvorm te maken. Het systeem van Kimura et al. (2005) reconstrueert de 3D vorm van het object aan de hand van driehoeksmetingen met meerdere beelden en meerdere camera’s in het veld van de computer visie. Om de 70msec worden de 8 camera’s getriggerd om op deze manier een zo compleet mogelijk gesynchroniseerd beeld te krijgen. De drie hoofddoorsneden van de voet, namelijk de doorsnede ter hoogte van de voorvoet, de instap en de hiel, krijgen elk een eigen kleur. Deze gekleurde regio’s worden eerst gedetecteerd op een tweedimensionale beeld met een matching methode en vervolgens wordt de centerlijn van elke gekleurde regio geschat. Ze maten de rechtervoet bij vier proefpersonen en zagen dezelfde cross-sectionele veranderingen in vorm en dimensies. Het systeem kon enkel de beelden van de bovenzijde van de voet registreren en in de toekomst wil men dit van de voetzool verkrijgen. Het systeem moet dus nog verfijnd worden. De camera’s van het toestel dat door Kimura et al. (2005) ontworpen werd om tijdens het wandelen de voetvorm te registreren, hebben een nauwkeurigheid van minder dan 1mm.

d) RX opnamen

Op RX–foto’s kan men de exacte afstanden van de botstructuren bepalen. Het is een gouden standaard (Menz en Menteanu, 2005). Nadeel hierbij is dat het duur is, tijd kost en dat de patiënt aan ioniserende stralen blootgesteld wordt (Mall et al., 2007).

e) Water-verplaatsingsmethode

In de studie van Manna et al. (2001) werd het volume van de voet berekend door te berekenen hoeveel water er in de boks verplaatst was na het inbrengen van de voet.

f) Free Form Deformation techniek

In de studie van Mochimaru et al. (2000) wordt het met de Free Form Deformation techniek of FFD mogelijk om de voetvorm te analyseren en te classificeren in groepen.
De vormen worden vlot geregistreerd doordat een raster van punten vlot langs het gipsmodel voorbijgaat (Sedenberg, 1986).

1.2.2.5. Foot Posture Index

De Foot Posture Index of FPI is een systeem om de statische voetpostuur te observeren en te beoordelen. Acht criteria worden in ontspannen, bipodale stand gemeten: palpatie talus, supralaterale en infralaterale malleolaire curve, Helbings sign, alignement frontale vlak calcaneus, uitsteeksel in regio talonaviculair gewricht, congruentie mediale longitudinale boog, congruentie laterale boord van de voet en ab- en adductie van de voorvoet tov. de achtervoet (Menz en Munteanu, 2005).

2. De Schoen

2.1. Soorten schoenen vermeld in de literatuur

Sherrington en Menz (2003) deelden schoeisel in op basis van enkele schoenkarakteristieken aan de hand van een gestandaardiseerde footwear assessment form (Menz en Sherrington, 2000). Deze waren de schoenstijl, de hielhoogte, de manier van fixatie, de stijfheid van de heel counter, de longitudinale zool rigiditeit, de flexiegroeve en het profielpatroon. Ze onderscheidden 16 schoenstijlen zoals onder andere slippers, wandelschoenen, sandalen, muiltjes, oxford schoenen, rugloze slippers, teenslippers, clogs, atletische schoenen, pumps, ugg botten of blootsvoets. De
hielhoogte werd onderverdeeld in lager dan 2.5 cm, 2.5 tot 5 cm en hoger dan 5 cm. De wijze van fixatie waren veters, velcro, ritsen, gespen, of niks. De stijfheid van de heel counter werd bepaald door een stevige druk te geven op deze zone en werd ingedeeld op basis van de mate van het verplaatsen van de heel counter, namelijk meer of minder dan 45°. Op dezelfde wijze werd de longitudinale zoolrigiditeit ingedeeld, namelijk het al dan niet 45° kunnen omplooien van de zool in horizontaal vlak. De flexiegroeve bevond zich ofwel ter hoogte van de metatarsalen ofwel ter hoogte van de tussen de proximale en metatarsalegewrichten. Het profiel was ofwel met textuur, glad, parieel of volledig belopen. De zoolhardheid werd ingedeeld volgens zacht, stevig of hard nadat de onderzoeker een stevige druk op de binnenzijde van de hiel van de schoen gaf. Het frequenst zagen zij slippers, wandelschoenen en sandalen. Meestal was er geen fixatie (63%) en zag men zeer flexibele zolen (43%) en heel counters (43%). Zachte zolen hebben een invloed op het wandelen (Robbins et al., 1992) en hoge heel counters geven meer stabiliteit dan standaard of laag uitgesneden schoeisel (Lord et al., 1999). Schoenen met inadequate slipweerstand van de buitenzool verhogen de kans op vallen. (Menz et al., 2001). Menz en Lord (1999) zagen dat de ideale veilige schoen, althans voor ouderen, een stevige hiel, een hoge heel counter, een dunne, sterke middenzool en een zool met textuur bezit.

Menz en Sherrington (2000) waren initieel begonnen met zeven basis schoenstijlen zoals de laars, de klomp, de sandaal, de Oxford schoen, de slipper, het muiltje en de mocassin. Opdat niet alle schoenen in een categorie thuishoor den, werden deze aangevuld met pumpschoenen, atletische schoeisel, wandelschoenen, rugloze slippers, teenslippers en crocks.

Menz et al. (2001) kozen specifiek twee schoenstijlen om te beoordelen: een geveterde Oxford herenschoen met rubberen zool en een lederen damesmuiltje met hielhoogte van 4.5 cm.

Garcia Hernandez et al. (2005) bepaalden zelf acht schoenstijlen uit de mode van dat jaar en lieten hun proefpersonen elke stijl passen om deze dan aan de hand van een vragenlijst te beoordelen op de mate van comfort.

Nacher et al. (2006) bepaalden schoenklasses op basis van de leest, de vorm van de teencup, de flexibiliteit van het bovenste deel van de schoen, de wijze van fixatie en de zool. De schoenleest wordt hoofdzakelijk bepaald door de hielhoogte en schoenstijl. Men deelde ze in in wijd, standaard en smal. De teencup had drie vormtypes: vierkant, rond of gepunt. De flexibiliteit van het bovendeel is de hoofdfactor die het vervormen van de schoen aan de voetvorm toelaat. De sluitingen werden ingedeeld naar de mate van aansluiten: laag (elastisch), middelmatig (riem) en hoog (veters). Ook de zool werd op
basis van hardheid in drie categorieën ingedeeld. De indeling bood echter geen hoge graad van nauwkeurigheid. Elke klasse bevatte typisch schoeisel dat onveranderd bleef op de markt over de jaren heen. Zo creëerde men casual damesschoenen, casual herenschoenen, loopschoenen en andere. De casual schoen definieerde men als de dagelijkse schoen voor jonge vrouwen en mannen met een hakhoogte van minder dan 30 mm.

2.2. Schoenontwerp

Het produceren van de juiste schoen is een complex proces wat bemoeilijkt wordt door de massaproductie en de opgelegde tijdslimiet van de economie (Luximon et al., 2003). Kleine veranderingen in het ontwerp kunnen een significante invloed hebben op de perceptie. (Alcantara et al., 2005)

Een fatsoenlijke pasvorm wordt bereikt als de schoenvorm de voetvorm benadert (Janisse, 1992). Het eerste wat een schoenverkoper zou moeten doen, is kijken naar de voetvorm (Rossi en Tennant, 1984). De voet heeft een onregelmatige vorm die moet passen in een voorgevormde standaardvorm. Daarom is het nuttig de correcte steunpunten van de voet te kunnen lokaliseren zodat deze overeen zouden komen met de steunpunten in het schoeisel. Als de schoen de voet op de juiste punten vasthoudt en de vrijheidsgraden van de voet in de schoen verminderd wordt, verkrijgt men een betere functionaliteit van de voet in de schoen. (Luximon et al., 2003)

Goed passend schoeisel is niet alleen afhankelijk van de breedte maar ook van de lengte en hoogte dimensies van de achter-, midden- en voorvoetregios (Goonetilleke en Luximon 2001; Luximon 2003). Luximon et al. (2005) schreef dat zowel voorvoet-, hielbreedte, instaphoogte en instapomtrek noodzakelijk om de schoen goed te doen passen. Aan de hand van allometrie kan men het fenomeen beschrijven waarbij een stijgende voetlengte geassocieerd wordt met een relatieve vermindering in breedte-
hoogtedimensies. (Anil et al., 1997; Manfio en Avila, 2003). Hoge brede voeten vindt men voornamelijk bij kleine maten terwijl lange smalle voeten eerder bij grote maten voorkomen (Krauss et al., 2008).

Voor eenzelfde voetlengte zijn naast verschillen in breedtemetingen ook nog andere duidelijke verschillen tussen voeten met dezelfde maat. Metingen zoals lengte van hiel tot voorvoet (MBL), voorvoethoek en instaplengte zijn belangrijk om een goed alignement tussen de voet en leest te garanderen. Het gebruik van een classificatie volgens voettype voor schoenontwerp is dus aan te bevelen (Krauss et al., 2008).

Mc Worther et al. (2003) toonden aan dat de stijging in voetvolume tijdens fysieke activiteit hoger was bij mensen die te grote schoenen droegen. In het schoenontwerp dient men bijgevolg rekening te houden met de volumeveranderingen aangezien dit het schoencomfort, de pasvorm en andere functionele aspecten beïnvloedt. Door de stijging in het volume gaat de schoen strakker zitten.

Verkopers dienen de klanten erop te wijzen dat men niet alleen op de voetlengte maar ook op de gewrichten, de tenen, de ruimte voor de voorvoet, de instap, de quarter en de hiel belangrijk zijn voor een goed passende schoen (Parker, 1996).

2.2.1. De leest

De leest is een drie- dimensioneel model van de voet waarop alle elementen van de schoen geconstrueerd worden (Mc Poil, 2000). Het wordt gezien als de basis van het schoenontwerp (Luximon et al., 2003). Cavanagh (1980) beschreef de leest als het hart van de schoen. Het moet de vorm van de voet benaderen (Luximon et al., 2003, Mc Poil, 2000). Het is het meest complexe deel van het hele productieproces van de schoen en het is verantwoordelijk voor een goeie pasvorm en stijl (Clarks, 1989).

Het assenstelsel voor een leest wordt zo gedefinieerd dat de middellijn van de leest overeenstemt met de middellijn van de voet. Het oorsprongs punt is het meest posterieure punt van de voet of het hielpunt. Het xy- vlak wordt bepaald door drie punten: het laagste punt van de LLB, de LMB en de hiel van de leest. De x- as is evenwijdig aan de rechte door de punten LMB en LLB (Mochimaru, 2000).

Het silhouet van een schoen, waartoe de midden- en buitenzool behoort, hangt voornamelijk af van de omtrek van de leest (Janisse, 1992). Een andere karakteristiek die niet genegeerd mag worden bij het leestontwerp, is de mate van outflare.

Ondanks dezelfde voetlengte, ziet men onderling veel verschillen. Daarom raadt men aan om leesten te ontwikkelen voor elk voettype afzonderlijk (Krauss, et al., 2008 en Wünderlich en Cavanagh, 2001). Dit zou een betere pasvorm kunnen garanderen voor de grote meerderheid van het publiek (Kouchi, 1995). Wanneer men de leest aan de voorvoet- en hielbreedte bredere zou maken, zou dit ook een betere pasvorm bieden voor een groter publiek (Houston et al., 2006). Als de leest zou gemaakt worden volgens de categorieën in voetvorm (met name smal, breed, U-vorm en V-vorm), zou de kwaliteit van de pasvorm van schoeisel significant stijgen voor een groot aantal mensen. Mensen zouden dus een verstandige keuze moeten maken op basis van de leest van de schoen. Nu wordt de leest nog teveel met een recht lineaire regressie benaderd (Houston et al., 2006). De grootste verschillen tussen de vorm van de leest en de voet merkte men op bij de hele grote of kleine maten. Krauss et al. (2007) zagen bij het eerste, volumineuze, type een verschil van 5.9 mm in voorvoetbreedte en 3.5 mm in hielbreedte tussen schoen en leest. Bij het tweede en derde type (platter en langer) zag men grotere verschillen.

Het achterdeel van de leest zorgt voor een goede pasvorm en comfort terwijl het voorste deel hoofdzakelijk door de mode en stijl bepaald wordt (Rossi en Tennant, 2000; Xiong et al., 2008,2010). Stijl en mode zijn het eerste element die de klant aantrekt (Leng en Du, 2005,2006). Toch is het comfort belangrijk voor een gezonde en comfortabele voet. (Xiong et al., 2008,2010; Witana et al., 2006)
Pas wanneer de schoenleest vervaardigd is, kunnen de andere delen zoals het bovendeel, de hiel en de zolen gemaakt worden.

Daarnaast houden schoenfabrikanten geen rekening met continentale verschillen tussen voeten en produceren standaardleesten voor de schoenen (Mauch et al., 2008).

2.2.1.1. Curve van de leest of de flare

De longitudinale middenas van de schoen kan recht of gekromd zijn (Cavanagh, 1980; Cheskin, 1987). Als de as gekromd is, is er ruimte voor de binnenwaartse bocht van de mediale zijde van de voet. Als deze as recht is, kan men moeilijk een onderscheid maken tussen de linkerschoen en rechterschoen. Schoenen met zo’n rechte as zijn tegenwoordig eerder zeldzaam en over de noodzakelijkheid hiervan bestaat er discussie in de ergonomie. De ergonomie geeft aan dat de neutrale positie van de voet essentieel is om overbelastingsletsels te vermijden (Putz-Anderson, 1988).

Wanneer de curve echter te uitgesproken is, zou dit resulteren in afwijkingen van de neutrale positie wat zou lijden tot een verminderde stabiliteit en kracht en het mogelijks oplopen van een letsel. Deze redenering wordt ook het Meyer’s concept genoemd. Dit concept, waarbij de curve als oorzaak van de voetproblemen gezien wordt, wordt eerder als extreem en overdreven beschouwd aangezien de voet zelf een bepaalde curve bezit (Goonetilleke, et al., 2000; Witana et al., 2004). Een grotere flare heeft een kleinere schoenmaat tot gevolg (Goonetilleke et al., 2000).

Een zool met flare verbetert de medio- laterale stabiliteit wat tot een verminderd glijden van de voet in de schoen leidt (Lord en Menz, 1999).

In figuur 2 wordt een overzicht getoond van de verschillende delen van de schoen.

![Figuur 2: de voorvoet-, middenvoet- en hielregio](image-url)
2.2.2. De voorvoetregio

2.2.2.1. Teenboks of teenkap (cijfer i)

Bij het ontwerp van de leest moet een goede teendiepte en –vorm nagestreefd worden. (Witana et al., 2004). Xiong et al. (2008) meldden dat de hoogte van de voorvoet ook een rol speelt voor het goed passen van de schoen. De vorm van de voorvoetregio is afhankelijk van de mode: dit kan gepunt, rond of open zijn (Luximon et al., 2003; Xiong et al., 2008).

Het passen van een schoen kan beïnvloed worden door de langste, de eerste of de tweede, teen. Daarom is het ook nuttig om een onderscheid te maken in deze twee groepen (Luximon et al., 2003).

2.2.2.2. Clearance

De schoenlengte dient 10 tot 15 mm langer te zijn dan de voetlengte zodat de tenen gestrekt kunnen worden tijdens het wandelen of staan. Deze dode ruimte wordt bij Duitse schoenmakers zugabe genoemd (Chanteleau, en Gede, 2002). Een correcte vrije ruimte of clearance tussen de voet en de schoen is noodzakelijk om een goed comfort te verzekeren. Deze clearance is onder andere afhankelijk van het materiaal van de middenzool, de constructiemethode, de temperatuur, de vochtigheid in de omgeving, enz. Ook al bouwt de fabrikant een goede vrije ruimte in in de schoen, het kan dat deze speling niet geschikt blijft doorheen de tijd. Een tekort aan ondersteuning van de voet kan resulteren in grote vervormingen door het grote aantal botstructuren aanwezig in de voet (Luximon et al., 2003).

2.2.2.3. De flexiegroeve (cijfer j)

De flexiegroeve van de schoen komt overeen met de plaats waar de metatarso-phalangeale gewrichten zich bevinden. De lijn van de metatarsophalangeale gewrichten geeft ook informatie over de breedte van de voet. (Rossi en Tennant, 2000).

Deze groeve zorgt ervoor dat de schoen op die plaats plooit tijdens de bewegingen. De juiste lokalisatie van deze

Figuur 3: niet passende flexiegroeve

Figuur 4: passende flexiegroeve
groeve is van belang voor een goede voetfunctie in de schoen (Rossi en Tennant, 1984). Voeten met korte tenen en voeten met lange tenen gaan verschillend passen in dezelfde schoen. Als deze afstand in de schoen niet correct overlapt met de boog van de voet, is dit oncomfortabel en wordt de voet vlugger vermoeid (figuur 3). Als dit wel overeenkomt, gaan de schoen en de voet op dezelfde plaats buigen, waardoor het gestrekt blijven van de tenen toegestaan wordt.

Daarom is het interessant voor een schoenfabrikant om de lijn van de metatarso- phalangeale gewrichten te meten. Om deze lijn te specifiëren, zijn de metingen van de de lengte van de mediale zijde van de hiel tot aan de voorvoet (MBL) en de voorvoethoek relevante metingen (Rossi en Tennant, 1984; Hawes en Sovak, 1994; Luximon et al. 2003; Goonetilleke, 2003; Krauss, et al., 2008 en Luximon et al., 2008).

2.2.3. De middenvoetregio

2.2.3.1. De hoogte

Schoenfabrikanten hebben een systeem nodig om de ideale verhouding van de voethoogte en -lengte te bekomen om de schoenleesten te ontwerpen. De informatie over de hoogte van de middenvoet is zeer belangrijk voor het ontwerp van het bovenleder van de schoen (Xiong, et al., 2008). Zoals eerder aangehaald, veranderen de vormdimensies proportioneel: bij stijgende voetlengte, daalt de voetbreedte. In de studie van Xiong et al. (2008) werd allometrie gebruikt om de gevonden relatie te normaliseren met de formule BH(mm)= α (NBL)^3, waarbij α en β schalingsconstanten zijn, BH staat voor bal to section height en NBL voor normalised bal to section length. Deze formule bood een mogelijkheid om de welving of kromming van het bovenleder van de schoen over de verschillende maten correct te construeren zonder een verlies aan nauwkeurigheid. Het model kon de actuele hoogte voorspellen tot op 3,5 mm nauwkeurig. De mate van nauwkeurigheid daalde naargelang de welving het onderbeen naderde, aangezien er in die regio een plotse scherpe hoek wordt gemaakt.

In de derde dimensie of de hoogte wordt het passen van de schoen geregeld door een sluiting of fixatiemechanisme (cijfer g) zoals onder andere veters en velcro’s (Luximon et al., 2003). De hoogte van de kraag van de schoen kan een invloed hebben op de proprioceptie (Maki et al., 1999; Robbins et al., 1992, 1997, Menant et al., 2008).
2.2.3.2. **Termen in de middenvoet**

De middenvoetregio moet eveneens goed passen. Dit gebied van de schoen is belangrijk voor de stabilisatie (Mauch et al., 2009).

De bovenzijde van het middendeel noemt men op schoenmakerswebsites de tong (*cijfer f*). De vamp of de quarter (*cijfer e*) op de middenvoet is het materiaal dat de zijkanten en de voorzijde meer naar boven van de schoen bedekt. De schank, het gelengstuk of anders genaamd de cambreur (*cijfer h*) is het middendeel van de schoen die volgens de literatuur naast voldoende stevigheid toch iets moet kunnen meegeven.

2.2.4. **De hielregio**

Een goed passende hiel is belangrijk voor de functie van de schoen (Witana et al., 2004). De hiel van de voet wordt in de schoen vastgezet door het stijve materiaal van de hielcup (*cijfer b*). Hierdoor kan de schoen enkel vervormd worden ter hoogte van de voorvoet (Goonetilleke et al., 2000). Xiong et al. (2008) schreven dat de vorm van de hielregio weinig variabel is en gestandaardiseerd kan worden. Witana et al. (2004) vonden dat de variatie in hielbreedte binnen eenzelfde maat klein is. Van Gheluwe et al. (1999) meldden dat de meting van de hielbreedte enkel bij het ontwerp van loopschoenen belangrijk is. Deze auteurs hechten, net zoals Luximon et al. (2003) ook belang aan het ontwerp van de heel counter (*cijfer a*) om tot een degelijk passende schoen te komen. Deze achtersteun of contrefort moet voldoende stevig zijn en is best vier tot vijf cm hoog. Het biedt de voet rust zodat de tenen niet de hele schoen moeten ophouden. Een stijve heel counter laat toe om de mate van hielbeweging in de schoen gedurende het gaan te controleren en het draagt bij tot het behouden van de vorm van het bovenste schoendeel (Menz en Sherrington, 2000). De quarter (*cijfer d*), het leder dat het achterste deel van de voet bedekt, is ook een factor waar men aandacht aan besteedt om tot een goed passende schoen te komen (Luximon et al., 2003, Parker, 1996). Op websites voor schoenmakers ziet men dat het bovenste kraagje aan de hiel (*cijfer c*) vaak dikker is. Hielhoogte en hielbreedte kunnen een invloed hebben op de houding, het gangpatroon en de neiging van de schoen om zijwaarts te kantelen op oneffen oppervlakken. De geometry van de hiel heeft een invloed op de stabiliteit en het gangpatroon (Menant et al., 2008).
2.2.5. **De zool**

Volgens de studie van Mündermann et al. (2001) bevorderen alle ingevoegde zolen, ook steunzolen, het draagcomfort van de schoen. Een steunzool is een hulpmiddel voor het ontlusten van de voet en voor de correctie van de voet, onderste ledematen of het volledige lichaam.

2.2.6. **De hak**

In de studie van Menz et al. (2001) werden twee schoenstijlen beoordeeld: een geveterde Oxford schoen met rubberen zool en een lederen muiltje voor dames met hielhoogte van 4.5 cm. In de Oxford schoen onderscheidde men vier verschillende soorten hakken: een vlakke hak zonder flare of zooltextuur, een hak met een flaring naar buiten van 30°, een hak met een schuine rand van 10° op de achterste zijde en een hak met materiaal tegen het uitglijden op de zool. De damesschoen werd nog eens onderverdeeld in een smalle hak van minder dan 3cm² oppervlakte en een brede hak van 16 cm² oppervlakte. De flared hak had een lagere wrijvingscoëfficiënt dan de andere schoenen. De hak met schuine rand en breedere hakken waren meer bestand tegen uitglijden. Op een glad oppervlak is uiteindelijk geen enkele schoen bestand tegen uitglijden.

Een oxford schoen is een lederen schoen met veters en lage hiel die dus verschillende hielconfiguraties kan hebben. Geklede schoenen hebben brede hielen (Menant et al., 2008).
2.2.7. Het materiaal

Tussen materialen onderling zoals nylon, leder,.. is er een variabiliteit in de mate van stretching (Witana et al., 2004). Meeste lederen materialen voor de bovenste schoendelen kunnen zich goed aanpassen aan krachten toenemend van geen tot volledige gewichtsbelasting en kunnen binnen de 3% stretchen, uitgezonderd de middenvoelhoogte en -breedte. Materialen als polyvinyl chloride (PVC), urethaan, poromeric en anderen hebben een slechte rekbaarheid en worden gebruikt om goedkope schoenen te produceren. Dan mag men een slechte pasvorm niet toestaan omdat de schoen niet toegestaan wordt om zich aan te passen bij volledig gewichtsdragende posities (Kouchi, 1995; Xiong et al., 2009).

De regio waar men de schoen ‘draagt’ moet van een materiaal gemaakt worden met goeie draagmogelijkheden. Bij een teenslipper wordt de voet mediaal vastgezet door een bandje. De voet zit daardoor mediaal gedraaid waardoor het binnenwaarts dragen van de teenslipper verwacht kan worden. Teenslippers slijten op de binnenzijde van de hiel af terwijl andere schoenen op de buitenzijde van de hiel het meest afslitten.

De meest gerapporteerde schoenen in de studie van Dufour et al. (2009) waren schoenen met rubberen zolen. Goede schoenen hebben vaak zachtere buitenzolen, middenzolen of binnenzolen die elementen als gel, schuimrubber polyurthethaan of luchtkamers die dienen om de schokken op te vangen en te verzachten.

Polyurethaan materiaal wordt gebruikt voor de binnenzool. Het is bewezen dat het goed schokken absorbeert (Seligman en Dawson, 2003; Windle et al., 1999).

Vinyl acetaat copolymeren (EVA) worden populairder voor het gebruik in atletisch schoeisel, pumps en casual schoenen. Dit materiaal gebruikt men om de binnen-, midden en unizolen te fabriceren (Dubois et al., 2002).

Groeven van 1.2 cm breed op ethylene- vinyl acetaat, leder, rubber en neoliet bieden een hogere weerstand tegen uitglijden op verschillende oppervlakten. (Menat et al., 2008).
2.3. Veranderingen van de voetdimensies waarmee men bij het maken van de schoen rekening moet houden

Het bepalen van hoe en waar de voetvorm en dimensies veranderen onder belasting, is een noodzakelijke eerste stap om de pasvorm in te schatten en het schoenontwerp te bepalen. (Houston et al., 2006) Een adequate pasvorm van de schoen wordt pas bereikt als de schoenvorm op de voetvorm gebaseerd is (Hawes en Sovak, 1994; Kouchi, 2003; Janisse, 1992).

2.4. Het opmeten van de schoen

2.4.1. De mogelijke schoenmaatsystemen

De schoenmaat is afhankelijk van de schoenfabrikant; er bestaan geen universele schoenmaten. De klant kan hierdoor geen vertrouwen stellen in de notering op de schoen om een passende schoen te vinden (Frey, 2000). Verschillende schoenmodellen kunnen door de mate van flare ook anders passen. Dit heeft een invloed hebben op de schoenmaat: hoe groter de flare, hoe kleiner de schoenmaat (Goonetilleke et al., 2000).

Niet goed passend schoeisel resulteert in uitglijden en vallen (Hignett en Masud, 2006) en vermoeidheid van het hele lichaam (Lin et al., 2007). Kennis van de voetmorfolgie is belangrijk voor het perfect passen van schoeisel (Kleindienst, 2003).

Slechts 70% van de populatie heeft baad bij de one size geschaalde lengtemaat. Ze worden immers gewoonlijk iets breder gemaakt dan de nominale lengtemaat. Deze mensen moeten immers fouten in voorvoetomtrek en hielpredkte aanvaarden en zulke dimensionale verschillen veroorzaaken excessieve belasting die in pseudoartrose, weefseekschade, letsels en pijn kan resulteren (Houston et al., 2006; Frey et al., 1993,1995).

Grading of schalen is het proces waarbij men, voor het maken van leesten voor verschillende maten, vertrekt vanuit één standaardmaat. In Japanse matensystemen heeft men twee schalen namelijk één voor de lengte (length grading en één voor de

Er bestaan verschillende maatsystemen. In Europa maakt men gebruik van het Europese French Scaling system EU die de voetlengte indeelt. Deze kan worden uitgedrukt in mm of in percentage van de voetlengte.

<table>
<thead>
<tr>
<th>EU schoenmaat</th>
<th>voetlengte</th>
<th>EU schoenmaat</th>
<th>voetlengte</th>
<th>EU schoenmaat</th>
<th>voetlengte</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>210-216mm</td>
<td>37</td>
<td>243-249mm</td>
<td>42</td>
<td>277-282mm</td>
</tr>
<tr>
<td>33</td>
<td>217-222mm</td>
<td>38</td>
<td>250-256mm</td>
<td>43</td>
<td>283-289mm</td>
</tr>
<tr>
<td>34</td>
<td>223-229mm</td>
<td>39</td>
<td>257-262mm</td>
<td>44</td>
<td>290-296mm</td>
</tr>
<tr>
<td>35</td>
<td>230-236mm</td>
<td>40</td>
<td>263-270mm</td>
<td>45</td>
<td>297-302mm</td>
</tr>
<tr>
<td>36</td>
<td>237-242mm</td>
<td>41</td>
<td>270-276mm</td>
<td>46</td>
<td>303-310mm</td>
</tr>
</tbody>
</table>

Tabel 2 : French scaling system (EU) in mm volgens Blattner (Krauss, et al., 2008)

In het US systeem zijn de maten tussen man en vrouw verschillend. Een ‘size 6’ bij de vrouw is een EU 39 terwijl een ‘size 6’ bij de man overeenkomt met een EU 37,5. Deze verschillen in mannen en vrouwenmaten vindt men ook terug in het Japanse, UK en Australische systeem.

In het UK systeem wordt elke inch in de lengte nog eens in drie maten ingedeeld. De breedtes worden hier ook ingedeeld in drie maten, namelijk small, regular en wide of anders genoteerd: AAA,AA,A,B,C,D,E,EE,EEE (Xiong et al., 2008).
In het Mondo-point systeem is de maat van de voet uitgedrukt in de voetlengte in centimeters of millimeters. De lengte komt dus overeen met de lengte van de voet en niet met die van de schoen. Het gebeurt ook dat er twee cijfers weergegeven worden met een schuine streep ertussen. Het tweede cijfer geeft dan de breedte weer.

In de British Standard (BS) zou de mate van flare vermeld worden. Deze Britse standaard legt de nadruk op de nood van een goed alignement van de voorvoet. Hiermee wordt nagegaan of de mate van kromming van de voet past met de mate van kromming in de schoen.

2.4.2. Schoenmaat verdeling

De spreiding bij vrouwen gaat van EU32 tot EU43 met de piek schoenmaten EU 36, EU37, EU 38 en EU 40. Bij de mannen is de spreiding tussen EU36 en EU46 met de piek schoenmaten EU 40, EU 42 en EU 43 (Chanteleau en Gede, 2002 ; Krauss et al., 2008).

Een onderzoek in Nederland (Kraft, 2008) toonde aan dat ongeveer de helft van de mannen en vrouwen een te grote of te kleine schoen draagt. Dit zou het gevolg zijn van onwetendheid of van het niet voor handen zijn van de goede schoenmaat. In de handel zag men een overaanbod aan maten 41, 44 en 45 terwijl er een tekort was aan maten 42 en 43. Schoenfabrikanten moeten het aanbod beter op de vraag afstellen.

2.4.3. Aandachtspunten bij het meten

Om goed passend schoeisel te bekomen, dienen niet alleen de lineaire dimensies overeen te komen maar ook hun omtrekdimensies (Zhao et al., 2008; Rossi, 1988). Ook Witana et al. (2004) schreven dat zowel lineaire als omtrekmetingen nodig zijn om de mate van pasvorm van de schoen te evalueren. Schoen- en leestontwerpers baseren zich voornamelijk op lengte, breedte en omtrekmetingen van de voet (Xiong et al., 2008). De omtrek wordt echter zelden gemeten voor passend schoeisel terwijl dit toch gebruikt wordt in het ontwerp van de leest (Xiong et al., 2008).

Verschillen in omtrek tussen voet en schoen kunnen tot slecht passen van de schoen leiden als men voor de vorm de breedtes en hoogtes niet in rekening bracht (Rossi, 2000). Voor schoenfabrikanten is een nauwkeurigheid van gescande data rond de 5 mm acceptabel (Zhao et al., 2008).
Tussen de antropometrische metingen vond men geen significante verschillen maar men zag wel dat de rechtervoet significant groter was dan de linker in voorvoetbreedte en -omtrek (Luximon et al., 2005). Opmerkelijk is dat in verschillende studies, zoals eerder vermeld, telkens de rechtervoet gebruikt werd.

Nacher et al. (2006) wezen op het feit dat men de voet op een vlakke grond meet terwijl ze in de schoen meestal niet vlak zit door een kleine of hoge hakhoogte van de schoen. In de studie van Mochimaru et al. (2000) bootste men bij het opmeten van de voet het oppervlak van de zool van de leest na.

2.4.4. De mogelijk te gebruiken toestellen

2.4.4.1. De schuifpasser

De binnenmaten van de schoen kunnen gemeten worden met een schuifpasser of calliper. Hiermee kan men de schoenlengte, de voorvoet- en hielbreedte aan de binnenzijde van de schoen meten. De voetdiepte, instaplengte afgetrokken van de voetlengte, kan ook gemeten worden (Manna et al., 2001). In de studie van Smith et al. (2001) vergeleek men schuifpasser metingen met CT opnames. Hier zag men amper een verschil, gaande van geen tot een halve millimeter. Ook volgens Janchai en Tantisiriwat (2005) is de betrouwbaarheid voor de schuifpasser hoog en in de studie van Mall et al. (2007) vergeleek men voetmetingen van de schuifpasser met een spiegelbox foto van de voet. Dit laatste nam minder tijd in beslag dan de schuifpasser. Wanneer men beiden vergeleek met radiografische opnames, bleken ze beiden een aanvaardbare validiteit te hebben. Het meten van de voetlengte was het betrouwbaarst met een schuifpasser (0,994). De betrouwbaarheid voor het meten van de dorsale hoogte daarentegen was minder hoog (0,527).

2.4.4.2. Brannock, Ritz, Scholl toestel en Clarks measuring stick

Het Brannock toestel (Brannock, 2007) kan gebruikt worden om de breedte van de schoen te bepalen. Dit wordt dan aangeduid als AAA,AA,A,B,C,D,E,EE,EEE (Xiong et al., 2008). Dit toestel concentreert zich op de twee dominante regio’s die bepalend zijn voor
een goed passende schoen, namelijk de lengte van de voet en de maximale voorvoetbreedte ter hoogte van de metatarsophalangeale gewrichten. De booglengte kan men ook opmeten om zo de teenlengte te bepalen (Witana, 2004). Op de verbindingslijn van de metatarsophalangeale gewrichten bevindt zich de flexiegroeve in de schoen. Deze twee zaken moeten precies overeenkomen zodat de schoen op de juiste plaats buigt. (Luximon et al., 2003)

Er bestaan nog andere toestellen waarmee men de voetlengte en voorvoetbreedte kan opmeten zoals de Ritz stick en de Scholl (Goonetilleke et al., 2000). Brannock wordt gebruikt voor EU maten terwijl de Ritzstick voor US maten gebruikt wordt. Sommige ketens hebben een eigen meetinstrument zoals bv. de Clarks shoe shop measuring stick. Dit toestel heeft als nadeel dat het gecalibreerd is om in zittende positie te meten (Burns et al., 2002).

2.4.4.3. Voetuitlijning

Door de massaproductie worden schoenen vaak ontworpen door een bestaande schoen te matchen aan de voetuitlijning van de persoon (Fernand, 2000). Dit wordt door vele schoenfabrikanten toegepast (bv. Nike, 2002).

Men kan de dimensionele verschillen tussen voet en schoen opmeten door van beiden een voetuitlijning te tekenen en te analyseren (Witana et al., 2004).

Mochimaru en Kouchi (1997) en Luximon et al. (2003) tekenden de voetuitlijning met een scriber. Dit is een metalen staaf uit koolstof met scherpe punt. De lijndikte varieerde van 0.5 tot 1 mm. Deze voetuitlijningen werden gescand. Mochimaru en Kouchi (1997) berekenden 3 flexiehoeken op de lengteas van de voetuitlijning om zo de mate van flare, de curve die de voet maakt in de lengte, te bepalen. Zij duidden vijf markers aan: het pterion, het MT punt, het MF punt en de top van de tweede en vijfde teen.

In de studie van Zhao et al. (2008) verwerkte men de NURBS met Geomagic 8.0 en COPYPAD commercial software. Ze zagen echter wel dat de instapomtrek een groter verschil gaf (van 2.85mm) met NURBS dan met manuele metingen. Luximon et al. (2003) reduceerden het aantal van 18 naar een minimum van 8 landmarks. Deze worden in wijzerszin aangebracht en bevinden zich: lateraal op het MTP gewricht, mediaal op het MTP gewricht, op de top van de eerste teen, op de top van de vijfde teen, op een punt op de longitudinale boog, op een punt aan de mediale zijde van het calcaneum om de curve van de boog te corrigeren, op de achterzijde van de hiel en op een punt op de laterale zijde rond de middenvoet. Als men nu een curve maakt die de eerste en de vijfde teen in een boog verbindt, wordt de ruimte voor de tenen in de schoen geconstrueerd. De kortste afstand van elk punt van de voetuitlijning tot deze gemoduleerde curve wordt gedefinieerd als een fout. Deze afstand tussen deze twee punten is de ‘forward distance’. De fout die veroorzaakt wordt door de kortste afstand van de gemoduleerde curve tot de voetuitlijning is de ‘backward distance’. Een positieve fout zorgt er dus voor dat er wat ruimte in de schoen overblijft terwijl een negatieve fout voor een spannende schoen zorgt (figuur 6). Deze fouten kunnen gebruikt worden om passende materialen te kiezen en voor het het opvullen van gevoelige zones wanneer het schoeisel ontworpen wordt (Luximon, et al., 2003).

2.4.4.4. FFD techniek

In de studie van Mochimaru et al. (2000) wordt het met de Free Form Deformation (FFD) techniek mogelijk om de voetvorm te analyseren en te classificeren in groepen. De vormen worden vlot geregistreerd doordat een raster van punten vlot langs het gipsmodel voorbijgaat (Sedenberg, 1986). In een latere studie gaven Mochimaru en Kouchi (2005) aan dat deze methode informatie over de voetvorm gaf maar dat de specificaties voor de leest niet gebruikt konden worden wat ervoor zorgde dat de berekende leest niet altijd op de voet paste. Daarom pasten ze de techniek aan zodat het verschil tussen de twee 3D- vormen in een controle raster gepresenteerd werd. Daarin kon men wel zowel voetvorm als specificaties voor de leest gebruiken om de verschillen tussen twee 3D modellen te kunnen voorstellen door een vervormd controle raster. Het vervormde raster kon gebruikt worden om de leest te maken met de informatie van de
voet. Het gebeurde echter dat de leest op specifieke plaatsen nog niet paste zoals bv. de teenruimte, de instep- of ball omtrek. Dit loste men nu op door de energy terms te verbeteren.

2.4.4.5. 3D-scanner en oppervlaktemodel zolen

De 2D-systemen hebben niet voldoende mogelijkheid om de variatiabiliteit in voetvormverschillen adequaat te registreren (Goonetilleke et al., 1998; Xiong et al., 2008). Cheung en Zhang (2006) gebruikten de Infoot Laser scanner (I-Ware Laboratory CL. Ltd) om de voetoppervlak te registreren. en in Matlab v 7.0 (Mathworks, Inc) creëerde men de oppervlaktemodellen voor de binnen- en middenzool, gebaseerd op de gedigitaliseerde voet. Met Solid Works v2001 creëerde men de stevige modellen met variabele dikte (Cheung en Zhang, 2006).

2.4.4.6. Computer Aided Design systeem (CAD)

Het vervaardigen van schoenen specifiek voor een individu gebeurt tegenwoordig enkel in speciale gevallen zoals elitesporters en mensen met voetpathologieën. De prijzen liggen hiervoor zeer hoog. Enkel vijf procent van de Europeanen kopen zulke vervaardigde schoenen aan (Piller, 2002; Lochner, 2009). Het traditioneel vervaardigen van de schoenleest is duur en tijdrovend. In de recente jaren werd er een Computer Aided Design (CAD) en Computer Aided Manufacturing (CAM) gebruikt om het vervaardigen van aangepaste leesten mogelijk te maken. Het werd zowel gebruikt om de best passende schoenleest te verkrijgen en om een bestaande schoenleest aan gescande voetinfo te matchen door middel van FFD. (Xiong et al., 2010)

Een gekleurde map van de voet toont in het rood de plaatsen aan waar de schoenleest teveel spant op de schoen zoals wanneer de ruimte ter hoogte van de mediale en laterale malleolus minder is dan 10 mm. In het blauw worden de te los zittende regio’s aangeduid zoals de ruimte op de voetrug hoger dan 8 mm. Leng en Du (2005) concludeerden dat het aan de hand van het CAD systeem mogelijk blijft om de stijl en modefactor aan de gecorrigeerde leest te behouden. Deze past de specifieke voetvorm veel beter dan de originele leest.
Mensen moeten leren gestandaardiseerde schoenen aan te passen aan hun noden met behulp van vetermethodes, binnenzolen en boogondersteuningen (Xiong et al., 2010).

3. Het schoengedrag

3.1. Schoencomfort

Zowel de pasvorm als functionele aspecten als comfort en zaken als design en prijs zijn de voornaamste punten die men bekijkt bij het kopen van schoenen (Nacher et al., 2006). Kwaliteit wordt omschreven als het geheel van karakteristieken die bepalen of een product zijn doel of functie vervult (Goonetilleke, et al., 2000).

Het is fundamenteel voor een comfortabele schoen dat de schoenvorm de voetvorm benadert (Goonetilleke et al., 2000). Inlegzolen kunnen het comfort verhogen (Mundermann et al., 2001). Goed passend schoeisel is noodzakelijk om de mobiliteit en functie bij gezonde personen te optimaliseren. De schoen heeft meerdere functies: het moet de voet steun geven, assisteren, beschermen en bewegingen corrigeren (Houston et al., 2006). Fabrikanten ervaren problemen bij het vervaardigen van goed passend schoeisel. De schoenen moeten de vorm van de voet benaderen, ze moeten comfortabel zijn en ervoor zorgen dat de voet in een neutraal alignement blijft (Luximon et al., 2003). Wanneer het schoenontwerp de voetvorm niet volgt, zorgt dat voor een gelokaliseerde overdruk wat leidt tot discomfort. (Parker, 1996).

Bij jongeren zag men dat zachte middenzolen een significante vermindering in medio laterale verplaatsing tot gevolg hadden die het tekort aan mechanische steun van het materiaal neutraliseert. Zachte zolen bedreigen de stabiliteit doordat ze een grotere spieractiviteit vragen (Perry et al., 2007). Optimale stabiliteit en comfort worden bereikt als de zolen van de schoen dun en hard zijn, gecombineerd met licht veerkrachtige binnenzolen (Menant et al., 2008).

De meest voorkomende voetproblemen zijn hallux valgus, eeltknobbels en teenmisvormingen (zoals bv. hamer- en klauwtenen). Het dragen van een te korte schoen, net zoals te smalle schoenen veroorzaken op lange termijn misvormingen aan de tenen. De tenen passen zich aan de vorm van de schoen aan. Dit doen ze door extensie van de metatarsophalangeale gewrichten en door flexie van de proximale interphalangeale gewrichten. Over hallux valgus is er minder duidelijkheid over de rol van de schoen omdat de oorzaak hier multifactoriëel is. Factoren zoals een platvoet, spieronevenwicht en variaties in vorm of positie van de eerste metatarsaal spelen hier een rol. Een te hoge hak en een te nauwe schoen staan in verband met de vorm en positie van het eerste metatarsaal gewricht. Door schoenen met een hakhoogte boven de 25 mm wordt een mediale druk onder de voet gegeven die de valgusstand kan veroorzaken. Door te nauwe schoenen wordt een externe druk gegeven op het eerste metatarsaal gewricht die ervoor zorgt dat de hallux nog verder in valgus komt. Voor iemand met een hallux valgus zijn schoenen al snel te nauw wat tot gevolg heeft dat men in een vicieuze cirkel terecht komt. Een hallux valgus is ook afhankelijk van andere factoren (Menz en Morris, 2005). Eveneens kan de overdruk door een te nauwe schoen ervoor zorgen dat metatarsaal V steeds meer in quintus varusstand komt (Frey, 2000).

Te strak schoeisel veroorzaakt druk en overbelasting op de voetweefsels die irritatie, inflammatie, fasciitis en pijn veroorzaken. Als deze overbelasting blijft duren, kan dit lijden tot mechanisch falen (Brand, 1970; Houston et al., 2001, 2002). Discomfort en pijn ter hoogte van de balregio daarentegen is bijna altijd te wijten aan een te nauwe schoen. Dit wordt ervaren door de weerstand van het materiaal (Goonetilleke et al., 2000). Te los zittend schoeisel kan ook tot mechanisch falen lijden doordat er dan lokaal periodieke krachten zijn die de kritische kracht van het weefsel kan overschrijden. Dit doet zich voornamelijk voor bij vrouwen waardoor zij ook de grootste kans hebben om
ietsels op te lopen (Houston et al., 2006). Een te losse schoen wordt niet altijd als oncomfortabel ervaren, ook al verstoort deze de functie van de schoen (Goonetilleke et al., 2000). Frey et al. (1993; 1995) rapporteerden in hun onderzoek dat 73% van de vrouwen met gezonde voeten ietsels aan enkel of voet hadden ervaren door het dragen van slecht passend of slecht ontworpen schoeisel. Ook in een studie bij militairen was dit 40% van de vrouwen tov. 4% van de mannen. Het gebeurt dat schoenen voor vrouwen gemaakt worden aan de hand van een kleinere geschaalde versie van leensten voor mannen. Dit ziet men bv. bij loopschoenen. Rekening houdend met de geslachtsverschillen lijkt deze procedure niet efficiënt (Frey, 2000).

De graad van comfort is gecorreleerd aan de mate van pijn. (Nacher et al., 2005) De subjectieve factor speelt een grote rol. Zo zag men in de studie van Nacher et al. (2005) dat men verschillende verwachtingen heeft van verschillende types schoeisel. Zo zag men dat de mate van comfort in een paar pumps hoger was dan in een casual schoen ondanks dezelfde pijnpercectie.

Voetpijn en deformiteiten kunnen veroorzaakt worden door het dragen van slecht passend schoeisel (Frey, 2000; Krauss et al., 2008; O’Connor et al., 2006). Ook Wünderlich en Cavanagh (2001) zagen een verband tussen het dragen van slecht schoeisel en voetpijn.

De slijtage of ouderdom van de schoen is ook een factor waar men rekening mee moet houden. Lecland et al. (2010) trachten de invloed van slijtage op een objectieve manier te meten aan de hand van de hoeveelheid inflammatoire proteïnen. Zij vonden dat een oudere schoen stijver is en dat de slijtage aan het buffersysteem van de schoen schade kan toebrengen aan het lichaam.

3.2. Comfortabele pasvorm

Een schoen moet een goede functie, een goed uitzicht en een goede pasvorm bezitten (Witana et al., 2004). Morfologische en geometrische verschillen tussen de voet van man en vrouw kunnen een beslissende factor zijn in het al dan niet goed passen, functioneel en comfortabel zijn van schoeisel. Dit draagt bij tot een actief mobiel leven. Schoeisel moet specifiek voor elk geslacht gefabriceerd worden. Neutraal schoeisel past slechts voor een beperkt aantal mannen en vrouwen en veroorzaakt vaak druk, trauma’s en pijn aan de voetweefsels (Luo et al., 2009). Het modieuze aspect van een vrouwenschoen leidt daarom nog niet tot een comfortabele schoen. (Seale, 1995). Bij vrouwen is er een hogere incidentie voor voetletsels. (Luo et al., 2009). Het is belangrijk om de schoen te passen voor aankoop. Het goed passen kan door verschillende factoren beïnvloedt worden zoals het tijdstip op de dag, de te leveren activiteit en de gezondheidsstatus van de persoon. Het is aan te raden om schoenen in de namiddag te kopen en voordien een kwartiertje rond te wandelen omdat je voeten dan zwellen (Goonetilleke, 2003). Dit gebeurt ook bij warm weer. De schoenmaat wordt echter nog veelal puur op basis van de lengte bepaald waarbij gekeken wordt als er voldoende vrije ruimte of grow room is voor de tenen (Witana et al., 2004). Collazo (1988) vond in zijn studie dat zowel voor mannen als vrouwen de schoenbreedte te smal was zowel aan de voorvoet als aan de middenvoet.

3.2.1. De schoenlengte

Tijdens het stappen, strekken de tenen zich en daarom is er zeker nog 6 mm vrije ruimte nodig in de schoen. Hierdoor kan het zijn dat pas dan de tenen de neus van de schoen raken. Op dat moment is de schoen te klein.

In de studie van Luo et al. (2009) vond men dat 88% van de vrouwen schoenen droegen die te klein waren: de schoenen waren gemiddeld 1.2 cm korter dan hun voeten.
Chanteleau en Ede (2002) schreven dat de schoenlengte zo’n 10 tot 15 mm langer moet zijn dan de voetlengte zodat er nog wat extra ruimte is om de tenen te strekken tijdens het staan of wandelen.

3.2.2. **De voorvoetbreedte**

Binnen een bepaalde maat kan het breedteverschil oplopen tot 5.9 mm (Krauss et al. 2008). De schoenbreedte neemt 3.2 mm toe per halve maat (Rossi, 1983). Witana et al. (2004) schreven dat er in de voorvoetbreedte een verschil van 8 mm nodig is waarvan 5 mm aan de mediale zijde en voor een neutrale passing ter hoogte van de middenvoetregio daar aan de laterale zijde een verschil van 7 mm. Over de hele breedte van de voet ziet men dus een verschil van 15 mm.

Een te losse schoen wordt niet als oncomfortabel ervaren ook al verstoort ze de schoenfunctie. Het te los of te krap zitten van een schoen is subjectief en dit wordt zelden gemeten (Luximon et al., 2001). Discomfort (JD) in één of meer regio’s is afhankelijk van de individuele gevoeligheid en kan als volgt geformuleerd worden:

\[JD = \sum a_i \cdot F_i \]

waarbij \(F_i \) staat voor de dimensionele passing van elke regio en \(a_i \) de drukken zijn, gecorrepondeerd met elke subregio. De \(i \) is afhankelijk van de persoon zijn gevoeligheid. Als JD de discomfortdremmel overschrijdt, stelt men dat de schoen slecht past bij de persoon (Witana et al., 2004).

Naast subjectieve cijfers van de proefpersoon, kan men de positie van de voet in de schoen bepalen door de afstand tussen de schoen en de voet te meten vanaf de schoenrand tot aan de achillespees terwijl de persoon rechtstaat (Witana et al., 2004).
Men spreekt van een slecht passende voorvoet als het verschil in de voorvoetbreedte tussen voet en schoen slechts een $1/6^{de}$ van een inch (2,54cm) of 0,42333...cm bedraagt (Rossi en Tennant, 1984).

3.2.3. De hakhoogte

Het veelvuldig dragen van onaangepaste schoenen en hoge hielen, met een hakhoogte boven de 25 mm, zorgt voor een stijging van de druk op de metatarsaalkoppen wat voetklachten en veranderingen in de voetmorfologie tot gevolg heeft (Wünderlich en Cavanagh, 2001; Menz en Morris, 2005). Jung et al. (2001) zagen bij oudere vrouwen meer vervormde voeten dan bij oudere mannen wat men verklaarde door het dragen van hoge hakken.

Mannen stappen comfortabel op een hakhoogte van 1,5 tot 2cm terwijl vrouwen comfortabel zijn op 3,5 cm hakhoogte. Dit verschil is te verklaren door het meer naar voor gekanteld bekken bij de vrouw. De breedte van de hak is ook van belang aangezien een te smalle hak ervoor zorgt dat het gewicht nog eens extra op de voorvoet terechtkomt. Voetproblemen werden reeds geassocieerd met het dragen van hielen hoger dan 2.5 cm bij oudere dames (Menz en Morris, 2005)). De posturale sway is hoger bij een hakhoogte van 4.5 cm vergeleken met een standaard hakhoogte van 2.7 cm (Menant et al, 2008).

B. Experimenteel onderzoek

1. Onderzoeksvraag

Aan de hand van dit onderzoek zal het schoengedrag van de vlaming in kaart gebracht worden.

Een veronderstelling is dat mensen vaak niet de gepaste schoenen dragen. Schoenen zouden vaak te smal of te klein zijn. In deze studie is het de bedoeling om de antropometrische maten van de voet voor lengte, voorvoetbreedte en hielbreedte te vergelijken met de lengte, voorvoetbreedte en hielbreedte van de schoen.

2. Proefpersonen

De onderzochte populatie zijn mannen en vrouwen vanaf 18 jaar tot en met de leeftijd van 45 jaar. Het doel hiervan is om een beeld te kunnen vormen van de Kaukasische bevolking in Vlaanderen. De biologische ouders van de proefpersoon moeten zodoende tot het Kaukasische ras behoren.

Personen die orthopedische of semi-orthopedische schoenen dragen, worden ook uitgesloten aangezien het doel is om een besluit te vormen over de populatie zonder voetproblemen die schoenen aankoopt in een gewone schoenwinkel.

Personen waarvan beide of één van de ouders niet van Kaukasische afkomst zijn, personen met systeemziektes zoals bij diabetes mellitus, reumatische of neurologische aandoeningen, die een impact zouden kunnen hebben op de voeten of personen die een operatie hebben ondergaan aan voet of enkel werden uit de studie gesloten. Hetzelfde geldt voor de mensen die (semi-)orthopedische schoenen dragen.

De finale steekproefgrootte bedraagt 373 proefpersonen waarvan 196 vrouwen en 177 mannen. De gemiddelde leeftijd was 28 (±8) jaar met een gemiddelde body mass index (BMI) van 23,47 (±3.66). Voor vrouwen lag dit gemiddelde op 22.84 (±3.50) en voor mannen iets hoger op 24.17 (±3.69) (tabel 2).
3. Protocol van het onderzoek

3.1. De enquête

Na het tekenen van het informed consent werd aan elke deelnemer gevraagd om een vragenlijst in te vullen (bijlage 1).

Aan de hand van een aantal vragen vormde men een beeld van het schoengedrag van de deelnemer. Er werd gepeild naar het al dan niet dragen van steunzolen en of deze op maat gemaakt waren of geprefabriceerd. De verkozen schoenmaat werd aangekruist. Men duidde aan hoeveel paar schoenen men had en hoe frequent men van schoeisel wisselde. De plaats waar men eventueel pijn had aan één of beide voeten bij het dragen van de gemeten schoenen werd op een figuur aangestipt.

Vervolgens werd gevraagd of het moeilijk is om goede schoenen aan te kopen en wat de reden hier volgens hen voor zou kunnen zijn. Tot slot diende men enkele stellingen in verband met schoenkeuze in graad van belangrijkheid te zetten.

3.2. Het opmeten van de voeten

Aan het begin van een testdag werd de scanner stofvrij gemaakt, werden de glazen platen van de 3D- Infoot laser scanner (Infoot USB, standard type I-Ware Laboratory, Ltd, Osaka, Japan) (figuur 7) telkens gereinigd en werd het toestel gecalibreerd.
Om de betrouwbaarheid van de resultaten hoog te houden, werden de markers altijd door dezelfde onderzoeker aangebracht. Ook de schoenmetingen gebeurden altijd door dezelfde persoon.

Op elke voet werden systematisch telkens in dezelfde volgorde 15 groene fluwelen markers met een dikte van 2mm en diameter van 5mm (INWare Laboratory Co. Ltd, Osaka, Japan) aangebracht (figuur 8). Dit gebeurde in stand met het gewicht gelijk verdeeld over beide voeten zodat de huid zo weinig mogelijk zou verschuiven. Bij de oudere populatie, waarvoor het niet mogelijk was om gedurende deze tijd recht te staan, werd het aanbrengen in zit uitgevoerd. Hier werd gewaakt over een goeie 90° - 90° houding zodat de enkel zich recht onder de knie bevond. De plaats van elke marker staat beschreven in onderstaande tabel (tabel 3).

<table>
<thead>
<tr>
<th>Naam marker</th>
<th>Beschrijving plaats marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Toe 1 point</td>
<td>Dit punt bevindt zich op het interphalangeaal gewricht van de eerste teen.</td>
</tr>
<tr>
<td>2) Toe 5 point</td>
<td>Dit punt bevindt zich op het interphalangeaal gewricht van de vijfde teen.</td>
</tr>
<tr>
<td>3) MT</td>
<td>Dit punt bevindt zich aan de mediale zijde ter hoogte van het eerste metatarsophalangeaal gewricht.</td>
</tr>
<tr>
<td>4) MF</td>
<td>Dit punt bevindt zich aan de laterale zijde van het vijfde metatarsophalangeaal gewricht.</td>
</tr>
<tr>
<td>5) Head of</td>
<td>Dit punt bevindt zich aan de ventrale zijde op het tweede</td>
</tr>
</tbody>
</table>
Tabel 3 : Plaatsbeschrijving van de markers.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>metatarsal 2</td>
<td>metatarsophalangeaal gewricht.</td>
</tr>
<tr>
<td>6) Highest point of metatarsal 1</td>
<td>Dit punt bevindt zich aan de ventrale zijde op het eerste</td>
</tr>
<tr>
<td></td>
<td>metatarsophalangeaal gewricht.</td>
</tr>
<tr>
<td>7) Cuneiform</td>
<td>Dit punt bevindt zich aan de ventrale zijde op het middelste os cuneiforme.</td>
</tr>
<tr>
<td>8) Navicular</td>
<td>Dit punt bevindt zich op de tuberositas van het os naviculare.</td>
</tr>
<tr>
<td>9) Tuberosity of metatarsal 5</td>
<td>Dit punt bevindt zich aan de laterale zijde op de tuberositas van metatarsaal vijf.</td>
</tr>
<tr>
<td>10) Tentative junction point</td>
<td>Dit is het punt ter hoogte van de sinus tarsi.</td>
</tr>
<tr>
<td>11) The most medial point of malleolus</td>
<td>Dit punt bevindt zich op het meest uitstekende punt van de mediale malleolus.</td>
</tr>
<tr>
<td>12) Spyroin</td>
<td>Dit punt bevindt zich net distaal van de mediale malleolus.</td>
</tr>
<tr>
<td>13) The most lateral point of malleolus</td>
<td>Dit punt bevindt zich op het meest uitstekende punt van de laterale malleolus.</td>
</tr>
<tr>
<td>14) Spyron fibulare</td>
<td>Dit punt bevindt zich net distaal van de laterale malleolus.</td>
</tr>
<tr>
<td>15) Mediale tentative heel upper point</td>
<td>Dit punt bevindt zich aan de mediale zijde van de voet net proximaal van het calcaneum.</td>
</tr>
</tbody>
</table>

Naast de scanner stond een blok die even hoog was als de glasplaat zodat de voeten op gelijke hoogte stonden. De niet te scannen voet werd op de blok naast de scanner geplaatst en de te scannen voet werd in het midden op de glasplaat geplaatst. De scanner werd bovenaan afgesloten om het invallen van licht te vermijden.

Aan de proefpersoon werd gevraagd om de voet niet te verplaatsen, zo stil mogelijk te blijven staan, het gewicht gelijk te verdelen over beide voeten en recht voor zich uit kijken. Na de scan van de eerste voet, ging de persoon op de handdoek staan om op deze manier de voeten schoon te houden. Ondertussen werd de blok verplaatst en de glasplaat gereinigd.

Hierna plaatste de persoon zijn nog te scannen voet in de scanner. Na het scannen van de voeten, werden de markers verwijderd.
Het scannen van een voet duurde 5 seconden. De data werd nadien verwerkt met bijhorende software (I-Ware Laboratory, Ltd, Osaka, Japan). De verkregen dimensies waren voetlengte, ball girth circumference, foot breadth, instep girth, fibular instep length, height of top of ball girth, height of instep, toe 1 angle, toe 5 angle, height of toe 1 joint, height of toe 5 joint, height of navicular, height of spyrion fibulare, height of shyron, height of the most lateral point of the lateral malleolus, height of the most medial point of the malleolus, heel girth circumference, the angle of the heel bone and foot size (De Mits et al., accepted 2010).

3.3. Het opmeten van de schoenen

Er werd een foto genomen van beide schoenen in voor- en zijanzicht. Eventuele schade aan de schoen werd ook gefotografeerd en genoteerd. Op basis van deze foto’s werd het mogelijk om later de schoenen in te delen in categorieën.

Er werd genoteerd of het om een open of gesloten schoen ging en op welke wijze de schoen gesloten werd. Ook de schoenmaat werd genoteerd of indien niet leesbaar bevraagd. Schoenen zonder Europese maat werden later omgerekend naar Europese maten.

Vervolgens mat de onderzoeker drie maal elke afstand van elke schoen. De binnenmaten die gemeten werden, waren de lengte, de voorvoetbreedte en de hielbreedte van de schoen en de buitenmaten waren de voorvoetbreedte en de zooldikte van zowel voorvoet als hiel.

De lengte van de schoen werd gemeten aan de hand van een binnenmaatstok (figuur 9) die op de kleinste afstand in de schoen geplaatst werd waarna het scharnier losgedraaid werd en de veer kon uitzetten zodat de stok de lengte van de schoen aannam. Het scharnier werd terug vastgedraaid zodat men deze lengte kon aflezen op een Heidermat 300 (figuur 10) waar een meetlint opgekleefd was. Wanneer de schoen een open hiel- of teendeel had, werd meteen gebruik gemaakt van een meetlint (figuur 11). Het meetlint werd ook gebruikt wanneer de hakhoogte van de schoen hoger was dan 3 cm.
Om de binnen- en buitenbreedte van de voorvoet te meten, werden twee verschillende schuifpassers gebruikt. Bij de digitale schuifpasser voor de binnenbreedte (figuur 12) zaten de beentjes naar buiten en bij de schuifpasser voor de buitenbreedte (figuur 13) wezen de beentjes naar binnen. Bij een open schoen waarbij de hiel en/of de tenen bloot waren, werd een meetlint gebruikt.

Om de hakhoogte te meten, was de zooldikte ter hoogte van de hiel en de voorvoet nodig. Hiervoor werd een pelvimeter (figuur 14) gebruikt waarvan het ene uiteinde op de binnenzool geplaatst wordt en het andere uiteinde op de buitenzool. Bij mensen die een

Figuur 9 : de binnenmaatstok
Figuur 10 : de Heidermat 300 met aangebracht meetlint
Figuur 11 : het meetlint

Figuur 12 : de digitale schuifpasser met aanpassingen voor het meten van de binnenbreedte.
Figuur 13 : de schuifpasser voor het meten van de buitenbreedte.

Figuur 14 : de pelvimeter
steunzool dragen werden deze metingen gedaan met en zonder de steunzool in de schoen.

4. Statistische methodes

Voor de statistische verwerking werd het programma SPSS 15 (SPSS Inc., Chicago, IL, USA) gebruikt.

Van alle toestellen om de schoenen te meten, namelijk de binnenmaatstok, de digitale schuifpasser voor de voorvoetbreedte, de schuifpasser voor de hielbreedte en de pelvimeter voor de hakhoogte, werd de betrouwbaarheid berekend aan de hand van de intraclass correlatie coëfficiënt (ICC). Enkele afstanden werden met het meetlint gemeten maar doordat dit een te kleine groep is, werden deze resultaten uitgesloten.

Om een vergelijking te maken tussen de antropomетrische maten van de voet en de schoenmaten voor zowel de lengte, de voorvoetbreedte en de hielbreedte werden telkens gepaarde T toetsen gebruikt om te kijken of er al dan niet een significant verschil was. Deze gepaarde T toetsen werden ook nog eens specifiek op mannen en vrouwen apart toegepast en op de 2 grootste groepen schoenen, namelijk sportieve schoenen en laarzen.

Men gebruikte deze T toetsen omdat het dezelfde variabelen telkens gemeten werden en de resultaten op een onafhankelijke manier van elkaar verkregen werden. De nulhypothese is telkens dat de gemiddelde afstand tussen voet en schoen geen significant verschil geeft. Als alternatieve hypothese geldt telkens dat de gemiddelde afstand van de schoen groter is dan deze bij de voet.
C. De resultaten

1. Onderzoeksvraag 1: het schoengedrag aan de hand van de enquêtevragen en de soort schoen.

In bijlage 2 bevinden zich alle grafieken en tabellen om de onderstaande tekst te verduidelijken.

1.1. De soorten schoenen (n= 373)

Bij zowel mannen als vrouwen ziet men een klein percentage (8,58%) met open schoeisel. Bij de mannen bedroeg dit 6.78% en bij de vrouwen 10.20% van het totale aantal schoenen.

1.1.1. Soorten open schoenen (n= 32)

De soorten open schoenen zijn: pumpschoenen, slippers, sandalen, ballerina’s en mocassins en een restgroep. De percentages binnenin de categorie open schoenen zijn: 34,38% pumpschoenen bij vrouwen, 6,22% slippers (6,2% bij mannen; 3,12% bij vrouwen), 0% sandalen, 28.2% ballerina's en mocassins (9,4% bij mannen; 18,8% bij vrouwen) en 28,2% in de restgroep (18,8% bij mannen; 9,4% bij vrouwen).

1.1.2. Soorten gesloten schoenen (n= 341)

De soorten gesloten schoenen zijn: loopschoenen, sportieve schoenen, klassiek geklede schoenen, bergschoenen, laarzen, modern geklede schoenen en een restgroep. De percentages binnen de categorie gesloten schoenen zijn: 2.64% loopschoenen (1.76% bij mannen; 0.88% bij vrouwen), 49.25% sportieve schoenen (29.6% bij mannen; 19.65% bij vrouwen), 4.11% klassiek geklede schoenen bij mannen, 2.35% bergschoenen bij mannen, 29.32% laarzen (1.17% bij mannen; 28,15% bij vrouwen), 9,67% modern
geklede schoenen (7.62% bij mannen; 2.05% bij vrouwen), 2.64% in de restgroep (1.76% bij mannen; 0.88% bij vrouwen).

1.1.3. Soorten sluitingen (n = 373)

De meerderheid (53.89%) van de schoenen wordt aangespannen met behulp van uitsluitend veters (waarvan 36.19% bij mannen; 17.69% bij vrouwen). Er is ook een groot percentage (16.62%) met ritssluitingen (0.27 bij mannen; 16.35 bij vrouwen), voornamelijk bij de laarzen. Opmerkelijk is dat de volgende groep in percentage (15.01%) deze is waar geen sluiting is (4.02% bij mannen; 10.99% bij vrouwen), waar dus geen mogelijkheid is om de schoen aan te sluiten aan de voet. Kleinere percentages vindt men voor velcro (6.17%; 4.26% bij mannen, 1.88% bij vrouwen), riempjes (3.22%; 0.27% bij mannen; 2.95% bij vrouwen) en elastisch materiaal (2.14%; 1.07% bij mannen; 1.07% bij vrouwen). Bij enkele schoenen (2.95%) vindt men een dubbele sluiting zoals velcro en veters, rits en veters of rits en riem.

1.2. De hakhoogte

De werkelijke hakhoogte wordt berekend door het verschil te berekenen tussen de hielhoogte en de zooldikte ter hoogte van de voorvoet. Niet bij alle proefpersonen waren resultaten voor deze metingen voor handen. Er werd een onderscheid gemaakt tussen de groep die steunzolen draagt en de groep zonder steunzolen.

1.2.1. Hakhoogte in groep met steunzolen (n = 44)

In deze groep zitten 56.82% mannen en 43.18% vrouwen. De gemiddelde hakhoogte, kijkend naar de rechterschoen, voor de totale groep bedraagt 12.04 mm. Bij de mannen is dit gemiddeld 7.2 mm en bij de vrouwen 18.42 mm. De standaarddeviatie bedraagt gemiddeld 13.91 mm. Bij de mannen is dit 5.42 mm en bij de vrouwen 18.64 mm.
De maximale hakhoogte bedraagt 20 mm bij de man en 60 mm bij de vrouw. De minimale hakhoogte bedraagt 0 mm zowel bij man als vrouw. Het grootste aantal personen bij mannen binnen een bepaalde categorie (26,32%) vindt men in de categorie van 5 mm. Bij de vrouwen is de grootste categorie deze van 10 mm hakhoogte (52%).

1.2.2. Hakhoogte in groep zonder steunzolen (n= 318)

In deze groep zitten 47.17% mannen en 52,83% vrouwen. De gemiddelde hakhoogte, kijkend naar de rechterschoen, voor de totale groep bedraagt 15.47 mm. Bij de mannen is dit 8.77 mm en bij de vrouwen 21.46 mm. De standaarddeviatie bedraagt gemiddeld 16.24mm. Bij de mannen is dit 19.81mm en bij de vrouwen 5.96mm.

De maximale hakhoogte bedraagt 25 mm bij de man en 70 mm bij de vrouw. De minimale hakhoogte is zowel bij man als vrouw 0 mm. Het grootste aantal personen bij mannen binnen een bepaalde categorie (45.33%) bevindt zich in de categorie van 10 mm. Bij de vrouwen is de grootste categorie eveneens deze van 10mm hakhoogte (20.24%). 32,74% van de vrouwen heeft een hakhoogte die hoger of gelijk is aan 30 mm.

1.3. Het schoengedrag aan de hand van de enquêtevragen

1.3.1. Verdeling aantal personen met en zonder steunzolen. (n= 373)

Er zijn 12.06% personen met steunzolen en 87.94% zonder steunzolen. De groep zonder steunzolen bestaat voor 57.78% uit mannen en 42.22% uit vrouwen. In de groep met steunzolen werden 4.44% prefab zolen genoteerd (enkel mannen) en op maatgemaakte steunzolen 95.56% waarvan 53.33% mannen en 42.22% vrouwen.

1.3.2. Verdeling schoenmaten (n= 372)

Deze groep beschikbare resultaten bestaat voor 52.42% uit vrouwen. De meest courante schoenmaten bij vrouwen zijn opeenvolgend EU maat 39 (26.67%), EU maat 38 (16.41%), EU maat 40 (12.82%), EU maat 41 (8.72%). Bij de mannen is dit EU maat 43 (28.81%), EU maat 42 (14, 69%), EU maat 44 en 45 (telkens 12.99%).
De kleinste maat voor vrouwen is EU 33 en de grootste EU 44. Bij mannen is de kleinste maat EU 39 en de grootste EU 50. Gemiddeld heeft de vrouw EU maat 38.93 en de man EU maat 43.44. De standaarddeviatie is bij beiden 1.6 EU maat. Men ziet dat er voor 15,59% van de bevraagde populatie een halve maat aangegeven werd.

1.3.3. Verdeling bezit van aantal paar schoenen (n= 373)

De grootste groep (44.5% waarvan 20.64% mannen en 23.86% vrouwen) heeft 5 tot 10 paar schoenen. Vervolgens heeft 25.20%, waarvan 5, 63% vrouwen en 19.57% mannen minder dan vijf paar schoenen. De derde grote groep (17.42% waarvan 12.33% vrouwen en 5.09% mannen) heeft tussen de 10 tot 15 paar schoenen. In de groep 15 tot 20 paar schoenen (5.92%) en de groep meer dan 20 paar schoenen (6.97%) treft men voornamelijk vrouwen aan, respectievelijk 4.56% en 6.17%.

1.3.4. Verdeling frequentie wisselen van schoenen (n= 373)

De grootste groep (42.62% waarvan 13.40% mannen en 29.22% vrouwen) wisselt meermaals per week van schoenen. 16.35% (waarvan 8.31% mannen en 8.04% vrouwen) wisselt meermaals per dag van schoeisel en 15.82% (waarvan 8.58% mannen en 7.24% vrouwen) dagelijks. 10.11% (5.9% mannen en 4.21% vrouwen) wisselt wekelijks. 6.17% (met 2.95% mannen en 3.22% vrouwen) wisselt een aantal keren per maand. 5.09% (met 4.29% mannen en 0.8% vrouwen) wisselt maandelijks en 4.02% (enkel mannen) wisselt nooit van schoeisel.

1.3.5. Pijn ter hoogte van de voeten door de schoenen die men droeg(n=65/ 373)

17.43% van de mensen hadden pijnklachten aan de voeten door de schoenen die ze op dat ogenblik droegen. Het grootste percentage pijnklachten (64.62%) doet zich bilateraal voor waarvan 24.62% bij mannen en 40% bij vrouwen. Unilateraal (35.38%) is lichtjes hoger bij mannen (18.46%) ten opzichte van vrouwen (16.92%). In het algemeen ziet men dat de grootste pijnklachten door de schoen zich voordoen ter hoogte van de bal van de voet (25%), de tenen (24%) en de hiel (22%). Wanneer men specifiek de pijnklachten door schoenen tussen man en vrouw vergelijkt, ziet men dat vrouwen (28%) meer pijn ervaren dan mannen (21%) ter hoogte van de bal van de
voet. Voor de tenen (24%) ziet men bij beiden evenveel klachten. De hiel veroorzaakt bij de vrouw iets meer klachten (24% tov. 19%) terwijl bij de man de achtervoet iets meer klachten geeft (11% tov. 7%).

![Figuur 15: Verdeling pijn bij man en vrouw](image)

1.3.6. Verdeling problemen bij aankoop schoenen (n = 123/ 373)

Een derde (32.98%) ondervindt problemen bij de aankoop van schoenen. Meerdere problemen werden gelijktijdig aangehaald. Het meest voorkomende probleem is dat de schoenen te smal zijn (31%). Het uitzicht (niet mooi: 22%) en de prijs (te duur: 10%) spelen ook een belangrijke rol. Andere voorkomende problemen zijn schoenen die te breed zijn (8%), te klein (5%), te groot (3%) of een te harde zool bezitten (3%). Er werden ook nog andere redenen (18%) aangehaald die voor problemen zorgen bij het aankopen van schoeisel. Enkele terugkomende redenen zijn: het gebrek aan halve maten, onvoldoende steun aan de hiel, schoen niet hoog genoeg, kleine keuze in bepaalde schoenmaten, verschil in maten tussen beide voeten, vijfde

![Figuur 16: problemen bij aankopen schoenen](image)
overkruisende teen en mensen die problemen hebben om schoeisel te kopen waar hun steunzolen in passen.

1.3.7. Verdeling belang bij schoenkeuze (n=360)

Het belangrijkste (24.5%) is zowel bij mannen (11.7%) als vrouwen (12.8%) dat de schoen comfortabel is. Men hecht ook veel belang (23.3%) aan het goed passen van de schoen (man: 11.1%; vrouw: 12.2%). Schoenen die modieus zijn (18.5%) zijn bij vrouwen (10.5%) iets belangrijker dan bij mannen (7.9%). De prijs/ kwaliteit verhouding (15%) is voor beiden ongeveer even belangrijk (man: 7.2%; vrouw: 7.7%). De prijs op zich krijgt 13.7 % belangrijkheid waarbij gelijkwaardig tussen man (6.8%) als vrouw (7.0%). Enkele andere redenen 5% (zowel man als vrouw 2.5%) werden ook aangehaald namelijk: de waterdichtheid van de schoen, de steun en stevigheid die de schoen biedt en de mogelijkheid om steunzolen in de schoen te steken.

![Figuur 17: Verdeling totaal belang gehecht aan verschillende factoren bij schoenkeuze](image-url)
2. Onderzoeksvraag 2: vergelijking van de antropometrische maten van de voet en de schoenmaten voor lengte, voorvoetbreedte en hielbreedte.

2.1. Betrouwbaarheid toestellen schoenmetingen

Voor de start van het onderzoek werd de intratester betrouwbaarheid van de verschillende toestellen voor de metingen van de schoenen geëvalueerd. Aan de hand van een intraclasscorrelatie coëfficiënt (ICC) wordt de ratio uitgedrukt die de relative betrouwbaarheid van de meting uitdrukt (Coorevits et al., 2008).

Voor de binnenmaatstok werd een ICC van 0.940 voor de linker- en 0.937 voor de rechterschoen vastgesteld. De digitale schuifpasser waarmee de voorvoetbreedte aan de binnenzijde van de schoen gemeten werd, gaf een ICC van 0.945 voor de linker- en 0.937 voor de rechterschoen. Deze schuifpasser werd ook gebruikt om de hielbreedte aan de binnenzijde van de schoen te meten. Hier verkreeg men een ICC van 0.759 voor de linker en 0.996 voor de rechterschoen. De pelvimeter gaf voor beide zijden een ICC van 0.999. Dit zowel voor de zooldikte aan de voorvoet als de zooldikte aan de hiel.

Wanneer de waarde van de ICC hoger is dan 0.7 of 0.8 wordt deze als betrouwbaar gezien. Hoe dichter deze waarde bij 1 aanleunt, hoe hoger de relative betrouwbaarheid. (Weir, 2005). Zowel voor de binnenmaatstok als de digitale schuifpasser voor de binnenmaat van de voorvoet- en hielbreedte kan men stellen dat deze toestellen een zeer hoge betrouwbaarheid hebben.

2.2. Het verband tussen de antropometrische voetlengte en de schoenlengte.

Er wordt een gepaarde T test gebruikt om de voetlengte, gemeten met de infootscanner en de gemiddelde schoenlengte, gemeten met de binnenmaatstok te vergelijken. De nulhypothese is dat de gemiddelde schoenlengte gelijk is aan de voetlengte. Als alternatieve hypothese geldt dat de gemiddelde schoenlengte groter is dan de voetlengte.
2.2.1. Algemeen (n= 351)

Voor de voetlengtes rechts vindt men een gemiddelde waarde van 256 ±17 mm en voor de schoenlengtes werd een gemiddelde waarde van 268 ±18 mm genoteerd. Voor de voetlengtes links vindt men een gemiddelde waarde van 256 ±17 mm en voor de schoenlengtes een gemiddelde waarde van 269 ±17 mm.

Er is een significant verschil (rechts en links: p ≤ 0.001) tussen de voet- en de schoenlengte. Rechts is dit verschil gemiddeld 12 ±10 mm en links gemiddeld 13 ±9 mm. De gemiddelde schoenlengte is aan beide zijden significant groter dan de voetlengte.

2.2.2. Indeling volgens geslacht

2.2.2.1. Man (n= 163)

De gemiddelde voetlengte rechts is 269 ±11-mm en de schoenlengte 283 ±11-mm. Voor links zijn gelijkaardige resultaten genoteerd, namelijk 269 ±12 mm voor de voetlengte en 283 ±11 mm voor de schoenlengte.

Er is een significant verschil (rechts en links: p ≤ 0.001) tussen de voet- en schoenlengte. De schoenlengte is langer dan de voetlengte. Het gemiddelde verschil is rechts 14 ±8 mm als links 14 ±9 mm.

2.2.2.2. Vrouw (n= 188)

De lengtes zijn hier kleiner. De gemiddelde voetlengte rechts is 245 ±12 mm en schoenlengte 255 ±13 mm. Voor links is de gemiddelde voetlengte 245 ±12 mm en schoenlengte 256 ±12 mm.

Er is een significant verschil (rechts en links: p ≤ 0.001) tussen de voet- en schoenlengte. De schoenlengte is groter dan de voetlengte. Het verschil is hier kleiner dan bij de man. Voor rechts bedraagt het verschil 10 ±11 mm en voor links 11 ±9 mm.
2.2.3. Indeling volgens soort schoen

Aangezien de andere subgroepen te klein zijn voor betrouwbare resultaten, werd enkel aandacht besteed aan de twee grootste groepen.

2.2.3.1. Sportieve schoenen (n= 167)

De gemiddelde voetlengte rechts is 259 ±17 mm en schoenlengte 271 ±19 mm. Voor links is de gemiddelde voetlengte 259 ±17 mm en schoenlengte 272 ±17 mm.

De nulhypothese wordt verworpen. Er is een significant verschil (rechts en links: p ≤ 0.001) van rechts gemiddeld 12 ±11 mm en links gemiddeld 12 ±8 mm.

2.2.3.2. Laarzen (n= 99)

De gemiddelde voetlengte links 245 ±13 mm en schoenlengte 258 ±14 mm en de gemiddelde voetlengte rechts 245 ±13 mm en schoenlengte 257 ±13 mm is kleiner dan in de groep sportieve schoenen.

Er is een significant verschil (rechts en links: p ≤ 0.001) gelijkwaardig zoals bij de sportieve schoenen. Rechts is het verschil gemiddeld 12 ±9 mm en links 13 ±11 mm.

2.2.4. Besluit

De schoen is over de hele lijn significant langer dan de voet. Dit verschil is gemiddeld 12mm. De gemiddelde voetlengte van mannen (269 mm) ligt hoger dan bij vrouwen (245 mm). De vrouw heeft, in vergelijking met de man, minder ruimte over in de lengte van de schoen. De groep laarzen toont kleinere gemiddelde voetlengtes en schoenlengtes dan de groep sportieve schoenen. In de groep laarzen zitten bijna uitsluitend vrouwen terwijl de groep sportieve schoenen gemengd is. Het verschil tussen voet- en schoenlengte of de dode ruimte in de schoen is bij mannen groter dan bij
vrouwen. Bij de man is dit 14 mm terwijl er bij de vrouw een verschil van 10.5 tot 11.5 genoteerd wordt.

2.3. Het verband tussen de antropometrische voorvoetbreedte en voorvoetbreedte schoen.

De nulhypothese is dat de gemiddelde voorvoetbreedte van de schoen gelijk is aan de voorvoetbreedte van de voet. Als alternatieve hypothese geldt dat de gemiddelde voorvoetbreedte van de schoen groter is dan de voorvoetbreedte.

2.3.1. Algemeen (n= 364)

De gemiddelde voorvoetbreedte is rechts 98.72 ± 7.26 mm en links 99.58 ± 7.42 mm en de gemiddelde schoenbreedte is rechts 97.26 ± 8.45 mm en links 97.67 ± 8.59 mm.

De nulhypothese wordt verworpen. De voet is significant (rechts en links: $p \leq 0.001$) breder dan de schoen. De voet is rechts gemiddeld 1.46 ± 6.84 mm breder en links gemiddeld 1.92 ± 7.40 mm breder dan de schoen.

2.3.2. Indeling volgens geslacht

Men ziet dat de nulhypothese enkel bij vrouwen verworpen kan worden.

2.3.2.1. Man (n= 172)

De gemiddelde voorvoetbreedte van de voet is rechts 103.45 ± 5.84 mm en links 104.22 ± 6.07 mm. De gemiddelde voorvoetbreedte van de schoen is rechts 103.15 ± 5.48 mm en links 103.57 ± 5.66 mm.

De nulhypothese wordt aanvaard (rechts: $p= 0.532$; links $p = 0.202$). Hieruit leidt men af dat er geen significant verschil is in voorvoetbreedte van voet en schoen.
2.3.2.2. Vrouw (n= 174)

De gemiddelde voorvoetbreedte is rechts 94.05 ±5.21 mm en links 95.01 ±5.55 mm. De voorvoetbreedte van de schoen is rechts 91.44 ±6.65 mm en links 91.83 ± 6.82 mm.

Er is een significant verschil (rechts en links: p ≤0.001) tussen voet en schoen. De rechtersoet is gemiddeld 2.60 ±7.07 mm breder en de linkersoet is gemiddeld 3.17 ±7.91 mm breder. De voet is breder dan de schoen.

2.3.3. Indeling volgens soort schoen

In de groep sportieve schoenen zijn mannen en vrouwen evenredig verdeeld. De groep met laarzen bestaat quasi uitsluitend uit vrouwen.

2.3.3.1. Sportieve schoenen (n= 166)

De gemiddelde voorvoetbreedte rechts is 99.04 ±7.18 mm en links 99.86 ±7.40 mm. Voor de schoen is de voorvoetbreedte rechts gemiddeld 99.85 ±7.97 mm en links gemiddeld 99.85 ±8.12 mm.

De nulhypothese wordt aanvaard. Er is geen significant verschil (rechts p= 0.631; links p= 0.985) tussen de gemiddelde voorvoetbreedte van de schoen en de voet.

2.3.3.2. Laarzen (n= 80)

De gemiddelde voorvoetbreedte van de voet is zowel rechts (94.27 ±6.01 mm) als links (91.13 ±5.96 mm) significant verschillend (rechts en links: p≤ 0.001) van de voorvoetbreedte van de schoen zowel rechts (91,13 ± 7.26 mm) als links (91.40 ±7.38 mm).

De voorvoetbreedte van de voet is rechts gemiddeld 3.14 ±7.26 mm breder en links gemiddeld 3.74 ±7.86 mm breder dan de voorvoetbreedte van de schoen.
2.3.4. Besluit

De gemiddelde voorvoetbreedte in de algemene groep schommelt tussen 98.72 mm rechts en 99.58 mm links. De voet is gemiddeld rechts 1.46 mm en links 1.92 mm breder dan de schoen.

Wanneer men de voorvoetbreedte van mannen bekijkt, vindt men geen verschil tussen voet en schoen. De voorvoetbreedte van de voet bij de man schommelt tussen 103 en 104 mm. Bij vrouwen ziet men dat de voorvoetbreedte van de voet rechts gemiddeld 2.60 mm en links gemiddeld 3.17 mm breder is dan de schoen. De gemiddelde voorvoetbreedte schommelt tussen 94 mm en 95 mm.

In de groep sportieve schoenen, die zowel mannen als vrouwen dragen, ziet men dat er geen significant verschil is tussen de voorvoetbreedte van voet en schoen. In de groep laarzen, die bijna uitsluitend uit vrouwen bestaat, ziet men dat de voorvoetbreedte van de voet rechts gemiddeld 3.14 mm en links gemiddeld 3.74 mm breder is dan deze van de laars.

2.4. Het verband tussen de antropometrische hielbreedte en hielbreedte van de schoen

De nulhypothese luidt hier dat de gemiddelde hielbreedte van de schoen gelijk is aan de hielbreedte van de voet. Als alternatieve hypothese geldt dat de gemiddelde hielbreedte van de schoen groter is dan de hielbreedte van de voet.

2.4.1. Algemeen (n= 331)

De gemiddelde hielbreedte van de voet is rechts 64.54 ± 5.17 mm en links 64.59 ± 5.26 mm. De gemiddelde hielbreedte van de schoen is rechts 64.52 ± 7.49 mm en links 64.14 ± 7.04 mm.

De hielbreedte tussen voet en schoen is niet significant verschillend (rechts p = 0.967; links p = 0.315).
2.4.2.2. Man (n= 168)

De gemiddelde hielbreedte van de rechtervoet is 67.66 ±4.59 mm en van de schoen 65.95 ±8.49 mm. De gemiddelden van de linkervoet (67.74 ±4.50) en –schoen (65.58 ±8.29 mm) liggen iets dichter bij elkaar. De standaarddeviaties zijn gelijkwaardig.

Er is een verschil tussen links en rechts. Tussen de hielbreedte van de rechtervoet en –schoen is er geen significant verschil (p= 0.019). Het verschil tussen voet en schoen is 1.72 ±9.42 mm. Tussen de hielbreedte van de linkervoet en –schoen is er een significant verschil (p= 0.003). De voet is gemiddeld 2.16 ±9.31 mm breder dan de schoen.

2.4.2.3. Vrouw (n= 163)

De gemiddelde hielbreedte van de voet is zowel rechts (61.23 ±3.50 mm) als links (61.34 ±3.81 mm) minder breed dan deze van de schoen rechts (63.05 ±5.98 mm) als links (62.66 ±5.07 mm).

Rechts ziet men een significant verschil (p=0.001) van 1.73 ±6.79 mm. Links is er een significant verschil van 1.33 ±5.91 mm (p= 0.005). De hielbreedte van de schoen is voor de twee zijden breder dan deze van de voet.

2.4.3. Indeling volgens soort schoen

2.4.3.1. Sportieve schoenen (n= 163)

In de gemiddelde waarden ziet men dat zowel de rechtervoet (64.76 ±4.94 mm) en schoen (64.89 ±4.66 mm) als linkervoet (64.77 ±4.90 mm) en schoen (64.46 ±4.15 mm) gelijkwaardig zijn.

De nulhypothese wordt zowel rechts als links aanvaard. Er kan geen significant verschil (p= 0.766 ; links p= 0.463) vastgesteld worden tussen de hielbreedte van voet en schoen.
2.4.3.2. Laarzen (n = 78)

De gemiddelde hielbreedte van de voet is rechts 61.18 ±3.84 mm en links 61.11 ±4.06 mm. De gemiddelde schoenbreedte aan de hiel voor laarzen is rechts 62.76 ±4.97 mm en links 62.18 ±2.43 mm.

Er is geen significant verschil tussen hielbreedte voet en schoen. (rechts en links: p = 0.031) Het verschil is rechts 1.58 ±6.37 mm en links 1.07 ±4.31 mm.

2.4.4. Besluit

Algemeen is er geen significant verschil tussen de hielbreedte van de voet en de schoen. De gemiddelde hielbreedte is 64.5 mm.

Bij de man is er rechts geen en links wel een significant verschil zichtbaar tussen hielbreedte van voet en schoen. De voet en schoen verschillen rechts gemiddeld 1.72 mm en de voet is links gemiddeld 2.16 mm breder dan de schoen. De hielbreedte van de voet bij de man is gemiddeld 67.7 mm.

Voor de vrouw valt er ook een significant verschil te noteren tussen hielbreedte van voet en schoen maar in de andere richting. Hier is de schoen rechts gemiddeld 1.73 mm en links gemiddeld 1.33 mm breder dan de voet. De gemiddelde hielbreedte van de voet bij de vrouw is 61.3 mm. De hiel van de vrouw is gemiddeld 6.4 mm smaller dan deze van de man.

In de groep sportieve schoenen, die zowel door mannen als vrouwen gedragen worden, ziet men geen significant verschil in hielbreedte tussen schoen en voet. In de groep laarzen, die bijna uitsluitend door vrouwen worden gedragen, ziet men eveneens geen significant verschil.
D.Discussie

De resultaten uit deze studie laten toe het schoengedrag en de voet van de Vlaamse bevolking in kaart te brengen. Hiermee worden mensen van Kaukasische etniciteit bedoeld, tot in de eerste graad dit wil zeggen waarvan beide ouders van Kaukasische afkomst zijn. De reden voor de specifieke nadruk op de etnische afkomst is dat er namelijk meermaals werd beschreven dat er tussen rassen onderling verschillen zijn in voetvorm. Zo hebben Afrikanen bredere voeten dan Azia ten en ziet men dat de Kaukatische voet de smalste is. Duitse voeten waren langer dan Australische voeten (Mauch et al., 2008). In een etnische groep zelf ziet men trouwens ook verschillen (Kouchi, 1998). Binnen het Oost- Azische ras hebben Javanen bredere en langere voeten dan Japanners en Fillipijnen (Ashizawa et al., 1997). Deze verschillen worden op basis van etnische, genetische en culturele factoren verklaard net zoals het klimaat, de levensstijl en verschillen in groeitempo en ontwikkeling (Mauch et al., 2008; Anil et al., 1997; Krauss et al.; 2008; Kouchi en Mochimaru, 2007). Opmerkelijk is dat de schoenindustrie geen rekening houdt met al deze continentale verschillen (Mauch et al., 2008). In de literatuur zijn resultaten uit Japan, China, Amerika, Australië en Duitsland terug te vinden. Resultaten uit België waren nog niet voorhanden.

De onderzochte populatie bestaat uit mannen en vrouwen met gezonde voeten tussen 18 en 45 jaar. In deze groep is de gemiddelde leeftijd 28 (±8) jaar. Door de grote groep studenten en leeftijdsgenoten die deelnam aan deze studie, ziet men een piek in de categorie ° 1985-1989. Dit voor zowel mannen als vrouwen. Als men de BMI bekijkt, is een mooie verdeling volgens de Gausscurve zichtbaar met als gemiddelde waarde 23.47 (±3.66) in het algemeen. Voor de mannen is dit gemiddeld 24.17 (±3.69) en vrouwen 22.84 (±3.50). De curve is bij mannen meer naar rechts verschoven, wat verklaard kan worden door het feit dan mannen over het algemeen groter zijn dan vrouwen (bijlage 2). De verdeling tussen man en vrouw is ongeveer evenredig wat conclusies over verschillen tussen man en vrouw mogelijk maakt.

De aanleiding voor dit onderzoek was voornamelijk het vermoeden dat de schoen te smal is voor de voet. Over de lengte was oorspronkelijk minder twijfel aangezien het Europese schoenmaatsysteem gebaseerd is op de voetlengte (Witana et al., 2004; Krauss et al., 2008). Toch toonde deze studie dat 15,59% twijfelde over zijn schoenmaat of een halve maat opgaf, ondanks de nadrukkelijke vraag om een volledige maat aan te kruisen.

De proefpersonen werden niet beïnvloed in hun schoengedrag aangezien daar vooraf geen melding van werd gedaan. Ze werden immers uitgenodigd voor een voetmeting.
Daardoor werden de schoenen die de persoon aan had gemeten. Velen zouden anders, naar eigen zeggen, hun beste schoenen aangedaan hebben. In deze studie werd de schoen in categorieën ingedeeld. In bijlage 2 toont de figuur aan dat er maar weinig open schoenen waren. Dit kan verklaard worden door de periode, september tot november, waarin de testen afgenomen werden. Opvallend is dat, ondanks de mode van dat jaar, er heel weinig pumpschoenen gedragen werden. De grootste groepen waren, zoals verwacht de sportieve schoenen en de laarzen. Sportieve schoenen of in de literatuur casual schoenen worden beschreven als dagdagelijkse schoenen met een hakhoogte minder dan 30 mm (Nacher et al., 2006). Aangezien de gewone schoen best een heelcounter van 4 tot 5 cm heeft (Menz en Sherrington, 2000), kan men stellen dat alle schoenen met een heelcounter meer dan vijf cm tot de laarzengroep mogen worden gerekend. Verder werd in deze laatste groep geen rekening gehouden met de hakhoogte. De schoenen werden na de testings allemaal op basis van de foto’s gezamenlijk door de onderzoekers ingedeeld. Op die manier werd getracht een zo goed mogelijke indeling te maken. In de literatuur is men, buiten bovenstaande definities, zeer vaag hieromtrent. Bij de sluitingen ziet men dat de grootste groep de schoen sloot met veters. Er bestaan echter verschillende wijzen om veters dicht te knopen en hier werd geen rekening mee gehouden. De tweede en derde grootste groepen zijn de rits en niets. Dit komt doordat laarzen meestal met een rits gesloten worden of dat er geen fixatiemiddel is.

Educatie van het belang van een goede schoen en dus niet alleen de mode volgen is belangrijk om op oudere leeftijd voetpijn en eventuele teenmisvormingen die door de schoen beïnvloed zouden kunnen worden, zoals hamertenen (door een te korte schoen) en hallux valgus of digitis quintus (door een te smalle schoen), trachten te voorkomen (Menz en Morris, 2005). Jonge vrouwen hebben smallere voeten dan oudere vrouwen met eenzelfde voetlengte. De oudere vrouw gaat meer aandacht hechten aan comfort (Ashizawa et al., 1997). Toch ziet men in deze studie met een jongere populatie dat het grootste belang bij het bepalen van de schoenkeuze aan de factor comfortabel gehecht wordt (bijlage 2). Deze studie kan aan een gelijkaardige studie met een oudere populatie gelinkt worden.

De gemiddelde voetlengte bij mannen (269 ±11mm) ligt 24 mm hoger dan bij vrouwen (245 ±12mm). Dit is gelijklopend met het verschil van 23.5mm tussen man en vrouw die Luo et al. (2009) vonden.

Over het algemeen toont deze studie aan dat de schoenlengte significant groter is dan de voetlengte. Dit verschil bedraagt gemiddeld 12 mm. Deze waarde vindt men ook zowel bij de categorie sportieve schoenen als laarzen terug. Bij de man is het verschil gemiddeld 14 mm en bij de vrouw gemiddeld 10. Hieruit kan men afleiden dat de vrouw minder clearance of vrije ruimte heeft dan de man. Dit wordt in de literatuur ook
bevestigd door Luo et al. (2009) die vonden dat 88% van de vrouwen schoenen droegen die gemiddeld 12 mm korter waren dan hun voeten.

In de categorie laarzen zaten bijna uitsluitend vrouwen. De categorie sportieve schoenen is gemengd. Dit verklaart de kleinere gemiddelde waarden die te zien zijn in de categorie laarzen (245 ±13 mm) ten opzichte van de categorie sportieve schoenen (259 ±17 mm).

Ondanks deze vrije ruimte wordt toch bij 24% van de mensen die pijn aangaven door de schoenen die ze aanhadden, de teenregio aangekruist. Dit doet dus vermoeden dat de gemiddelde 12 mm niet genoeg is en de schoen misschien toch iets te klein is. Er zijn echter nog tal van andere factoren dan louter lengte en breedte die de pijn door de schoen zouden kunnen verklaren. Andere metingen zoals hoogte en omtrekmetingen zijn ook belangrijk (Mochimaru et al., 2000; Rossi, 2000; Goonetilleke en Luximon, 2001; Luximon et al. 2003; Witana et al., 2004; Zhao et al., 2008; Xiong et al., 2008; Mauch et al., 2009). Verder kan een versleten schoen schade aanbrengen en dus pijn aan de voet veroorzaken (Leckland 2010). Liu et al. (2009) stellen dat 6 mm nodig is om de tenen te strekken tijdens het wandelen en gaan, terwijl Chantelleau en Ede (2002) tussen de 10 tot 15 mm aangeven, wat ook hier het geval is.

Het percentage van de mensen die pijn aangaven afkomstig van de gemeten schoenen bedroeg 17.43% van de onderzochte populatie, wat op zich toch veel is. Dit wordt dan nog eens onderschat doordat velen aangeven dat ze wel een paar schoenen hebben waar ze wel last bij ervaren.

Als men meet, heeft men altijd een meetfout. Voor de scanner ligt deze fout op 1 mm. Voor de binnenmaatstok werd een fout van 2 mm berekend. Het ISO laat voor voetmetingen een fout toe van 2 mm (Yu en Tu, 2008). Op zich is dit dus binnen de toegelaten marges alhoewel men twee toestellen gebruikt en op elk toestel een fout zit. Een bijkomende bemerking is dat bovenaan de heelcounter vaak een lichte verdikking zit die last kan geven bij de persoon.

Ook de gemeten voetlengte (c) is niet identiek dezelfde als de gemeten schoenlengte (a). Dit wordt verduidelijkt in figuur 18. De scanner berekent namelijk de langste afstand, deze is van het pterion of hielpunt tot aan de langste teen. Het pterion ligt echter hoger op de heelcounter, zoals zichtbaar op de figuur. De afstand die de binnenmeetstok mat, is zo laag mogelijk en horizontaal aan het zooloppervlak. Een oplossing voor dit probleem zouden
driehoeksmetingen kunnen zijn. Als men een raaklijn trekt op de kromming van de hielcounter, bekomt men immers een rechthoekige driehoek. Als men de aangeduide hoek \(\alpha \) zou kunnen berekenen, is dit probleem verholpen want: schoenlengte \(a = (\text{voetlengte } c) \times \cos \alpha \)

Men moet ook opmerken dat de mate van flare een invloed heeft op de schoenmaat en dus ook op de schoenlengte. Goonetilleke et al. (2000) schreven dat een grotere mate van flare een kleinere schoenmaat tot gevolg heeft.

Een laatste opmerking hieromtrent is dat de proefpersoon op een vlak oppervlak staat in de scanner terwijl in de schoen meestal een licht niveau verschil is tussen de zooldikte van de voorvoet en de hiel, wat een licht verschil in lengte kan geven.

De gemiddelde voorvoetbreedte in de volledige groep is 98.72 (±7.26) mm rechts. De voorvoetbreedte bij de man is rechts 103.45 (±5.84) mm terwijl de gemiddelde voorvoetbreedte bij de vrouw gelijk is aan 94.05 (±5.21) mm. De voorvoet van de vrouw is dus wel degelijk smaller zoals eerder aangetoond werd in de literatuur (Rossi, 1983; Bland en Altman, 1996; Ashizawa et al., 1997; Anil et al., 1997; Frey, 2000; Manna et al., 2001; Wunderlich en Cavanagh, 2001; Krauss et al., 2008; Xiong et al., 2008; Luo et al., 2009).

Algemeen is de voet gemiddeld rechts 1.46 (±6.84) mm en links 1.92 (±7.40) mm significant breder dan de schoen. Chanteleau en Ede (2002) toonden in hun studie reeds aan dat twee derden van hun populatie bredere voeten had dan het commercieel voor handen zijnde schoeisel. Bij de man is er geen significant verschil in voorvoetbreedte. De schoen sluit dus aan op de voet. Ze is dus eigenlijk net te nauw want er is geen beetje vrije ruimte. Ook Menz en Morris (2005) kwamen tot deze conclusie voor de man. Bij de vrouw ziet men dat de voorvoetbreedte rechts gemiddeld 2.60 (±7.07) mm en links gemiddeld 3.17 (±7.91) mm significant breder is dan de schoen. De schoen is hier dus effectief te smal. De literatuur toont immers ook dat 88% van de vrouwen te nauwe schoenen draagt (Wunderlich en Cavanagh, 2000; Menz en Morris, 2005). In de categorie sportieve schoenen ziet men geen significant verschil. De helft van deze groep bestaat namelijk uit mannen. De schoen is hier dus weer net te nauw. In de categorie laarzen, die bijna uitsluitend uit vrouwen bestaat ziet men een nog duidelijker verschil. De voorvoetbreedte rechts is 3.14 (±7.26) mm en links 3.74 (±7.86) mm breder dan deze van de laars. Menz en Morris (2005) wijten het te nauw zijn aan het marktaanbod en de mode. De invloed van de mode door de soort schoen zou met deze studie ook bevestigd kunnen worden aangezien er lichte verschillen zijn tussen categorieën onderling. De verschillen in voorvoetbreedte tussen voet en schoen tonen inderdaad een tamelijk verschil met de nodige 8 mm die ter hoogte van de voorvoet nodig is volgens

Objectief werd dus vastgesteld dat de vrouwenvoet breder is dan de schoen en dat de mannenvoet juist te nauw is. In de vragenlijst werd bij de mensen, die pijn aangaven veroorzaakt door het gemeten paar schoenen, bij 28% van de vrouwen en bij 21% van de mannen pijn weergegeven ter hoogte van deze regio (namelijk de bal van de voet). Ook toonde de vragenlijst aan dat het meest voorkomende probleem bij de aankoop van schoenen was dat ze te smal zijn (31%).

De meetfout voor de voorvoetbreedte met de digitale schuifpasser is 2mm. Dit ligt ook binnen de toegelaten marges voor schoenmetingen, vastgelegd door het ISO. Deze waarde kan wel een invloed hebben op de bekomen resultaten.

Ook dient men rekening te houden met een verschil tussen de gemeten voorvoetbreedte (c) en schoenvoorvoetbreedte (a). De schoenvoorvoetbreedte werd loodrecht bepaald op de lengte van de schoen terwijl de scanner de breedste positie berekend als de afstand van het MT tot het MF punt. Deze lijn ligt iets schuiner. Ook hier zou men de hoek α moeten berekenen waarbij schoenvoorvoetbreedte a = (voorvoetbreedte c) x cos α.

De gemiddelde hielbreedte is 64.5 (±5.17) mm. De hielbreedte bij de man is gemiddeld 67.66 (±4.59) mm en bij de vrouw is dit 61.23 (±3.50) mm. De hiel is dus gemiddeld 6.4 mm smaller bij de vrouw, wat eerder nog niet aangegeven werd in de literatuur. De hielregio van de schoen werd eerder als standaardvorm beschouwd (Xiong et al., 2008). Ook Witana et al. (2004) schreven dat er weinig variatie was in hielregio. Uit deze studie kunnen we dus besluiten dat er wel degelijk een variatie is in hielbreedtes. De focus in de literatuur ligt voornamelijk op het verschil in voorvoetbreedte tussen man en vrouw. De bevinding in deze studie is dus nieuw en van waarde als men weet dat Van Gheluwe et al. (1999) en Luximon et al. (2003) het belang van de meting van de hielbreedte voor een goed schoenontwerp benadrukten.
Algemeen is er geen significant verschil te zien tussen hielbreedte van de voet en de schoen. Het wordt echter wel interessant als de geslachten vergeleken worden. Bij de man is er voor de rechtervoet geen significant verschil te zien terwijl links de voet gemiddeld 2.16 (±9.31) mm breder is dan de schoen. De hiel van de schoen is dus te nauw voor de voet bij de man.

Bij de vrouw ziet men een significant verschil in de omgekeerde richting. De schoen is rechts gemiddeld 1.73 (±6.79) mm en links gemiddeld 1.33 (±5.91) mm breder dan de voet. De vrouw heeft wel wat ruimte over. In de categorie sportieve schoenen en laarzen afzonderlijk ziet men geen significant verschil, wat er dus op wijst dat de hiel van de schoen net te nauw is voor de voet.

In de vragenlijst ziet men 11% van de mannen met pijn in vergelijking met 7% van de vrouwen met pijn aan de achtervoet. Men kan echter zowel door een te krap zittende schoen als door een te los zittende schoen last krijgen. (Luximon et al., 2001)

Opnieuw dient rekening gehouden te worden met een meetfout van de schuifpasser. Deze bedraagt 1.5 mm voor de hielbreedte.

De voet werd in zones ingedeeld zoals beschreven door Dufour et al. (2009). Op zicht ziet men dat de zones van pijnbeleving in de groep mensen die pijn aangeven door het gedragen schoeisel zich grotendeels ter hoogte van de bal van de voet (25%), de tenen (24%), de hiel (22%) en de achtervoet (9%) bevinden (bijlage 2).

Net zoals bij Sherrington en Menz (2003) en Koepsell et al. (2004) zag men in deze onderzochte populatie weinig pumpschoenen (bijlage 2), tegen de verwachting in gebaseerd op de huidige mode. De grootste specifieke categorie was bij zowel mannen (45.33%) als vrouwen (20.27%) zonder steunzolen een hakhoogte van 10 mm. In de laarzengroep kwamen, als men de foto’s bekijkt, wel hogere hakken voor en hierdoor zien we toch dat 32.74% van de vrouwen zonder steunzolen een hakhoogte hoger of gelijk aan 30mm had.

Hakken worden als hoog beschouwd als ze hoger zijn dan 25 mm. De druk op de metatarsaalkoppen verhoogt dan wat voetklachten en veranderingen in voetmorfologie kan veroorzaken (Menz en Morris., 2005). Door het grotere gewicht dan normaal dat op de voorvoet landt, zal de voorvoetbreedte waarschijnlijk nog breder worden want onder andere de voorvoetbreedte stijgt bij toenemende belasting (Houston et al., 2006; Tsung et al., 2003; Cheng et al., 1997). Misschien zou dit een verklaring kunnen zijn waarom de voorvoetbreedte bij laarzen nog iets nauwer is dan bij de volledige groep.
Uit de proeftesting werd geen meetfout voor de pelvimeter genoteerd. De pelvimeter was slechts tot op 5 mm nauwkeurig.

Enkele positieve punten van deze studie zijn dat de intratestbetrouwbaarheid voor de metingen telkens hoog zijn. De maximale meetfout ligt, ondanks de manuele schoenmetingen, op de toegestane 2 mm. In dit werk vindt men de resultaten voor zowel linker- als rechtervoet. Enkel in de discussie worden voornamelijk de waarden voor de rechtervoet aangehaald. In de literatuur baseert men zich meestal enkel op de rechtervoet (Witana et al., 2004,2006; Houston et al., 2006; Luo et al., 2009; Krauss et al., 2008).

Het blijft echter gissen wat de nodige vrije ruimte is tussen voet en schoen in alle dimensies. Er bestaan hierover geen algemene richtlijnen en dit wordt zelden in de literatuur beschreven (Rossi, 2001). Buiten lengte en breedtedimensies zijn er, zoals eerder aangehaald, nog andere dimensies die een invloed hebben op het goed passen van de schoen. Met materialen, die onderling een grote variabiliteit hebben in de mate van stretch (Witana et al., 2004), het tijdstip op de dag en eventuele ruimte voor kousen werd in dit onderzoek geen rekening gehouden. Er werd ook gevraagd om het gewicht gelijkmatig over beide benen te verdelen maar dit werd niet objectief vastgelegd.

Naar volgende studies toe lijkt het zinvol om de voeten volgens voettype in te delen. Verschillende auteurs hanteren een eigen indeling in voettypes maar eigenlijk komt het meestal op dezelfde drie voettypes neer namelijk ofwel een brede voorvoet en achtervoet ofwel een smalle voet met grote mediale bal lengte (de afstand van het pterion tot MTP I) of een smalle voet met kleine mediale bal lengte. Toch zou de voorkeur voor verder onderzoek gaan naar de indeling die Houston et al. (2006) hanteerden. De reden hiervoor is dat men nog eens extra een onderscheid maakt tussen de hielbreedte en de voorvoetbreedte. Dit is interessant als je ziet dat de schoen ook te smal kan zijn op één specifieke plaats, namelijk ofwel de voorvoet ofwel de hiel en dat dit niet beiden hoeft te zijn. Zij delen de voet in vier types in namelijk: brede voorvoet en hiel, smalle voorvoet en hiel, een U-vorm met smalle voorvoet en brede hiel en een V-vorm met brede voorvoet en smalle hiel.

Ondanks dat men er reeds de nadruk op legde dat de vrouwenvoet smaller en hoger is dan de mannenvoet dat men hiermee in het schoenontwerp rekening moet houden, toont deze studie aan dat niet alleen de voorvoetbreedte verschillend is maar ook de hielbreedte. Dit laatste is eerder een nieuw gegeven en daarom zou het ook nuttig zijn om op een nog grotere schaal het verschil in voetvorm tussen de geslachten onderling te onderzoeken. Dit zou dan zowel op basis van absolute (per schoenmaat) waarden als op relatieve waarden (over alle schoenmaten) kunnen gebeuren.
In deze studie werden de conclusies genomen door alle schoenmaten samen te nemen. Men zou in de toekomst ook elke maat apart kunnen bestuderen.

De gegevens uit deze studie werden op een statische manier verkregen. Toch toont de literatuur aan dat de voet vervormt tijdens beweging en tijdens belasting. De schoen moet dus in staat zijn deze vervorming op te vangen en daarom is verder dynamisch onderzoek aangewezen.

Een raadgeving naar de schoenindustrie toe is onder meer rekening te houden met de verschillende bestaande voettypes. Het lijkt interessant om schoeisel niet enkel op breedte aan te passen maar de indeling van Houston et al. (2006) te volgen. Aandacht naar de specifieke etnische groepen is ook van belang. In deze studie droeg 12.06% steunzolen. Dit is nog een onderschatting want velen gaven aan dat ze hun steunzolen niet droegen of er vroeger gedragen hadden. De industrie kan hier ook rekening mee houden want het goed passen van de schoen met steunzolen wordt door deze mensen vaak als probleem opgegeven.

Een raadgeving naar de consument toe is de mensen bewust te maken van hun voettype en de daarbij passende schoenmaten, niet alleen qua lengte maar ook qua breedte. Morfologische verschillen zijn immers een beslissende factor in het goed passen, functioneel en comfortabel zijn van een schoen. (Luo et al., 2009). Wanneer men schoenen past, kan men eventueel de zool eens uithalen en de voet hierop plaatsen om te zien of dit goed past. Bij het aankopen kan men aanraden om voordien alvast 15 minuten te wandelen. Dit omdat het voetvolume toeneemt bij beweging (Mc Worther et al. (2003); Kunde et al., 2007; Cloughly et al., 1995) wat ook het geval is bij warm weer. Men mag er niet van uitgaan dat het materiaal van de schoen zich naar de voet zal zetten want de flexibiliteit van het materiaal is niet groot genoeg om voetdeformaties tegen te gaan (Kouchi, 1995; Xiong et al., 2009). Schoenen moet zowel in zit, in stand als tijdens het wandelen goed passen (Xiong et al., 2009). Frequenter wisselen van schoenen, zeker bij schoenen met hoge hakken, wordt ook aangeraden. In deze studie wisselde 42,62% meermaals per week van schoenen. Men schat deze waarde nog iets hoger wetende dat een aantal proefpersonen hun pantoffels niet meerekenden. Kusumoto et al., 2007 wezen tot slot ook op het belang om telkens de veters los te maken en dicht te knopen bij het wisselen van schoenen.
E. Conclusie

Doordat er geen algemene richtlijnen zijn voor de nodige hoeveelheid vrije ruimte tussen schoen en voet (Rossi, 2001), blijft het moeilijk om concrete conclusies te trekken. Op elk meettoestel zit ook een meetfout. Deze fout was in deze studie telkens 2 mm of minder en dus toegestaan voor voetmetingen volgens het ISO.

Uit een populatie van 18 tot 45- jarigen met gezonde voeten ziet men aan de hand van de vragenlijst dat toch 17.34% van de onderzochte populatie pijn ervaart afkomstig van het gemeten schoeisel. De belangrijkste pijnzones voor deze mensen zijn de bal van de voet (25%), de tenen (24%), de hiel (22%) en de achtervoet (9%) (bijlage2). Mannen ervaren iets meer achtervoetpijn (11% tov. 7%) terwijl vrouwen iets meer pijn aan de bal van de voet (28% tov. 21%)ervaren.

De gemiddelde voetlengte bij mannen (269 ±11mm) ligt 24 mm hoger dan bij vrouwen (245 ±12mm). Over het algemeen toont deze studie aan dat de schoenlengte significant groter is dan de voetlengte. Dit verschil bedraagt gemiddeld 12 mm. Deze waarde vindt men ook zowel bij de categorie sportieve schoenen als laarzen terug. Bij de man is het verschil gemiddeld 14 mm en bij de vrouw gemiddeld 10 mm.

De gemiddelde voorvoetbreedte in de volledige groep is 98.72 (±7.26) mm rechts. De voorvoetbreedte bij de man is rechts 103.45 (±5.84)mm terwijl de gemiddelde voorvoetbreedte bij de vrouw gelijk is aan 94.05 (±5.21) mm. De voorvoet van de vrouw is dus smaller. Voor de ganse populatie is de voorvoet is significant breder dan de schoen (rechts 1.46±6.84 mm;links 1.92±7.40mm). Dit wordt bevestigd door 31% van de populatie die aangeeft dat het te smal zijn van schoenen een probleem is bij aankoop. Bij de mannen sluit de schoen net aan op de voet (want geen significant verschil) en bij de vrouwen ziet men dat de voet significant breder is dan de schoen (rechts 2.60±7.07mm; links 3.17±7.91mm). In de sportieve schoengroep ziet men geen significant verschil terwijl de laarzengroep een duidelijker significant verschil aantoont (rechts 3.14±7.26mm; links3.74±7.86mm).

De hielbreedte bij de man is gemiddeld 67.66 (±4.59) mm en bij de vrouw is dit 61.23 (±3.50) mm. De hiel is dus gemiddeld 6.4 mm smaller bij de vrouw, wat eerder nog niet aangegeven werd in de literatuur.
Bij de man is er voor de rechtersoet geen significant verschil te zien terwijl links de voet gemiddeld 2.16 (±9.31) mm breder is dan de schoen. De hiel van de schoen is dus te nauw voor de voet bij de man.

Bij de vrouw ziet men een significant verschil in de omgekeerde richting. De schoen is rechts gemiddeld 1.73 (±6.79) mm en links gemiddeld 1.33 (±5.91) mm breder dan de voet. De vrouw heeft wel wat ruimte over. In de categorie sportieve schoenen en laarzen afzonderlijk ziet men geen significant verschil, wat er dus op wijst dat de hiel van de schoen net te nauw is voor de voet.

Andere metingen zoals hoogte en omtrekmetingen zijn ook belangrijk (Mochimaru et al., 2000; Rossi, 2000; Goonetilleke en Luximon, 2001; Luximon et al. 2003; Witana et al., 2004; Zhao et al., 2008; Xiong et al., 2008; Mauch et al., 2009).

Bij de groep zonder steunzolen is de grootste categorie in hakhoogte, zowel bij man als vrouw, 10 mm. Toch ziet men dat 32,74% van de vrouwen een hakhoogte van 30 mm of meer heeft.
F. Referenties

De Mits S. et al. (accepted, 2010). Reliability and validity of the Infoot 3D foot digitizer for a normal healthy population. *Footwear Science*

Echarri J.J. en Forriol F. (2003). The development in footprint morphology in 1851 Congolese children from urban and rural areas and the relationship between this and wearing shoes. *Journal of pediatric orthopaedics*, 12, 141-146

Forriol F. en Pascual J. (1990). Footprint analysis between three and seventeen years of age. Foot Ankle, 11, 101- 104

Gould N. et al. (1989). Development of the child’s arch. *Foot Ankle*, 9, 241-245

Houston VL, Luo GM, Mason CP et al. (2002). Optimization of pedorthic insole designs. Proceedings of the 2nd Annual Department of Veterans Affairs Research & Development meeting, Baltimore, MD,

Kleindienst F. (2003). Gradierung funktioneller Sportschuheparameter am Laufschuh, Shaker Verlag, Aachen 495

Kouchi M., Mochimaru M., Nogawa H., Ujihashi S. (2005). Morphological fit of running shoes: perception and physical measurements. *the 7th Symposium on Footwear Biomechanics, Cleveland, OH, USA*

Krauss I. et al. (2005). Gender differences in foot shape. *7th symposium on Footwear Biomechanics, Cleveland, OH, USA*

Mochimaru M., Kouchi M. (2005). Last customization from an individual foot form and design dimensions. *National institute of advanced industrial science and technology*, 2-41-6

Putz- Anderson F. (1988), Cumulative trauma disorders. NY, Taylor and Francis

Speksnijder C.M., Munckhof R., Moonen S., Walenkamp G. (2005). The higher the heel the higher the forefoot- pressure in ten healthy women. The foot, 15, (1), 17-21

G. Bijlagen

1. Bijlage 1: Vragenlijst

<table>
<thead>
<tr>
<th>Geboorte datum : / / 19......</th>
<th>Volgnummer.......................</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichaamsgewicht :kg</td>
<td>Lengte : Cm</td>
</tr>
</tbody>
</table>

Omcirkel het passende antwoord of kleur het passende bolletje

1. Geslacht : VROUW / MAN

2. Welke etnische afkomst hebben uw ouders?
 Moeder :
 - 0 Noord - Afrikaans
 - 0 Zuid – Afrikaans
 - 0 Caucasisch
 - 0 Indisch

 Vader :
 - 0 Noord - Afrikaans
 - 0 Zuid – Afrikaans
 - 0 Caucasisch
 - 0 Indisch

3. Hebt u één van de volgende aandoeningen?
 0 Systeem aandoeningen die een invloed hebben op uw onderste ledematen :
 zoals bv. reuma, diabetes, neurologische aandoening
 0 Chirurgische ingreep : vb. operatie aan de voet/enkel
 0 Geen

4. Draagt u orthopedische schoenen of semi-orthopedische schoenen? JA / NEEN
 Draagt u steunzolen? JA / NEEN
 Indien JA : welk soort steunzolen? op maat gemaakte / préfab steunzolen

5. Welke schoenmaat kiest u?

<table>
<thead>
<tr>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
</tr>
</thead>
</table>

6. Hoeveel paar schoenen hebt u?

<table>
<thead>
<tr>
<th>< 5 paar</th>
<th>5 – 10 paar</th>
<th>10 – 15 paar</th>
<th>15 – 20 paar</th>
<th>> 20 paar</th>
</tr>
</thead>
</table>

7. Hoe frequent wisselt u van schoenen?

<table>
<thead>
<tr>
<th>Meeraals per dag</th>
<th>dagelijks</th>
<th>Meeraals per week</th>
<th>wekelijks</th>
<th>Meeraals per maand</th>
<th>maandelijks</th>
<th>nooit</th>
</tr>
</thead>
</table>

8. Hebt u regelmatig pijn aan uw voeten wanneer u deze schoenen draagt? JA / NEEN
8.1. Indien JA : Aan welke voet hebt u het meeste last? LINKS / RECHTS / BEIDEN

8.2. Indien JA : Waar hebt u pijn aan de voet? Duid aan op de prent.

9. Vindt u moeilijk goede schoenen? JA / NEEN
Indien JA : Wat is het probleem waarmee u dan te maken hebt?
(meerdere antwoorden mogelijk)
0 te smal 0 te breed
0 te klein 0 te groot
0 te harde zool 0 andere : ...
0 niet mooi
0 te duur

10. Wat vindt u belangrijk bij uw schoenkeuze? (duid aan in graad van belangrijkheid:
1 = meest belangrijke, 2 iets minder belangrijk enz...)
_ Dat de schoenen modieuze zijn
_ Dat de schoen comfortabel is
_ Dat de schoen goed past
_ De prijs van de schoen
_ De prijs in vergelijking met de kwaliteit van de schoen
_ Andere redenen: ...
1. Bijlage 2: Tabellen en Grafieken

Bijlage: grafieken met kenmerken van de populatie

- Het aantal proefpersonen per leeftijdscategorie.

- Spreiding proefpersonen volgens geslacht en leeftijd.

- Spreiding aantal proefpersonen volgens geslacht en gewicht.
Gemiddelden in de steekproef.

<table>
<thead>
<tr>
<th>Gemiddelde</th>
<th>Alle Proefpersonen</th>
<th>Mannen</th>
<th>Vrouwen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²)</td>
<td>23,47</td>
<td>24,17</td>
<td>22,84</td>
</tr>
<tr>
<td>Lengte (cm)</td>
<td>173,99</td>
<td>181,1</td>
<td>167,57</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>71,32</td>
<td>79,33</td>
<td>64,09</td>
</tr>
<tr>
<td>Leeftijd</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Bijlage: grafieken soorten schoenen

- **Open schoenen versus gesloten schoenen.**
- Soorten open schoenen

- Soorten gesloten schoenen
Bijlage grafieken hakhoogte

- Aantal vrouwen die steunzolen dragen per categorie hakhoogte.

- Aantal mannen die steunzolen dragen per categorie hakhoogte.
- Aantal vrouwen die geen steunzolen dragen per categorie hakhoogte.

- Aantal mannen die geen steunzolen dragen per categorie hakhoogte.
Bijlage grafieken en tabellen van de enquêtevragen

- Welke schoenmaat kiest u?

<table>
<thead>
<tr>
<th>Schoenmaat</th>
<th>33</th>
<th>34</th>
<th>36</th>
<th>37</th>
<th>37,5</th>
<th>38</th>
<th>38,5</th>
<th>39</th>
<th>39,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrouw</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>18</td>
<td>1</td>
<td>13</td>
<td>52</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schoenmaat</th>
<th>40</th>
<th>40,5</th>
<th>41</th>
<th>41,5</th>
<th>42</th>
<th>42,5</th>
<th>43</th>
<th>43,5</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrouw</td>
<td>25</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>man</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>26</td>
<td>6</td>
<td>51</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schoenmaat</th>
<th>44,5</th>
<th>45</th>
<th>45,5</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>50</th>
<th>totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrouw</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>man</td>
<td>6</td>
<td>23</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>177</td>
</tr>
</tbody>
</table>

- Hoeveel paar schoenen hebt u?

![Aantal proefpersonen vs aantal paar schoenen]

<table>
<thead>
<tr>
<th>Aantal paar</th>
<th>Mannen</th>
<th>Vrouwen</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 paar</td>
<td>73</td>
<td>21</td>
</tr>
<tr>
<td>5 - 10 paar</td>
<td>80</td>
<td>46</td>
</tr>
<tr>
<td>10 - 15 paar</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>15 - 20 paar</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>> 20 paar</td>
<td>23</td>
<td>3</td>
</tr>
</tbody>
</table>
- Hoe frequent wisselt u van schoenen?

![Bar chart showing frequency of shoe change](chart1)

- Aan welke voet hebt u het meeste last als u deze schoenen draagt?

![Bar chart showing pain by foot](chart2)
Waar hebt u pijn aan de voet?
- Wat is het probleem indien u moeilijk goede schoenen vindt?

- Wat vindt u belangrijk bij uw schoenkeuze?