Winststuring in de kennisintensieve sector
Earnings management bij hightech-onder nemingen

Masterproef voorgedragen tot het bekomen van de graad van
Master in de Toegepaste Economische Wetenschappen

Lieve De Beer
Jeroen Clinckspoor

onder leiding van

Prof. Dr. Ignace De Beelde
PERMISSION

Ondergetekende verklaart dat de inhoud van deze masterproef mag geraadpleegd en/of gereproduceerd worden, mits bronvermelding.

Jeroen Clinckspoor
Lieve De Beer
Voorwoord

Deze masterproef vormt het eindstuk van de masteropleiding Toegepaste Economische Wetenschappen aan de Universiteit Gent. Deze masterproef gaat over winststuring bij bedrijven. Het maken van deze masterproef heeft ons geleerd dat we niet alle gepubliceerde accountingcijfers moeten geloven. Winststuring heeft een grote impact op de maatschappij, het is dus een goede zaak dat hier de nodige aandacht aan besteed wordt. Bij het bekijken van jaarrekeningen en financiële rapporten moet het nodige scepticisme aan de dag gelegd worden. Dit kan evident lijken maar literatuurstudie leert ons dat winststuring niet zo eenvoudig te detecteren is.

Onze dank gaat uit naar onze promotor bij het geven van de juiste richtlijnen en familieleden voor het nalezen van ons eindwerk.
INHOUDSTAFEL

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Hoofdstuk</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inleiding</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Definitie winststuring</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Motieven voor winststuring</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Methoden voor winststuring</td>
<td>5</td>
</tr>
<tr>
<td>4.1</td>
<td>Accrual manipulatie</td>
<td>5</td>
</tr>
<tr>
<td>4.2</td>
<td>Winststuring o.b.v. accruals meten</td>
<td>6</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Het Healy Model</td>
<td>7</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Het DeAngelo Model</td>
<td>8</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Het Jones Model</td>
<td>8</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Het Industry Model</td>
<td>10</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Het Modified Jones Model</td>
<td>10</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Eén-accrual model</td>
<td>11</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Vlottende accruals i.p.v. totale accruals</td>
<td>11</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Het distributie-model</td>
<td>12</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Winststuring-aggregaat</td>
<td>14</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Evaluatie accrual modellen</td>
<td>15</td>
</tr>
<tr>
<td>4.3</td>
<td>Tijdsreeks- en cross-sectionele gegevens</td>
<td>15</td>
</tr>
<tr>
<td>4.4</td>
<td>Echte winstmanipulatie</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Definitie kennisintensieve sectoren</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Hypothese-vorming</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Onderzoek</td>
<td>22</td>
</tr>
<tr>
<td>7.1</td>
<td>Gegevensverzameling</td>
<td>22</td>
</tr>
<tr>
<td>7.2</td>
<td>Winststuringproxy’s</td>
<td>23</td>
</tr>
<tr>
<td>7.3</td>
<td>Empirisch model</td>
<td>24</td>
</tr>
<tr>
<td>7.4</td>
<td>Resultaten</td>
<td>25</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Descriptieve statistiek</td>
<td>25</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Teststatistiek</td>
<td>28</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Sensitiviteitsanalyse</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Besluit</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Literatuurlijst</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>APPENDIX</td>
<td>IV</td>
</tr>
</tbody>
</table>
Lijst van tabellen

Tabel 1 Overzicht variabelen uit Amadeus ...23
Tabel 2 Descriptieve statistiek: descriptieve statistiek...26
Tabel 3 Descriptieve statistiek bij classificatiesysteem van Kwon en Yin (2006)...........27
Tabel 4 T-statistiek voor winststuringsproxy’s...28
Tabel 5 : T-statistiek voor winststuringsproxy’s bij classificatiesysteem Kwon en Yin (2006) ...29
Tabel 6 T-statistiek voor afhankelijke en onafhankelijke variabelen...............................31
Tabel 7 T-statistiek voor afhankelijke en onafhankelijke variabelen bij classificatiesysteem van Kwon en Yin (1998) ...33
Tabel 8 Resultaat aggregaat Leuz et al. (2003)..35
Tabel 9 : T-statistiek voor absolute waarden van de winststuringsproxy's37
Tabel 10 T-statistiek voor absolute waarden van de winststuringsproxy's bij classificatiesysteem van Kwon en Yin (1998) ...37
Tabel 11 Invloed van immateriële activa op dummy KI (ki=1, nki=0) en dummy HT (ht=1, nht=0)...39
Tabel 12 Resultaat regressie...40
Tabel 13 Regressie met testvariabelen KI en INTASSETS...42
Tabel 14 Regressie met testvariabelen HT en INTASSETS ...43
1 Inleiding

Het doel van deze masterproef is het verschil in winststuring te testen tussen kennisintensieve sectoren en niet-kennisintensieve sectoren, alsook het verschil tussen hightech-bedrijven en niet-hightech-bedrijven. De termen *kennisintensief* en *hightech* worden in de literatuur door elkaar gebruikt. Dit is ook de mening van Smith (2002). Het zou een masterproef op zich kunnen zijn het verschil of de overlappingen tussen beiden te onderzoeken. Ook in deze masterproef zullen de termen door elkaar gebruikt worden. In de literatuur is een verschillend classificatiesysteem te vinden o.b.v. NAICS-codes voor kennisintensieve en hightech-bedrijven. Vervolgens hebben we een sensitiviteitsanalyse uitgevoerd waarin we winststuring o.b.v. beide classificaties meten (en dezelfde resultaten bekomen).

In de literatuur worden verschillende modellen omschreven die winststuring meten. De meeste modellen behandelen accrualmanipulatie. Dat is ook wat in deze masterproef gemeten wordt. Eerst worden een definitie en motieven voor winststuring beschreven. Vervolgens worden de meest voorkomende modellen om winststuring o.b.v. accrualmanipulatie uitgelegd, in zekere zin chronologisch omdat het ene model voortbouwt op het andere. Na een definitie van kennisintensieve sectoren en hightechbedrijven en een beredenering hoe winststuring bij deze bedrijven er vermoedelijk uitziet, worden 4 van de 9 modellen toegepast op deze bedrijven. En zo berekenen we dus de invloed van de belangrijkste kenmerken van het kennisintensief zijn op winststuring.

Literatuur omtrent winststuring is zeer uitgebreid. Wanneer geargumenteerd wordt, is het mogelijk dat niet alle argumenten behandeld worden. De literatuurstudie is m.a.w. niet exhaustief voor de modellen.

Bij twijfel omtrent de juiste vertaling van woorden in de (Engelstalige) literatuur werd Terminologie Financieel Management geraadpleegd (F. van Amerongen RA 2001).
2 Definitie winststuring

Onder GAAP (Generally Accepted Accounting Principles) hebben managers verschillende keuzemogelijkheden om hun winst te rapporteren, waardoor zij in zekere mate hun winst kunnen sturen. Ze kunnen b.v. opbrengsten versneld erkennen of het erkennen van kosten uitstellen. Het meeste onderzoek rond winststuring heeft betrekking op US GAAP. Echter, onderzoek van Van Tendeloo en Vanstraelen (2005) heeft uitgewezen dat niet minder aan winststuring gedaan wordt onder IFRS dan onder de Duitse GAAP. Barth, Landsman, Lang, Williams (2006) vinden dat bedrijven onder IAS een lagere accountingkwaliteit hebben dan bedrijven onder IFRS. Zij gebruiken daarbij winststuring als proxy voor accountingkwaliteit. Volgens Barth et al. (2006) doen bedrijven onder IAS dus zelfs meer aan winststuring dan bedrijven onder US GAAP. Ook worden bedrijven onder IAS vergeleken met bedrijven onder de lokale GAAP. Daarbij wordt geen verschil in accountingkwaliteit gevonden, gemeten als de mate van winststuring. De meeste literatuur rond winststuring gebruikt bedrijven die gebruik maken van US GAAP, maar er is dus evidentie dat dit evenzeer van toepassing is op bedrijven onder lokale GAAP of bedrijven onder IFRS/IAS.

Deze definitie suggereert dat er sprake is van het misleiden van stakeholders en heeft een negatieve connotatie. Echter, winststuring kan ook gedaan worden om andere redenen dan misleiden. Zo kan men de winst sturen om financiële resultaten duidelijker en informatiever te maken. Ook verschillen financiële resultaten door het verschil in interpretatie, b.v. levensduur van bepaalde activa, afschrijvingsmethodes, onderzoek- en ontwikkelingsuitgaven doen of uitstellen, enz. Verschillende visies over winststuring worden duidelijk in volgende paragraaf waarin de motieven voor winststuring uit de doeken worden gedaan.

Winststuring is in ieder geval op één of andere manier de winst anders voorstellen om zo een beter (gepercepeerde) resultaat te bekomen.
3 Motieven voor winststuring

Redenen voor het sturen van winst kunnen zijn:

- Vermijden van winstdaling en verliezen
- Informatiever maken accounting cijfers
- Sturen van belastingen

Hiermee samenhangend worden in de literatuur volgende motieven gegeven (Healy en Wahlen (1998)):

- Er is het motief om aan de verwachtingen en de waarde-oordelen van de kapitaalmarkt te voldoen.
- Er zijn contracten afgesloten waarbij een bepaald cijfer moet behaald worden in de jaarrekening *(debt covenants)*
- Overheidsreguleringen

Belastingsregels hebben dus een invloed op het sturen van winst.

\(^1\) IPO = Initial Public Offerings
\(^2\) Schuldovereenkomsten is een vrije vertaling van “debt covenants”. Schuldovereenkomst = kredietrisico = risico op een verlies te wijten aan het door een debiteur niet betalen van een lening of andere kredietlijn (wikipedia)
onderhandelingen van collectieve arbeidsovereenkomsten. Zij meten het verschil in winst voor- en nadat deze onderhandelingen plaats vonden. Hun hypothese is dat tijdens de onderhandelingen de winsten lager gerapporteerd worden dan voor of na deze onderhandelingen. Zij verwerpen deze hypothese want ze vinden geen verschil in rapportering.

4 Methoden voor winststuring

De vraag is nu hoe aan winststuring gedaan wordt en wat er nu juist gemanipuleerd wordt. Eén methode is om de winst echt te veranderen. Zo kan een bedrijf ervoor kiezen om bepaalde materiële vaste activa te verkopen, terwijl er geen gerealiseerde meerwaarde is. Dit is een vorm van winststuring door de overheid gebruikt. Zij verkoopt gebouwen om hun opbrengsten te verhogen en zo de begroting in evenwicht te kunnen brengen. Of een bedrijf kan kiezen bepaalde kosten uit te stellen, zodat de huidige winst stijgt. Een tweede methode is gebaseerd op het gebruik van bepaalde boekhoudtechnieken. Zo is de keuze van een waarderingstechniek meebeïnvloedend voor de winst en kan men regels volgen die inbreuken tegen de regels van IFRS. De in de literatuur meest besproken manipulatietechniek is die van de manipulatie van accruals.

4.1 Accrual manipulatie

Accruals zijn inkomsten of uitgaven die geboekt of erkend worden op het moment dat er nog geen kasstroom is, dus een betaling of ontvangst. Accruals zijn het verschil tussen winst en operationele kasstromen. Voorbeelden van accruals zijn handelsvorderingen, handelsschulden, goodwill, …

3 De tegenhanger van accrual accounting, cash-based accounting, is niet in overeenstemming met GAAP
Er zijn verschillende methoden om aan winststuring te doen via manipulatie van accruals (Dechow en Schrand (2004)):

- **Handelsvorderingen.** Voorspellingen omtrent producten die zullen terugkeren en de proportie klanten die niet zullen betalen zijn onderhevig aan een sterk subjectief oordeel.
- **Voorraad.** Ook is er sterke subjectiviteit wanneer managers bepaalde kosten als voorraad boeken en andere als een kost. Zij voorspellen de toekomstige vraag en dus hun prijzen om zo te bepalen wanneer een afschrijving nodig is of niet.
- **Andere vlottende activa.** Deze rekening wordt vaak gebruikt om allerhande kosten te activeren, het versneld erkennen van een opbrengst of het uitstellen van het erkennen van een kost.
- **Onroerend goed, machines en inventaris (op balans).** Allerlei kosten worden geactiveerd en vervolgens afgeschreven op een willekeurige manier.

B.v.: een onderneming wil zijn winst opsmukken omdat de winstverwachtingen hoger liggen dan zijn huidige winst. Daartoe activeert hij kosten van onderzoek en ontwikkeling die zogenaamd in de toekomst vrij zekere voordelen voor de onderneming zullen opleveren. Deze geactiveerde kosten van onderzoek en ontwikkeling behoren tot de niet-kaskosten en dus tot de accruals. Omdat deze activering eigenlijk niet terecht is, is hier sprake van winststuring o.b.v. accruals.

4.2 Winststuring o.b.v. accruals meten

In deze masterproef zullen verschillende modellen gebruikt worden die winststuring o.b.v. accruals meten. Hier wordt een overzicht gegeven van de meest geciteerde en meest gebruikte modellen.
4.2.1 Het Healy Model

Healy (1985) vindt dat het beleid van managers inzake accruals afhankelijk is van de bonussen die zij ontvangen. Managers wiens bonussen gekoppeld zijn aan (een rapportering van) inkomensstijging, kiezen voor een beleid waarbij de accruals zorgen voor die inkomensstijging. Zij bekijken dan op het einde van het jaar de operationele kasstromen en de niet-discretionaire accruals en passen deze laatste dan zodanig aan dat hun bonus maximaal is. Door deze discretionaire accruals zo te kiezen, kunnen zij hun bonus maximaliseren.

De mate van winststuring wordt in deze studie gemeten als het verschil tussen de totale accruals (TA_t) en de verwachte accruals (TA_{t-1}):

$$
\Delta TA_t = TA_t - TA_{t-1}
$$

Met:

$t = $ huidige periode

$t-1 = $ periode voorafgaand aan de huidige

De totale accruals (ΔTA_t) worden gezien als een proxy voor het aandeel discretionaire accruals (DA_t) en de verwachte totale accruals (TA_{t-1}) zijn dan het deel niet-discretionaire accruals (NDA_t). De verwachte accruals zijn het gemiddelde van de totale accruals van de jaren voor het jaar van meting:

$$
NDA_t = \frac{\sum_t TA_t}{T}
$$

De totale accruals (ΔTA_t) worden dan wel gezien als een proxy voor de discretionaire accruals (DA_t) maar omvatten ook niet-discretionaire accruals (NDA_t):

$$
\Delta TA_t = DA_t + NDA_t
$$

Het gevaar is, wanneer het niet-discretionaire component groot is t.o.v. het discretionaire component, de totale accruals geen goede proxy is voor discretionaire accruals.
4.2.2 Het DeAngelo Model

DeAngelo (1986) onderzocht het agency probleem bij managers die eigen aandelen opkopen die in publieke handen verblijven bij een management buy out. Als managers hun winst minimaliseren, dan kunnen zij een lagere prijs betalen voor die aandelen. De prijs van aandelen is immers gebaseerd op winst en deze winst kan gestuurd worden door het manipuleren van accruals.

De mate van winststuring wordt hier op dezelfde manier gemeten als bij Healy (1985) met dat verschil dat de verwachte accruals nu niet het gemiddelde zijn van de totale accruals van het jaar daarvoor maar de totale accruals van vorig jaar. Dit doet DeAngelo (1986) omwille van twee problemen. Ten eerste, wanneer het aandeel niet-discretionaire accruals groot is t.o.v. het aandeel discretionaire accruals, dan is de totale accruals een slechte proxy. Een tweede probleem is dat wanneer de niet-discretionaire accruals negatief zijn, de totale accruals ook negatief worden. DeAngelo (1986) stelt dat totale accruals normaal negatief zijn omdat een grote portie daarvan afschrijvingskosten zijn, die negatief zijn en een grote portie van de niet-discretionaire accruals uitmaken. Een oplossing vindt DeAngelo (1986) in het nemen van een benchmark voor “normale” accruals. De totale accruals van de vorige periode is dan een benchmark voor de totale accruals nu zonder winststuring. Dan test zij of de gemiddelde waarde van de abnormale accrual positief of negatief is. Ook hier geldt volgende formule:

\[\Delta T A_t = (T A_t - T A_{t-k}) = (D A_t - D A_{t-k}) + (N D A_t - N D A_{t-k}) \]

DeAngelo (1986) neemt aan dat de niet-discretionaire accruals niet veranderen:

\[N D A_t - N D A_{t-k} = 0 \]

Zo is een verschil in totale accruals tussen die van vorig jaar en die van dit jaar, te wijten aan een verandering in de discretionaire accruals.

4.2.3 Het Jones Model

\[\text{werkkapitaal} = \text{vlottende activa} - \text{vlottende passiva} \]
verandering in vlottende activa zonder cash en korte termijn investeringen min schulden op minder dan één jaar anders dan vlottende vervallende wissels van lange termijn schulden en verschuldigde belastingen:

$$Total\ accruals_{it} = \Delta Current\ assets_{it} - \Delta Cash_{it} - (\Delta Current\ liabilities_{it} - \Delta Current\ maturities\ of\ long\ term\ debt_{it} - \Delta Income\ taxes\ payable_{it} - Depreciation\ and\ amortization\ expense_{it})$$ (Jones, 1991, p207)

$$NDA_{it} = \alpha_{i1} \cdot \frac{1}{A_{it-1}} + \beta_{i2} \cdot \Delta REV_{it} + \beta_{i3} \cdot PPE_{it}$$

Met:

ΔREV_{it} = wijziging in opbrengsten in jaar t t.o.v. jaar $t-1$

PPE_{it} = historische waarde van terreinen, gebouwen en machines (materiële vaste activa) in jaar t

(Dechow, Sloan & Sweeney, 1995, p198)

Jones (1991) schat de verwachte accruals gebruik makend van een regressie-analyse:

$$TA = NDA + DA$$

En dus, is de TA per onderneming i en geschaald tegen de waarde van het actief:

$$TA_{it} = \alpha_{i1} \cdot \frac{1}{A_{it-1}} + \beta_{i2} \cdot \Delta REV_{it} + \beta_{i3} \cdot PPE_{it} + \epsilon_{it}$$

De verwachte discretionaire accruals zijn dan:

$$DA_{it} = \epsilon_{it} = TA_{it} - [\alpha_{i1} \cdot \frac{1}{A_{it-1}} + \beta_{i2} \cdot \Delta REV_{it} + \beta_{i3} \cdot PPE_{it}]$$
Alle variabelen in het model zijn geschaald tegen de waarde van het actief om heteroscedasticiteit te vermijden. De waarde van het actief is de waarde die in de balans staat in het begin van het jaar en is dus eigenlijk die van vorig jaar, vandaar $t-1$. Immers, de investeringen die in de loop van het jaar gebeuren, hebben pas invloed op het einde van het jaar en hebben pas hun nut het jaar erop.

In de literatuur wordt steeds met een geschaalde intercept gewerkt ($\frac{\alpha_{i}}{A_{t-1}}$) om niet-discretionaire accruals te schatten. Dit vermijdt een valse correlatie tussen de geschaalde afhankelijke variabele en de geschaalde onafhankelijke variabelen, ten gevolge van variatie in de schalende variabele, totale assets (Roychowdhury 2006).

Deze vergelijking wordt geschat met een OLS-regressie gebruik makend van de langste tijdseries van observaties die beschikbaar zijn vóór jaar $t-1$ en dit voor elk bedrijf. Dit leidt tot schattingen voor α_{1}, b_{1} en b_{2i}. Er is nu nog één onbekende, ϵ_{it}. Deze restterm is het deel van de discretionaire accruals en dus de mate van winststuring. Bij het invullen van alle waarden, wordt de mate van winststuring voor elk bedrijf gemeten.

4.2.4 Het Industry Model

$$NDA_{it} = \gamma_{1} + \gamma_{2}.\text{median}_{t}(TA_{it}/A_{t-1})$$

(Dechow, Sloan & Sweeney, 1995)

Waarbij $\text{median}_{t}(TA_{it}/A_{t-1})$ gelijk is aan de waarde van de mediaan van de totale accruals op tijdstip t, geschaald door de activa van het voorgaande jaar voor alle bedrijven met dezelfde 2 digit SIC-code. De discretionaire accruals zijn dezelfde als bij het Healy-model (cfr supra).

Dechow en Sloan (1995) zien hier zelf twee problemen. Ten eerste elimineert dit model de variatie die er is onder de niet-discretionaire accruals in één industrie. Ten tweede verwijdert dit model de discretionaire accruals van bedrijven die gecorreleerd zijn aan elkaar in dezelfde industrie.

4.2.5 Het Modified Jones Model

Kritiek op het Jones Model kwam er van Dechow, Sloan and Sweeney (1995). In het Jones model is er de mogelijkheid dat de discretionaire accruals met een fout worden gemeten. Er wordt namelijk

5 Conditie waarin de waarde van de variantie van de errorterm niet constant is in de regressie-analyse en dus niet geschaald is
Vlottende accruals zijn dus het werkkapitaal tijdelijk aanpassingen die de dagelijkse operaties van het bedrijf ondersteunen […]. Lange termijn accruals zijn aanpassingen die de lange termijn netto activa bevatten" (Teoh et al.,1998, p66).

4.2.6 Eén-accrual model

4.2.7 Vlottende accruals i.p.v. totale accruals

Vlottende accruals zijn dus het werkkapitaal gedeelte van de accruals voor onderneming i in jaar t:
Total vlottende accruals\(_{it}\)

\[= (\Delta \text{Current assets}_{it} - \Delta \text{Cash}_{it}) \]

\[- (\Delta \text{Current liabilities}_{it} - \Delta \text{Current maturities of long term debt}_{it}) \]

De regressie wordt dan:

\[\text{CA}_{it} = \alpha_i \frac{1}{A_{it-1}} + \beta_{1i} \frac{\Delta \text{REV}_{it}}{A_{it-1}} + \beta_{2i} \frac{\Delta \text{REC}_{it}}{A_{it-1}} + \epsilon_{it} \]

Met:

\[\text{CA}_{it} = \text{de vlottende accruals van onderneming i in jaar t} \]

\[\Delta \text{REV}_{it} = \text{het verschil in operationele opbrengsten van onderneming i tussen het jaar t en t-1} \]

\[\Delta \text{REC}_{it} = \text{het verschil in vorderingen van onderneming i tussen het jaar t en t-1} \]

4.2.8 Het distributie-model

Zoals eerder aangehaald, meten Burgstahler en Dichev (1997) winststuring a.d.h.v. de distributies van winst en de veranderingen van winst. Zij stellen nl. dat aan winststuring gedaan wordt (1) om winstdaling te vermijden en (2) om verliezen te vermijden. Om (1) te testen meten zij de verandering in winst (netto inkomen) van verschillende bedrijven, nl. de winst van het huidige jaar min de winst van het vorige jaar, geschaald tegen de marktwaarde aan het begin van het jaar: \(\frac{\text{Earnings}_{it} - \text{Earnings}_{it-1}}{\text{MV}_{it-2}} \) (Burgstahler en Dichev, 1997, p105). Deze schaling tegen marktwaarde gebeurt om het effect van de grootte van een bedrijf te neutraliseren.
Figuur 1 Empirische distributie van de veranderingen in het jaarlijks netto inkomen, geschaald tegen de marktwaarde van het begin van het jaar. (Dichev en Burgstahler, 1997, p105)

In figuur 1 is de distributie van winstveranderingen weergegeven. Waar de winstverandering nul is, is aangeduid met een verticale lijn. De verticale as is het aantal observaties in elke interval van winstverandering.

De assumptie die zij maken is dat de distributie egaal \((smooth) \) moet zijn wanneer er geen winststuring is. Het verwachte aantal observaties in een interval zijn dan het gemiddeld aantal observaties in de twee aanliggende intervallen. Dit is hun nulhypothese. Om deze nulhypothese te testen, wordt het verschil gemeten tussen het eigenlijk aantal observaties en het verwachte aantal observaties in het interval, gedeeld door de geschatte standaardafwijking van het verschil. Als de nulhypothese klopt, dan zullen deze verschillen normaal verdeeld zijn met gemiddelde 0 en standaardafwijking 1.

In de figuur is duidelijk te zien dat er een onregelmatigheid is vlak voor die nul die niet strookt met de \(smooth \)-assumptie. Dit wijst erop dat bedrijven aan winststuring doen om het rapporteren van winstdaling te vermijden. Er zijn immers abnormaal veel kleine stijgingen van de winst in vergelijking met kleine dalingen van de winst.

Om (2) te testen, meten Dichev en Burgstahler (1997) de winst, geschaald tegen de marktwaarde van het begin van het jaar.

Figuur 2 Empirische distributie van het jaarlijks netto inkomen, geschaald tegen de marktwaarde van het begin van het jaar (Dichev en Burgstahler, 1997, p109)

Het resultaat is nu nog opvallender (cfr figuur 2). Er zijn abnormaal veel kleine winsten t.o.v. kleine verliezen.
4.2.9 Winststuring-aggregaat

De eerste proxy tracht het gladstrijken van operationele winst door accrualmanipulatie te meten. Deze wordt berekend als het mediaan van de cluster ratio van de standaardafwijking van een bedrijf haar operationele winst gedeeld door de standaardafwijking van de operationele kasstromen. De schaling door de operationele kasstroom dient om te controleren voor de verschillen onder de bedrijven wat betreft hun economische prestaties. Een bedrijf dat veel operationele kasstromen heeft, heeft immers automatisch een hoge operationele winst. Operationele kasstromen worden berekend als het verschil tussen operationele winst en totale accruals:

\[
\text{Operationele cash flow} = \text{Earnings} - \text{Total accruals}
\]

Een tweede proxy is de correlatie tussen veranderingen in accruals en operationele kasstromen per cluster. Accruals kunnen gemanipuleerd worden om schokken in operationele kasstromen te verbergen. Zo kan men toekomstige opbrengsten versneld boeken of het boeken van kosten uitstellen. Er is hoe dan ook een negatieve correlatie tussen accruals en operationele kasstromen (Dechow (1994)) als gevolg van accrual accounting, want accrual accounting houdt in dat opbrengsten reeds geboekt worden nog voor er een kasstroom is. Wanneer er echter een overdreven grote correlatie is, dan is er eerder sprake van accrualmanipulatie.

De derde proxy is de grootte van accruals. Het wordt berekend als de cluster mediaan van de absolute waarde van de totale accruals van een bedrijf, gescalerd door de absolute waarde van de operationele kasstromen. Deze schaling controleert voor de verschillen in bedrijfsgroottes en economische prestaties.

De laatste proxy meet winststuring bij het vermijden van kleine verliezen zoals Degeorge et al (1999) en Burgstahler en Dichev (1997) reeds deden (cfr supra). Dit wordt berekend als de ratio van kleine gerapporteerde winsten op kleine gerapporteerde verliezen. Winst na belastingen wordt gescalerd door de totale activa om te controleren voor de bedrijfsgrootte. Kleine verliezen vallen onder het bereik \([-0,01;0,00]\) en kleine winsten onder \([0,00;0,01]\). Het voordeel hierbij is dat niet alleen wordt rekening gehouden met abnormale accruals maar ook met abnormale kasstromen.

Elke cluster van bedrijven wordt gerangschikt volgens score op elk van de vier proxy’s. Een hogere score staat gelijk aan meer winststuring. Het gemiddelde van de ranking van elke maatstaf is dan de geaggregeerde winststuringsscore.
4.2.10 Evaluatie accrual modellen

4.3 Tijdreeks- en cross-sectionele gegevens

Om de parameters te schatten, is het mogelijk verschillende gegevens te gebruiken. Tijdreeksdata zijn data van een bedrijf over verschillende jaren heen. Cross-sectionele gegevens zijn dan data van verschillende sectoren op één moment in de tijd.

- Grotere steekproef
- Door het langere tijdsinterval is het mogelijk dat de winststuring niet goed gemeten wordt bij tijdserie gegevens omdat er te veel effect is van de veranderingen door de tijd heen.
- Grotere power van de testen, bij tijdserie is er meer kans op overlapping van de schattingen en periodes

6 M.n. het Healy-model, het DeAngelo-model en het Industry-model
Vervolgens test hij zowel bij het Jones als bij het Modified Jones Model welke schattingen van de parameters beter zijn. Subramanyam (1996) vindt dat de schattingen van de paramaters bij cross-sectionele gegevens beter zijn als die bij tijdserie data.

4.4 Echte winstmanipulatie

Table: Model Overview of Accrual Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Proxy voor winststuring</th>
<th>Assumpties</th>
</tr>
</thead>
</table>
| Healy (1985) | $DA_t = \frac{TA_t}{A_{t-1}} - \frac{\sum_i T A_i/A_{t-2}}{T}$ | - Geen winststuring in voorgaande jaren
- $\Delta NDA = 0$
- Economische omstandigheden veranderen niet |
| DeAngelo (1986) | $DA_t = \frac{(TA_t - TA_{t-1})}{A_{t-1}}$ | - Geen winststuring in voorgaande jaren
- $\Delta NDA = 0$
- Economische omstandigheden veranderen niet |
| Jones (1991) | $DA_t = \frac{TA_t}{A_{t-1}} - \left(\frac{a}{A_{t-1}} + \beta_1 \frac{REV_t}{A_{t-1}} + \beta_2 \frac{PPE_t}{A_{t-1}}\right)$ | - Economische omstandigheden veranderen over de tijd
- Operationele opbrengsten zijn niet-discretionair |
| Industry (Dechow & Sloan 1991) | $DA_t = \frac{TA_t}{A_{t-1}} - (\beta_1 + \beta_2 \text{median}(TA_t/A_{t-1}))$ | - De determinanten van niet-discretionaire accruals zijn gelijk over alle industrieën heen |
| Modified Jones (Dechow, Sloan & Sweeney 1995) | $DA_t = \frac{TA_t}{A_{t-1}} - \left(\frac{\Delta REV_t}{A_{t-1}} - \Delta REC_t\right)$ | - Economische omstandigheden veranderen over de tijd
- Operationele opbrengsten kunnen discretionair zijn
- Verkopen op krediet kan gemanipuleerd worden, de overige vormen van operationele opbrengst niet |
| één-accrual model (McNichols & Wilson 1988) | $DA_t = Acc_{geobserveerd} - Acc_{verwacht}$ | |
5 Definitie kennisintensieve sectoren

In de literatuur is geen echte éénduidige definitie voorhanden van kennisintensieve of hoogtechnologische sectoren. Baldwin en Gellatly (1998) van Statistics Canada hebben in kaart gebracht wat de huidige classificatievormen van kennisintensieve en hightech-bedrijven zijn. Zij gebruiken de term hoogtechnologisch en kennisintensief als zijnde synoniemen van elkaar omdat zij dezelfde classificatiecriteria hebben. Er zijn vier bestaande classificatiesystemen:

- Intensiteit van R&D
- Innovatie
- Gebruik van technologie
- Gespecialiseerde arbeid

Intensiteit van R&D wordt meestal gemeten als een ratio van R&D t.o.v. verkopen en is oorspronkelijk afkomstig van het OECD (1997). Als de ratio groter is dan 5%, is een bedrijf kennisintensief of hightech, zoniet, is het niet-kennisintensief of niet-hightech. B.v. Dechow en Sloan (1991) onderscheiden kennisintensieve industrieën waar grote R&D uitgaven regelmatig voorkomen door deze ratio te berekenen. Zo toont Kwon (2002b) dat de ratio R&D kosten t.o.v. activa voor hightech-bedrijven, gemiddeld 7 tot 10 maal hoger is dan voor niet-hightech-bedrijven.

Deze R&D-intensiteit wordt op het niveau van de industrie gemeten om een industrie in één van beide groepen onder te verdelen. Dit classificatiesysteem heeft een aantal beperkingen. Ten eerste meet dit niet de technologische vaardigheden die een bedrijf heeft (b.v. het gebruik van geavanceerde technologieën). Ten tweede meet dit de input van een innovatieproces maar niet het innovatieproces zelf. Ten derde investeren bedrijven niet altijd op een continue basis in R&D waardoor die niet altijd in de metingen worden opgenomen. Ook wordt R&D meer geassocieerd met productinnovatie dan met procesinnovaties.

Een ander classificatiesysteem is de mate van innovatie meten. Echter, innovatie meten is zeer moeilijk omdat het uit meerdere dimensies bestaat. Innovatie kan bestaan uit nieuwe producten maar evenzo goed uit nieuwe processen. Bovendien is de vraag wanneer iets innovatief is of niet. Dit is zeer subjectief.

De intensiteit van het gebruik van geavanceerde technologie is eveneens moeilijk te meten. “Het omvat het gebruik van geavanceerd apparaat, het inpassen in nieuwe processen en het toepassen van gespecialiseerde kennis.” (Baldwin en Gellatly, 1998, p.12). Als innovatie en gebruiksintensiteit van geavanceerde technologie als classificatiesysteem vergeleken wordt, blijkt dat ze aan elkaar gerelateerd zijn maar dat industriën toch niet dezelfde ranking krijgen. Welke het meest hoogtechnologisch is in de ene groep, is dit b.v. pas op de 5de plaats in de andere groep.

Sommigen gebruiken gespecialiseerde arbeidskrachten (human capital) als een taxonomie voor nieuwe technologieën (B.v. Bound en Johnson (1992))
Baldwin en Gellatly (1998) hebben een classificatiesysteem ontwikkeld o.b.v. een competentiemodel dat voorgaande classificatiesystemen groepeert. O.b.v. de ranking van de score op een grote groep variabelen, wordt een industrie dan als hoger of lager technologisch geclasseerd. Bedrijven met hun NAICS-codes die als hoog technologisch geclasseerd worden, zijn weergegeven in bijlage 1 in de appendix.

Kennisintensieve bedrijven zouden een hoge mate van immateriële activa hebben. “Toch schijnt er een overeenkomst te zijn dat kennisintensieve bedrijven een grote portie immateriële activa hebben en dat zij in grote mate steunen op innovatie als een significante bron van een competitief voordeel” (Gorman en McCarthy, 2006, p132).

7 Deze paper hebben we nergens kunnen terugvinden. Omdat in de literatuur echter voortdurend naar hun paper verwezen wordt en zij de enige zijn die een verdienstelijke poging gedaan hebben een definitie van kennisintensieve sectoren neer te zetten, is het nuttig toch naar hun paper te verwijzen. Een juiste omschrijving van kennisintensieve sectoren is immers cruciaal in onze masterproef.

6 Hypothese-vorming

Immateriële activa zijn kosten van onderzoek en ontwikkeling, concessies, octrooien, licenties, knowhow, merken en soortgelijke rechten, goodwill en vooruitbetalingen. De definitie van immateriële activa volgens IAS 38 is: “Een identificeerbaar niet-monetair actief zonder fysieke materie. Een actief is een middel dat gecontroleerd wordt door het bedrijf als resultaat van gebeurtenissen in het verleden (b.v. aankoop of eigen creatie) en waarvan toekomstige economische voordelen (inkomende cash of andere activa) worden verwacht. Dus, de drie kritieke eigenschappen van een immaterieel actief zijn: (IAS 38.8)

- Identificeerbaar
- Gecontroleerd (mogelijkheid om voordelen te verkrijgen van het actief)
- Toekomstige economische voordelen (zoals opbrengsten of verminderde toekomstige kosten)”

Voorbeelden van mogelijke immateriële activa zijn: computer software, patenten, copyrechten,… Een bedrijf wordt verondersteld een immaterieel actief te erkennen (zowel indien het aangekocht is als zelf gecreëerd) als (IAS 38.21 IASC (1998)):

- “Het waarschijnlijk is dat de toekomstige economische voordelen die toekenenbaar zijn aan het actief naar het bedrijf zullen vloeien; en
- De kost van het actief betrouwbaar kan gemeten worden.”

IAS 38 behandelt ook specifiek Onderzoek- en ontwikkelingskosten. “Onderzoekskosten moeten als kost geboekt worden en mogen niet erkend worden als een actief. Ontwikkelingskosten worden gekapitaliseerd enkel als de technische en commerciële haalbaarheid van het actief voor verkoop of gebruik vastgesteld zijn. Dit betekent dat het bedrijf de bedoeling moet hebben en in staat moet zijn het immateriële actief te vervolmaken en ofwel te gebruiken ofwel te verkopen; alsook in staat moet zijn te tonen hoe het actief toekomstige economische voordelen zal genereren (IAS 38.57).” Onderzoek- en ontwikkelingskosten mogen dus in feite pas geactiveerd worden vanaf het moment dat er een redelijke verwachting is dat er in de toekomst voordelen voor de onderneming zullen uitvloeien. Omdat dit onderhevig is aan een subjectief oordeel, is het mogelijk voor de onderneming om aan winststuring te doen. Door onderzoek- en ontwikkelingskosten in de balans onder te brengen i.p.v. in de resultatenrekening, stijgt de winst. Pozza, Prencipe en Markarian (2008) onderzoeken het verschil in winststuring tussen familiale en niet familiale bedrijven. Winststuring meten zij m.b.v. de specifieke accrual R&D- kostkapitalisatie. Hun resultaten tonen dat familiale bedrijven kosten kapitaliseren om
hun opbrengsten op te krieken en om het risico op overtredingen van hun schuldovereenkomsten te minimaliseren.

aandelen sterk dalen en investeerders veel geld verliezen, zullen zij bij foute accountinginformatie zoals het overrapporteren van winst en activa, het bedrijf verantwoordelijk stellen. Een ander motief voor hightech-bedrijven om conservatief te rapporteren, is dat zij veel externe partijen moeten aantrekken om hun activiteiten te financieren. Wanneer zij conservatieve accountingcijfers tonen, geven zij blijk dat ze kunnen voldoen aan de verwachtingen over groeicijfers van investeerders. Het laatste motief heeft betrekking op de grotere aandacht die zij krijgen van financiële analisten omdat hightech-bedrijven veelal groeibedrijven zijn.

Dit levert volgende hypothesen op:

H1 (a) Kennisintensieve sectoren en hightech-bedrijven sturen hun winst via accruals neerwaarts

H1 (b) Niet-kennisintensieve sectoren en niet-hightech-bedrijven sturen hun winst via accruals opwaarts

Hypothese 1(a) steunt op het feit dat kennisintensieve bedrijven er conservatievere accountingpraktijken op nahouden en dus hun winst neerwaarts sturen. Niet-kennisintensieve bedrijven hebben enkel motieven om hun winst opwaarts te sturen (hypothese 1(b)).

Ook willen we testen of kennisintensieve sectoren en hightech-bedrijven, geclassificeerd d.m.v. NAICS-codes meer immateriële activa bevatten en in welke mate deze immateriële activa de mate van winststuring o.b.v. accruals meten. Bovendien wordt dit getoetst aan verschillende accrualmodellen. We willen dan ook volgende hypothesen testen:

H2 (a) Kennisintensieve sectoren en hightech-bedrijven hebben meer intangible assets in verhouding tot totale assets dan niet-kennisintensieve sectoren en niet-hightech bedrijven

H2 (b) De mate van intangible assets in verhouding tot de totale assets beïnvloedt de mate van winststuring

H2 (c) Het feit dat een bedrijf geclassificeerd wordt als kennisintensief of hightech, heeft een invloed op de mate van winststuring.

7 Onderzoek

7.1. Gegevensverzameling

Als gegevens gebruiken we alle beursgenoteerde ondernemingen die in de database Amadeus aanwezig zijn. We gebruiken enkel beursgenoteerde ondernemingen omdat deze meer motieven hebben om aan winststuring te doen onder invloed van de kapitaalmarkt. Private bedrijven hebben minder agency problemen dan publieke bedrijven omdat deze bedrijven in handen zijn van management dat een nauwe relatie heeft met het bedrijf. (Farma en Jensen 1983). Beatty, Ke en petroni (2002) stellen dat private bedrijven minder aan winststuring doen dan publieke bedrijven. Door
enkel publieke bedrijven te gebruiken worden het aantal bedrijven in de steekproef aanzienlijk gedrukt. Ook sluiten we alle financiele ondernemingen (SIC-code tussen 6000 en 6799) uit omdat zij op een andere manier met hun financiële gegevens omgaan.

7.2. Winststuringsproxy’s

We gebruiken verschillende winststuringsproxies, zoals uitgelegd in paragraaf 4. De eerste is die van DeAngelo. De mate van winststuring is dan het verschil in totale accruals van het huidige jaar en die van vorig jaar. De tweede proxy is die van het Modified Jones Model. De mate van winststuring is hierbij de mate van discretionaire accruals. Om die te meten gebruiken we volgende gewone kleinste kwadraten regressie-analyse:

\[
T_{A_t} = a_t + b_{21} \frac{\Delta \text{REV}_t - \Delta \text{REC}_t}{A_{t-1}} + b_{22} \frac{\text{PPE}_t}{A_{t-1}} + \varepsilon_t
\]

Waarbij \(\varepsilon_t\), de errorterm, de mate van discretionaire accruals voorstelt. Deze regressie voeren we uit met SPSS per industrie over 9 jaar heen, zo komen we tot de uiteindelijke regressies. De bekomen coëfficiënten vullen we dan in elke vergelijking in en zo bekomen we de discretionaire accruals per bedrijf. Beter zou zijn dat we naast voor elke industrie ook voor elk jaar afzonderlijk de coëfficiënten berekenen. Echter, toen we dat deden, bleken te veel coëfficiënten niet-significant. Daarom hebben we gepoold over elke industrie en alle 9 jaren in die regressie gestopt. Regressies voor industrieën die niet significant blijken te zijn, worden weggelaten om juistere resultaten te bekomen. “Current maturities of long term debt” worden weggelaten want deze zijn niet in Amadeus te vinden. Ook schalen we de constante niet. Dit zou betere resultaten opleveren volgens Peasnall, Pope en young (2000). Jones (1991) laat deze in haar eigen onderzoek trouwens ook weg. De overige variabelen zijn in Amadeus te vinden, zij het onder een andere naam. In tabel 1 zijn de overeenkomstige variabelen te vinden.

Tabel 1 Overzicht variabelen uit Amadeus

<table>
<thead>
<tr>
<th>Model</th>
<th>Amadeus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current assets</td>
<td>Current assets</td>
</tr>
<tr>
<td>Cash</td>
<td>Cash & Cash equivalents</td>
</tr>
<tr>
<td>Current liabilities</td>
<td>Current liabilities</td>
</tr>
<tr>
<td>Receivables</td>
<td>Current liabilities: debtors</td>
</tr>
<tr>
<td>Income Taxes Payable</td>
<td>Taxation (= income taxes + transfer to postponed taxes)</td>
</tr>
<tr>
<td>Depreciation and amortization Expense</td>
<td>Depreciation</td>
</tr>
<tr>
<td>Total assets</td>
<td>Total assets</td>
</tr>
<tr>
<td>Revenues</td>
<td>Operational revenues</td>
</tr>
<tr>
<td>Property, Plant & Equipment</td>
<td>Tangible fixed Assets</td>
</tr>
</tbody>
</table>
De derde proxy is het vlottende-accrualmodel van McNichols. We passen de kleinste kwadratenmethode met SPSS toe op volgende regressie:

\[CA_{it} = \alpha_{i} \frac{1}{A_{it-1}} + \beta_{1i} \Delta REV_{it} A_{it-1} + \beta_{2i} \Delta REG_{it} A_{it-1} + \varepsilon_{it} \]

We berekenen de discretionaire accruals op dezelfde manier als bij het Modified Jones model.

De vierde winststuringproxy die we gebruiken is het aggregaat van Leuz, Nanda en Wysocki (2001).

Operationele kasstromen zijn niet in Amadeus te vinden, daarom worden deze berekend als het verschil tussen operationele winst en totale accruals:

\[\text{Operationele cash flow} = \text{Earnings} - \text{Total accruals} \]

Elke industrie (dezelfde eerste 2 NAICS-cijfers) wordt dan per proxy van Leuz et al. (2001) gerangschikt naargelang de score. Een hogere score staat gelijk aan meer winststuring. Het gemiddelde van de ranking van elke maatstaf is dan de geaggregeerde winststuringsscore.

7.3. Empirisch model

We willen weten welke invloed immateriële activa hebben op de mate van winststuring en of het feit of een bedrijf al dan niet kennisintensief of hoog technologisch invloed heeft op de mate van winststuring. Hoe meer immateriële activa een bedrijf heeft, hoe lager de abnormale accruals zijn. Dus eerst testen we of de mate van immateriële activa invloed heeft op het al dan niet kennisintensief of hoogtechnologisch (KI) zijn van een bedrijf:

\[KI = \alpha + \beta INTASSETS + \varepsilon \]

Voor onze tweede regressie zoeken we controlevariabelen die invloed hebben op winststuring. We willen controleren voor motieven om aan winststuring te doen en eigenschappen die specifiek zijn voor een bedrijf (cfr paragraaf 3). Diegene die het meest gebruikt worden in de literatuur zijn (cfr b.v. Van Tendeloo en Vanstraelen (2008)) het natuurlijk logaritme van de totale activa (LNASSETS), een leverage-variabele (LEV), het jaarlijkse rendement op de totale activa (ROA) en de operationele kasstromen (CFO). LNASSETS controleert voor de grootte van een bedrijf. Landry & Callimaci (2003) en Bushee (1998) tonen aan dat grote bedrijven meer aan winststuring doen dan kleine bedrijven. De leverage-variabele (LEV) moet controleren voor bedrijven die trachten om het overtreden van schuldplichten te vermijden (cfr infra). Bij deze is een opwaartse winststuring te verwachten. Het controleert ook in de andere richting voor bedrijven die in financiële moeilijkheden zitten en doorgaans winst neerwaarts te sturen, hopen nieuwe contractonderhandelingen af te dwingen (Becker et al. 1998). Het wordt berekend als de totale schuldplichten op de totale activa. De jaarlijkse verandering in verkopen (\(\Delta\text{SALES}\)) controleert voor verschillen in prestatie, net als het rendement van de totale activa (ROA). AGE controleert voor de leeftijd van een bedrijf en CFO voor de operationele kasstromen. Hoe meer operationele kasstromen, hoe minder winststuring er is. Ook voegen we ee

Onze testvariabele is de totale immateriële activa, geschaald voor totale activa (INTASSETS). Kennisintensieve bedrijven zouden immers veel immateriële activa hebben. Deze regressie doen we voor de groep kennisintensieve sectoren en de groep niet-kennisintensieve sectoren en de groep hightech en niet-hightechbedrijven. Dit levert de volgende regressie op:

\[EM_{proxy} = \beta_0 + \beta_1 \text{INTASSETS} + \beta_2 \text{AGE} + \beta_3 \Delta \text{SALES} + \beta_4 \text{LEV} + \beta_5 \text{ROA} + \beta_6 \text{LNASSETS} + \beta_7 \text{TAX} + \beta_8 \text{CFO} + \epsilon \]

7.4 Resultaten

7.4.1 Descriptieve statistiek

In bijlage 5 is een overzicht te vinden van de coëfficiënten gebruikt bij de regressie van het Modified Jones-model per industrie en over 9 jaar. Alsook de coëfficiënten van het model van Teoh et al. met het Vlottende accrual-model. Ertortermen komende van niet-significante regressies worden niet opgenomen in onze data.

De coëfficiënt van materiële vaste activa (PPE), is doorgaans negatief. Dit is ook logisch, deze variabele heeft invloed op afschrijvingen en deze worden afgetrokken om de totale accruals te berekenen. De andere onafhankelijke variabele heeft ook doorgaans een negatieve coëfficiënt. Dit levert het vermoeden dat de totale som niet-discretionaire accruals negatief zal zijn. Dit is in lijn met DeAngelo (1986) die zegt dat niet-discretionaire accruals steeds negatief zijn.

Bij de onafhankelijke variabelen (van de significante regressies) van het Modified Jones en het Vlottende accrualmodel, zijn geen onderlinge correlaties. Omdat het om een tijdsreeks gaat, werd ook de Durbin-Watson statistiek toegepast om te onderzoeken of er geen sprake is van autocorrelatie. Bij alle industrieën ligt de waarde rond 2, wat wijst op geen autocorrelatie. De residuen zijn normaal verdeeld. Residuen met een standaardafwijking groter dan 3 worden geweerd.

In tabel 2 is een overzicht te vinden van verschillende onderzochte variabelen. De data is opgesplitst voor kennisintensieve sectoren (ki) en niet-kennisintensieve (nki) sectoren en hightech (ht) en niet-hightech-bedrijven (nht) o.b.v. NAICS-codes.
In tabel 2 zien we dat de kennisintensieve bedrijven (vanaf nu groep KI) gemiddeld meer immateriële activa (intangible assets) hebben dan niet-kennisintensieve bedrijven (vanaf nu groep nKI). Als we dit controleren voor de grootte van de bedrijven (intangible assets/ totale activa), dan heeft de KI-groep nog steeds meer intangible assets. De Ki-groep is gemiddeld jonger (AGE is resp. 43 t.o.v. 32) en kleiner (total assets). Als we letten op het effect van outliers (LNASSETS), dan is de KI-groep nog steeds kleiner. De nKI-groep vertoont een gemiddeld hogere groei in verkopen (Δ SALES) dan de KI-groep en heeft meer operationele kasstromen (CFO). Echter, als we de operationele kasstromen schalen voor totale activa (CFO/Totale activa), dan is het resultaat omgekeerd. De variable LEV is
gemiddeld groter voor de nKI- dan voor de KI-groep, tonend dat de nKI-groep meer schulden heeft t.o.v. zijn totale activa.

Wanneer we dan naar de totale accruals en de vlootende accruals, beiden geschaald voor totale activa, kijken, zien we dat zij respectievelijk negatief en positief zijn voor beide groepen (tabel 1b). Het verschil tussen totale accruals en vlootende accruals zijn verschuldigde inkomensbelasting (*income taxes payable*) en afschrijvingen (*depreciation expense*) en het zijn dus deze die de totale accruals negatief maken.

Bij het classificatiesysteem van Kwon en Yin (tabel 3) komen we tot dezelfde resultaten, zij het extremer.

Tabel 3 Descriptieve statistiek bij classificatiesysteem van Kwon en Yin (2006)

<table>
<thead>
<tr>
<th>Statistics</th>
<th>ht=1,lt=0</th>
<th>TA/At-1</th>
<th>CA/At-1</th>
<th>DA Modified Jones</th>
<th>NDA Modified Jones</th>
<th>DA Teoh et al.</th>
<th>NDA Teoh et al.</th>
<th>TA-TA-1/At-1 DeAngelo</th>
<th>CFO/At-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 N Valid</td>
<td></td>
<td>473</td>
<td>483</td>
<td>473</td>
<td>473</td>
<td>479</td>
<td>479</td>
<td>418</td>
<td>430</td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>65</td>
<td>53</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>,073801</td>
<td>,122896</td>
<td>,051411</td>
<td>,022390</td>
<td>,378173</td>
<td>-2,54006</td>
<td>,416615</td>
<td>1,08985</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>,04031</td>
<td>,007635</td>
<td>,029781</td>
<td>,055548</td>
<td>,245784</td>
<td>-2,34575</td>
<td>,006331</td>
<td>,11760</td>
</tr>
</tbody>
</table>

\(|ht=1,lt=0|\)
7.4.2 Teststatistiek

Bij het classificatiesysteem van Baldwin en Gellatly (1998), in tabel 4, is de mate van discretionaire accruals van het Modified Jones en het model van Teoh et al. significant verschillend van 0 (p<0,05) (tabel). Bij het DeAngelo-model is de p-waarde 0,07 maar dit is bij tweezijdige toetsing. Voor éénzijdig toetsen (T>0), moeten we 0,07 delen door 2, waardoor deze ook significant is.

Tabel 4 T-statistiek voor winststuringsproxy’s

<table>
<thead>
<tr>
<th>kp</th>
<th>DA Modified Jones</th>
<th>DA Teoh et al.</th>
<th>DeAngelo</th>
<th>DA Modified Jones</th>
<th>DA Teoh et al.</th>
<th>DeAngelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,118</td>
<td>5,994</td>
<td>1,803</td>
<td>2,118</td>
<td>5,994</td>
<td>1,803</td>
</tr>
<tr>
<td></td>
<td>7498</td>
<td>7816</td>
<td>6548</td>
<td>7498</td>
<td>7816</td>
<td>6548</td>
</tr>
<tr>
<td></td>
<td>,034</td>
<td>,000</td>
<td>,071</td>
<td>,034</td>
<td>,000</td>
<td>,071</td>
</tr>
<tr>
<td></td>
<td>,011760</td>
<td>,308389</td>
<td>,048837</td>
<td>,011760</td>
<td>,308389</td>
<td>,048837</td>
</tr>
<tr>
<td></td>
<td>,000874</td>
<td>,207538</td>
<td>,004256</td>
<td>,000874</td>
<td>,207538</td>
<td>,004256</td>
</tr>
<tr>
<td></td>
<td>,022646</td>
<td>,409242</td>
<td>,101932</td>
<td>,022646</td>
<td>,409242</td>
<td>,101932</td>
</tr>
<tr>
<td>1</td>
<td>-6,519</td>
<td>27,846</td>
<td>3,082</td>
<td>-6,519</td>
<td>27,846</td>
<td>3,082</td>
</tr>
<tr>
<td></td>
<td>1386</td>
<td>1475</td>
<td>1174</td>
<td>1386</td>
<td>1475</td>
<td>1174</td>
</tr>
<tr>
<td></td>
<td>,000</td>
<td>,000</td>
<td>,002</td>
<td>,000</td>
<td>,000</td>
<td>,002</td>
</tr>
<tr>
<td></td>
<td>,063408</td>
<td>,269069</td>
<td>,038456</td>
<td>,063408</td>
<td>,269069</td>
<td>,038456</td>
</tr>
<tr>
<td></td>
<td>,082488</td>
<td>,250115</td>
<td>,013974</td>
<td>,082488</td>
<td>,250115</td>
<td>,013974</td>
</tr>
<tr>
<td></td>
<td>,044328</td>
<td>,288023</td>
<td>,062937</td>
<td>,044328</td>
<td>,288023</td>
<td>,062937</td>
</tr>
</tbody>
</table>

De verandering in totale accruals, geschaald voor totale activa, is de maatstaf van discretionaire accruals volgens DeAngelo. Volgens DeAngelo zou dit erop wijzen dat beide groepen aan (boekhoudkundige) winststuring doen via manipulatie van accruals en dat zij dit opwaarts doen. Beide groepen trachten m.a.w. hun winst zo hoog mogelijk te houden. DeAngelo (1986) vindt zelf in zijn onderzoek ook geen evidentie voor neerwaartse winststuring.

De discretionaire accruals, berekend volgens het Modified Jones model, zijn gemiddeld positief voor de nKI-groep en gemiddeld negatief voor de KI-groep. Dit wijst erop dat beide groepen aan winststuring doen maar dat de nKI-groep de winst opwaarts tracht te sturen en de KI-groep neerwaarts. Dit is in lijn met onze hypothese. Het verschil met het resultaat bij het model van DeAngelo, kan te wijten zijn aan het feit dat de niet-discretionaire accruals bij de KI-groep positief zijn. DeAngelo houdt immers geen rekening met dit niet-discretionair deel van de totale accruals.
Bij het Vlottend accrual-model van Teoh et al. zijn de discretionaire accruals bij beide groepen positief. Dit is tegenstrijdig aan onze hypothese die zegt dat de nKI-groep zijn winst eerder neerwaarts stuurt en is ook tegenstrijdig aan de uitkomst van het Modified Jones model (we nemen het Modified Jones model als benchmark omdat deze volgens de literatuur de mate van winststuring het best zou meten). Het verschil zou hier kunnen liggen in het feit dat Teoh et al. de verandering in accruals op korte termijn meten en Jones de verandering in accruals op korte én lange termijn.

Tabel 5 : T-statistiek voor winststuringsproxy’s bij classificatiesysteem Kwon en Yin (2006)

<table>
<thead>
<tr>
<th></th>
<th>Test Value = 0</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t</td>
<td>df</td>
<td>Sig. (2-tailed)</td>
<td>Mean Difference</td>
<td>95% Confidence Interval of the Difference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>ht=1,lt=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA alle samen modified jones</td>
<td>1,843</td>
<td>472</td>
<td>.066</td>
<td>.051411</td>
<td>-.00339</td>
<td>.10622</td>
</tr>
<tr>
<td>DA alle samen McNichols</td>
<td>2,861</td>
<td>478</td>
<td>.004</td>
<td>.378174</td>
<td>.11849</td>
<td>.63786</td>
</tr>
<tr>
<td>TA-TA-1/At-1 DeAngelo</td>
<td>1,040</td>
<td>417</td>
<td>.299</td>
<td>.416616</td>
<td>-.37066</td>
<td>1,20389</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA alle samen modified jones</td>
<td>-8,142</td>
<td>1435</td>
<td>.000</td>
<td>-.115605</td>
<td>-.14346</td>
<td>-.08775</td>
</tr>
<tr>
<td>DA alle samen McNichols</td>
<td>23,048</td>
<td>1537</td>
<td>.000</td>
<td>.248273</td>
<td>.22714</td>
<td>.26940</td>
</tr>
<tr>
<td>TA-TA-1/At-1 DeAngelo</td>
<td>2,117</td>
<td>1219</td>
<td>.034</td>
<td>.025727</td>
<td>.00189</td>
<td>.04957</td>
</tr>
</tbody>
</table>

Bij het classificatiesysteem van Kwon en Yin (2006), in tabel 5, zijn de resultaten hetzelfde, behalve voor het model van DeAngelo. Hierbij zijn de discretionaire accruals niet significant verschillend van nul.

Wanneer we het verschil bekijken tussen de ki-groep en de nki-groep (tabel 6) dan zien we dat alleen bij het Modified Jones model de abnormale accruals significant verschillend zijn van elkaar. De modellen van DeAngelo en de modellen van Teoh et al. zijn ofwel niet in staat het verschil te meten, ofwel wijzen zij erop dat er geen verschil tussen de twee groepen bestaat. Wij denken dat de eerste reden het meest plausibel is om verschillende redenen.

Ten eerste heeft de literatuur steeds uitgewezen dat het Modified Jones model het beste in staat is abnormale accruals te meten (cfr paragraaf 4.2.10). Ten tweede denken wij dat er te veel ruis zit op het model van DeAngelo dat niet het onderscheid maakt tussen niet-manipuleerbare (niet-discretionaire) en manipuleerbare winst.

Kennisintensieve ondernemingen zijn significant kleiner en jonger dan niet-kennisintensieve ondernemingen (tabel). De totale accruals en de operationele kasstromen, geschaald voor de totale
assets zijn niet significant verschillend. Dit is een onverwacht resultaat want het zijn de totale accruals die gemanipuleerd worden. Hoe meer totale accruals t.o.v. operationele kasstromen, hoe meer er gemanipuleerd wordt (cfr. B.v. Leuz et al. (2003). Aangezien de discretionaire accruals wel significant verschillen, wil dit zeggen dat de niet-discretionaire accruals dat verschil verklaren. Dus hoe minder discretionaire accruals, hoe meer niet-discretionaire accruals.
Tabel 6 T-statistiek voor afhankelijke en onafhankelijke variabelen

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>DA alle samen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modified jones</td>
<td>.502</td>
<td>.479</td>
<td>-5.538</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-6.711</td>
</tr>
<tr>
<td>DA alle samen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McNichols</td>
<td>.132</td>
<td>.717</td>
<td>-3.322</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-.751</td>
</tr>
<tr>
<td>TA-TA-1/At-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeAngelo</td>
<td>.002</td>
<td>.969</td>
<td>-.162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-.348</td>
</tr>
<tr>
<td>TA/At-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.359</td>
<td>.549</td>
<td>-.402</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>CFO/At-1</td>
<td>Equal variances assumed</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.729</td>
<td>6034,902</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.129</td>
<td>719</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.200</td>
<td>3644,697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>151,464</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-11,545</td>
<td>4108,313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-11,506</td>
<td>2363,744</td>
</tr>
<tr>
<td></td>
<td>Levene's Test for Equality of Variances</td>
<td>t-test for Equality of Means</td>
<td>95% Confidence Interval of the Difference</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>DA alle samen modified jones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>3,520</td>
<td>.061</td>
<td>5,668</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>5,337</td>
<td>732,187</td>
<td>.000</td>
</tr>
<tr>
<td>DA alle samen McNichols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>2,562</td>
<td>.110</td>
<td>1,705</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>.980</td>
<td>484,365</td>
<td>.328</td>
</tr>
<tr>
<td>TA-TA-1/At-1 DeAngelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>6,673</td>
<td>.010</td>
<td>1,662</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>.976</td>
<td>417,768</td>
<td>.330</td>
</tr>
<tr>
<td>TA/At-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>2,583</td>
<td>.108</td>
<td>2,057</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>1,213</td>
<td>478,523</td>
<td>.226</td>
</tr>
<tr>
<td></td>
<td>Equal variances assumed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.265</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.556</td>
<td>1749.116</td>
</tr>
<tr>
<td>Total assets</td>
<td>Equal variances assumed</td>
<td>217.284</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>6.496</td>
<td>538.735</td>
</tr>
<tr>
<td>Market Capitalisation</td>
<td>Equal variances assumed</td>
<td>2.871</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>1.053</td>
<td>763.880</td>
</tr>
<tr>
<td>Age</td>
<td>Equal variances assumed</td>
<td>21.130</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>10.582</td>
<td>725.140</td>
</tr>
</tbody>
</table>
Bij het classificatiesysteem van Kwon en Yin (1998), tabel 7, is er wel een significant verschil tussen de hightech-ondernemingen en niet-hightech-ondernemingen bij de drie modellen. De rest van de resultaten zijn identiek.

We hebben ook het winststuringsaggregaat van Leuz et al. (2003) berekend. De resultaten staan in tabel 8. Wat de eerste proxy, het aantal kleine winsten t.o.v. het aantal kleine verliezen, betreft, is er een significant verschil tussen de ki-groep en de nki-groep. Het aantal kleine winsten t.o.v. het aantal kleine verliezen is groter bij de ki-groep dan bij de nki-groep.

De tweede proxy berekent de absolute waarde van de totale accruals geschaald voor de operationele kasstromen. Deze is niet significant. Dit is te verwachten, aangezien deze proxy geen onderscheed maakt tussen opwaartse en neerwaartse winst. De mate van winststuring is, opwaarts of neerwaarts, is niet anders bij beide groepen.

De correlatie tussen de verandering in totale accruals en de verandering in operationele kasstromen (d.i. de derde proxy) is zowel bij de ki-groep als bij de nki-groep sterk negatief. Dit is wat we verwachten en een logisch gevolg van accrual accounting (Dechow (1994)). Bij de nki-groep is deze correlatie groter dan bij de ki-groep. Niet-kennisintensieve bedrijven hebben dus meer accruals die niet afkomstig zijn van onderliggende economische performantie (Leuz et al. (2003)).

Net als proxy twee, meet proxy vier geen verschil tussen de ki-groep en de nki-groep. Deze proxy berekent de variatie in operationele winst, geschaald voor operationele kasstromen (economische performantie). We kunnen hieruit besluiten dat kennisintensieve bedrijven de winst minder positief sturen dan niet-kennisintensieve bedrijven maar dat de mate waarin ze beiden aan winststuring doen, niet significant verschilt. Het verschil in aggregaat van Leuz et al. (2003) voor beide groepen is volledig te wijten aan de tweede en de vierde proxy. De aggregaat is dan ook groter voor de nki-groep dan voor de ki-groep.

Tabel 8 Resultaat aggregaat Leuz et al. (2003)

<table>
<thead>
<tr>
<th>WAARDEN</th>
<th>#SmProfits</th>
<th>#SmLoss</th>
<th>Acc</th>
<th>p(ΔAcc,ΔCFO)</th>
<th>σ(ΔCFO)</th>
<th>σ(OpWinst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ki 22</td>
<td>1,333</td>
<td>0,524880587</td>
<td>-0,634747089</td>
<td>0,585327318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ki 32</td>
<td>1,571</td>
<td>0,487580931</td>
<td>-0,06962395</td>
<td>0,610918922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ki 33</td>
<td>0,8</td>
<td>0,530690291</td>
<td>-0,527221711</td>
<td>0,554064668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ki 51</td>
<td>2,333</td>
<td>0,604132722</td>
<td>-0,068901875</td>
<td>0,838458958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ki 54</td>
<td>1,667</td>
<td>0,659278148</td>
<td>-0,175246634</td>
<td>0,5668522176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 23</td>
<td>5,8</td>
<td>0,680313919</td>
<td>-0,993534759</td>
<td>0,701207385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 31</td>
<td>2,13</td>
<td>0,569149167</td>
<td>-0,956986816</td>
<td>0,501490297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 32</td>
<td>1,7</td>
<td>0,551986961</td>
<td>-0,894001552</td>
<td>0,629171569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 33</td>
<td>2,765</td>
<td>0,599009986</td>
<td>-0,96790942</td>
<td>0,659783692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 42</td>
<td>5,875</td>
<td>0,538624021</td>
<td>-0,693739135</td>
<td>0,788801167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 44</td>
<td>3</td>
<td>0,470881869</td>
<td>-0,779122486</td>
<td>0,611729827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nki 45</td>
<td>1</td>
<td>0,528798758</td>
<td>-0,750843424</td>
<td>0,742827506</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
De resultaten bij toepassing van het model van Leuz et al. (2003) suggereren dat er geen verschil is in de mate van winststuring, ongeacht of de winst opwaarts of neerwaarts gestuurd wordt. Daartoe berekenen we de absolute waarde bij de drie andere modellen (Modified Jones, DeAngelo en Teoh et al.) (tabel9). Enkel het Modified Jones model maakt een significant onderscheid tussen de groepen (0,06/2<0,05). Het feit dat dit onderscheid niet gevonden werd bij het model van Leuz et al., ligt allicht in de rankings die de score van het aggregaat bepalen in plaats van de echte waarde.
Tabel 9: T-statistiek voor absolute waarden van de winststuringsproxy’s

Group Statistics

<table>
<thead>
<tr>
<th>ki(=1), nki(=0)</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs DA Modified Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet-kennisintensief</td>
<td>7499</td>
<td>1,18990</td>
<td>0,441970</td>
<td>0,005104</td>
</tr>
<tr>
<td>kennisintensief</td>
<td>1387</td>
<td>2,1282</td>
<td>0,299849</td>
<td>0,008051</td>
</tr>
<tr>
<td>abs DA Teoh et al.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet-kennisintensief</td>
<td>7817</td>
<td>1,33130</td>
<td>0,547108</td>
<td>0,051430</td>
</tr>
<tr>
<td>kennisintensief</td>
<td>1476</td>
<td>1,30350</td>
<td>0,343636</td>
<td>0,008944</td>
</tr>
<tr>
<td>abs DeAngelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>niet-kennisintensief</td>
<td>6546</td>
<td>1,9967</td>
<td>2,183772</td>
<td>0,026991</td>
</tr>
<tr>
<td>kennisintensief</td>
<td>1175</td>
<td>2,20187</td>
<td>0,378992</td>
<td>0,011056</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th>Levene’s Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>abs DA Modified Jones</td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>2,042</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2,405</td>
</tr>
<tr>
<td>abs DA Teoh et al.</td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.190</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.938</td>
</tr>
<tr>
<td>abs DeAngelo</td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.064</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.075</td>
</tr>
</tbody>
</table>

Bij het classificatiesysteem van Kwon en Yin (1998) is er ook een verschil in de absolute waarde van de discretionaire accruals bij toepassing van het Modified Jones model maar ook bij toepassing van het DeAngelo-model (0,97/2<0,05).

Tabel 10 T-statistiek voor absolute waarden van de winststuringsproxy’s bij classificatiesysteem van Kwon en Yin (1998)
Group Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs DA Modified Jones</td>
<td>0</td>
<td>473</td>
<td>.14855</td>
<td>.590315</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1436</td>
<td>.22131</td>
<td>.503853</td>
</tr>
<tr>
<td>abs DA Teoh et al.</td>
<td>0</td>
<td>479</td>
<td>.38291</td>
<td>.2891864</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1538</td>
<td>.30728</td>
<td>.381654</td>
</tr>
<tr>
<td>TA-TA-1/At-1 DeAngelo</td>
<td>0</td>
<td>418</td>
<td>.41662</td>
<td>8.188510</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1220</td>
<td>.02573</td>
<td>.424456</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>abs DA Modified Jones</td>
<td>4,919</td>
<td>.027</td>
</tr>
<tr>
<td></td>
<td>712.21</td>
<td>.016</td>
</tr>
<tr>
<td>abs DA Teoh et al.</td>
<td>3,048</td>
<td>.081</td>
</tr>
<tr>
<td></td>
<td>483.19</td>
<td>.568</td>
</tr>
<tr>
<td>TA-TA-1/At-1 DeAngelo</td>
<td>6,673</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td>417.76</td>
<td>.330</td>
</tr>
</tbody>
</table>

Voor de gebruikte regressies wordt eerst een correlatiematrix berekend. Er is een probleem van multicollineariteit tussen onafhankelijke variabelen LEV (vreemd vermogen/totale activa) en onze testvariabele intangible assets, de correlatie is groter dan 0,8 wat veel te hoog is. We vervangen LEV door vreemd vermogen/eigen vermogen. Nu zijn alle correlaties klein (tabel). Om problemen met multicollineariteit volledig uit te sluiten, berekenen we de VIF (de Variance Inflation Factor). Wanneer die hoog is, wil dat zeggen dat de variantie van een schatter beïnvloed is door multicollineariteit en dus dat die schatter gecorreleerd is met andere onafhankelijke variabelen. De VIF's zijn een pak lager.
dan 10, dus multicollineariteit is hier geen probleem. Er is ook geen autocorrelatie in de residuen (Durbin-Watson < 2).

In tabel 11 zien we dat wanneer we de invloed van immateriële vaste activa meten op een dummyvariabele KI (1=kennisintensief, 0=niet-kennisintensief), dan zien we dat er geen significant verband is (p>0,05). In tabel zien we echter dat de invloed van materiële vaste activa op een dummyvariabele (1=kennisintensief, 0=niet-kennisintensief), gecontroleerd voor de grootte van een bedrijf (LNASSETS), wel significant is (p<0,05). Dit is in overeenstemming met Daley en Vigeland (1983) die erop wijzen dat bedrijven die kosten voor onderzoek en ontwikkeling kapitaliseren, kleiner zijn dan bedrijven die de kosten niet kapitaliseren. De mate van immateriële activa heeft een positieve invloed en LNASSETS een negatieve. Bij het classificatiesysteem van Kwon en Yin (2006) is er een significant verband voor immateriële activa, al dan niet geschaald voor totale activa. Dit bevestigt onze hypothese dat een kennisintensief bedrijf meer immateriële activa heeft dan een niet-kennisintensief bedrijf. Bovendien zijn die bedrijven kleiner.

Tabel 11 Invloed van immateriële activa op dummyKI (k=1, nki=0) en dummy HT (ht=1, nht=0)

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>0,161</td>
<td>0,004</td>
<td>0</td>
<td>42,136</td>
</tr>
<tr>
<td>INTASSETS</td>
<td>7,050E-10</td>
<td>0,000</td>
<td>0,017</td>
<td>1,639</td>
</tr>
</tbody>
</table>

a. Dependent Variable: KI

Coefficientsa

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>0,369</td>
<td>0,017</td>
<td>0,017</td>
<td>21,191</td>
</tr>
<tr>
<td>INTASSETS</td>
<td>2,176E-9</td>
<td>0,000</td>
<td>0,052</td>
<td>4,907</td>
</tr>
<tr>
<td>LNASSETS</td>
<td>-0,015</td>
<td>0,001</td>
<td>-0,128</td>
<td>-12,218</td>
</tr>
</tbody>
</table>

a. Dependent Variable: KI
Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.766</td>
<td>.009</td>
<td>81.010</td>
</tr>
<tr>
<td></td>
<td>INTASSETS</td>
<td>3.244 x 10^{-9}</td>
<td>.000</td>
<td>2.512</td>
</tr>
</tbody>
</table>

a. Dependent Variable: HT

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.526</td>
<td>.277</td>
<td>.274</td>
<td>.258612434</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, TAX, 1 = high, INTASSETS, Age, ROA, LNAssets, Market Capitalisation
ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>65,630</td>
<td>9</td>
<td>7,292</td>
<td>109,033</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>171,615</td>
<td>2566</td>
<td>.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>237,245</td>
<td>2575</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, TAX, INTASSETS, Age, ROA, LNAssets, Market Capitalisation

b. Dependent Variable: DA Modified Jones

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>-.201</td>
<td>.038</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>INTASSETS</td>
<td>-.237</td>
<td>.017</td>
<td>-.241</td>
<td>.000</td>
</tr>
<tr>
<td>LNAssets</td>
<td>.015</td>
<td>.003</td>
<td>.098</td>
<td>5.463</td>
</tr>
<tr>
<td>ROA</td>
<td>.006</td>
<td>.000</td>
<td>.275</td>
<td>15.432</td>
</tr>
<tr>
<td>Age</td>
<td>6.874E-5</td>
<td>.000</td>
<td>.011</td>
<td>.648</td>
</tr>
<tr>
<td>ΔSales</td>
<td>2.912E-10</td>
<td>.000</td>
<td>.008</td>
<td>.466</td>
</tr>
<tr>
<td>TAX</td>
<td>.036</td>
<td>.015</td>
<td>.043</td>
<td>2.446</td>
</tr>
<tr>
<td>Market Capitalisation</td>
<td>1.350E-12</td>
<td>.000</td>
<td>.052</td>
<td>2.848</td>
</tr>
<tr>
<td>CFO/At-1</td>
<td>-.338</td>
<td>.015</td>
<td>-.383</td>
<td>-21.871</td>
</tr>
<tr>
<td>LEV (VV/EV)</td>
<td>2.463E-18</td>
<td>.000</td>
<td>.003</td>
<td>.186</td>
</tr>
</tbody>
</table>

a. Dependent Variable: DA Modified Jones

Wanneer toegepast op het model van Teoh et al. en DeAngelo (in bijlage 7), zie je hetzelfde resultaat wat de immateriële activa betreft. De significantie van de controlevariabelen verschilt. Dit is waarschijnlijk te wijten aan het meetinstrument zelf. Het model van Teoh et al. meet abnormale vlottende accruals en niet abnormale totale accruals zoals bij het Modified Jones model. DeAngelo houdt geen rekening met het feit dat ook de niet-discretionaire accruals in de totale accruals omvat zitten. Onze hypothese blijft echter robuust voor de drie modellen, ook al is de mate van winststuring in het model van Teoh et al. en in het model van DeAngelo niet significant in ki-groep en nki-groep. Dit toont ook dat immateriële activa een invloed hebben op winststuring, los van het feit dat kennisintensieve bedrijven veel immateriële activa hebben.

7.4.3 Sensitiviteitsanalyse

Omdat er een effect van immateriële activa is op de mate van winststuring bij het model van DeAngelo en het model van Teoh et al. terwijl er geen significant verschil is tussen de discretionaire accruals van
de ki-groep en de nki-groep, moet er een invloed bestaan van immateriële activa, dat niets te maken heeft met het feit of een bedrijf kennisintensief is of niet. Daartoe doen we de regressie opnieuw maar voegen we de dummyvariabele KI toe (kennisintensief=1, niet-kennisintensief=0):

\[
EM_{proxy} = \beta_0 + \beta_1 KI + \beta_2 INTASSETS - \beta_3 AGE + \beta_4 ΔSALES + \beta_5 LEV + \beta_6 ROA + \beta_7 LNASSETS + \beta_8 TAX + \beta_9 CFO + \varepsilon
\]

Bij test voor multicollineariteit blijkt dat er geen probleem is hiervoor. De correlatie tussen KI en EM is niet te hoog (tabel 13). Het blijkt inderdaad dat immateriële activa een negatieve invloed hebben als geclassificeerd wordt tot de ki-groep of de nki-groep. KI heeft een positieve invloed. Dit wil ook zeggen dat andere eigenschappen van kennisintensieve bedrijven een invloed hebben op winststuring.

Tabel 13 Regressie met testvariabelen KI en INTASSETS

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.527*</td>
<td>.278</td>
<td>.275</td>
<td>.258402199</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, TAX, INTASSETS, KI, Age, LNAssets, ROA, Market Capitalisation

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>65,975</td>
<td>10</td>
<td>6,598</td>
<td>98,807</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>171,269</td>
<td>2565</td>
<td>.067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>237,245</td>
<td>2575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, TAX, INTASSETS, KI, Age, LNAssets, ROA, Market Capitalisation
b. Dependent Variable: DA Modified Jones

c. **Coefficients**

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.211</td>
<td>.038</td>
<td>-5,522</td>
</tr>
<tr>
<td></td>
<td>KI</td>
<td>.032</td>
<td>.014</td>
<td>.039</td>
</tr>
<tr>
<td></td>
<td>INTASSETS</td>
<td>-.241</td>
<td>.017</td>
<td>-.245</td>
</tr>
<tr>
<td></td>
<td>LNAssets</td>
<td>.015</td>
<td>.003</td>
<td>.101</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R Square</td>
<td>Adjusted R Square</td>
<td>Std. Error of the Estimate</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1</td>
<td>.618 a</td>
<td>.382</td>
<td>.372</td>
<td>.279724</td>
</tr>
</tbody>
</table>

Model Summary

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, INTASSETS, ΔSales, Market Capitalisation, ht=1, lt=0, TAX, LNAssets, ROA, Age

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>30,437</td>
<td>10</td>
<td>3,044</td>
<td>38,899</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>49,295</td>
<td>630</td>
<td>.078</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79,731</td>
<td>640</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, INTASSETS, ΔSales, Market Capitalisation, HI, TAX, LNAssets, ROA, Age

b. Dependent Variable: DA Modified Jones
<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.296, .091</td>
<td>-3.251, .001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>-.066, .027</td>
<td>-2.497, .013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTASSETS</td>
<td>-.345, .026</td>
<td>-13.081, .000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LNAassets</td>
<td>.029, .007</td>
<td>4.015, .000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROA</td>
<td>.007, .001</td>
<td>8.593, .000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>.000, .000</td>
<td>-1.770, .077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔSales</td>
<td>-3.180E-10, .000</td>
<td>-.445, .656</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAX</td>
<td>.040, .032</td>
<td>1.253, .211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Market Capitalisation</td>
<td>1.456E-12, .000</td>
<td>1.556, .120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFO/At-1</td>
<td>-.419, .044</td>
<td>-9.595, .000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEV (V/V/EV)</td>
<td>-1.479E-16, .000</td>
<td>-1.484, .138</td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: DA Modified Jones

8. Besluit

Kennisintensieve en hoogtechnologische sectoren en bedrijven hebben doorgaans veel immateriële activa waaronder onderzoek en ontwikkeling, maken diep gebruik van nieuwe technologieën, hebben gespecialiseerde arbeidskrachten (human capital) en maken veel gebruik van innovatieve producten en technieken (Kwon en Yin (2006)). Deze bedrijven houden er doorgaans conservatieve accountingmethoden op na omdat zij sterk afhangen van externe investeerders waarvan zij het vertrouwen moeten behouden. Accountingcijfers manipuleren zouden vervolgingen kunnen teweegbrengen bij aandeelhouders of investeerders haken mogelijk af. Bovendien hebben deze bedrijven met veel accountingstandaarden te maken waar zij moeten aan voldoen (Kwon et al. (2006)). Kennisintensieve bedrijven zouden vooral conservatief zijn in het boeken van onderzoeks- en ontwikkelingskosten (Pozza et al. (2008), Oswald (2008)). Zij brengen deze kosten gemakkelijker onder in de resultatenrekening dan in de balans, waardoor het resultaat in de balans lager is. Onderzoeks- en ontwikkelingskosten zijn een onderdeel van immateriële vaste activa. Gecontroleerd voor gekende winststuringsmotieven, hebben wij gevonden dat immateriële vaste activa een negatieve invloed hebben op winststuring, gemeten via het Modified Jones model. Bovendien hebben kennisintensieve en hoogtechnologische bedrijven volgens hetzelfde model negatieve discretionaire accruals tegenover positieve discretionaire accruals voor niet-kennisintensieve en laagtechnologische
bedrijven, wat in lijn is met het conservatieve accountinghypothese. Dit resultaat bekwamen wij echter niet voor twee andere modellen (model van Teoh et al. en DeAngelo-model). In navolging van Dechow et al. (1994) denken wij dat er bij het DeAngelo-model te veel ruis is. Het model maakt geen onderscheid tussen niet-discretionaire en discretionaire accruals. In het model van Teoh et al. worden enkel de korte termijn-accruals gemeten. Dit kan tot een onderschatting van de resultaten leiden waardoor resultaten niet-significant worden.

Een andere beperking aan ons onderzoek is dat wij niet de invloed van alle karakteristieken van kennisintensieve en hoogtechnologische bedrijven kunnen onderzoeken hebben. Interessant zou zijn om alle karakteristieken in kaart te brengen en dan via een regressie te onderzoeken welke karakteristieken het zijn die de winst beïnvloeden bij deze bedrijven. Wij bekwamen reeds dat immateriële activa een invloed hebben. Wanneer we een dummyvariabele aan onze regressie toevoegen die een bedrijf tot één van de twee groepen classificeert, hebben we nog steeds een significante invloed van immateriële activa. Dit wil zeggen dat er nog meer eigenschappen van deze bedrijven de winst sturen. Anderzijds wijst het er ook op dat immateriële activa op zich winst (neerwaarts) sturen.
Literatuurlijst.

Beatty A.L., Ke B. en Petroni K.R., Earnings management to avoid earnings declines across publicly and privately held banks, The Accounting Review, jg 77, nr. 3, 299-326

Francis J. en Schipper K., 1999, Have financial statements lost their relevants?, Journal of Accounting Research, jg. 37, nr. 2, lente 1999, 319-352

International Accounting Standards Committee

KPMG, 1995, The computer software industry in Canada: Survey of corporate and financial reporting

Kwon S., Yin Q. en Han J., The effect of differential accounting conservatism on the "over-valuation" of high-tech firms relative to low-tech firms, Review of Quantitative Finance and Accounting, jg. 27, nr. 2, september 2006, 143-173

Peasnell K.V., Pope P.F. en Young, S., Detecting earnings management using cross-sectional abnormal accruals models, Accounting and Business Research, jg 30, 2000, nr. 4, 313-326

Perry S., en Grinaker R., 1994, Earnings Expectations and Discretionary Research and Development Spending, Accounting Horizons 8, 43-51

Smith K., 2002, What is the ‘knowledge economy’? Knowledge intensity and distributed knowledge bases, discussiepaper van The United Nations University, Institute for New Technologies

Van Tendeloo B., Vanstraalen A., Earnings management under German GAAP versus IFRS, European Accounting Review, jg. 14, nr. 1, mei 2005, 155-180

Wijnen K., Janssens W., De Pelsmaecker P. en Van Kenhove P., Marktonderzoek met SPSS, statistische verwerking en interpretative, 2002
APPENDIX

Bijlage 1: NAICS Code

<table>
<thead>
<tr>
<th>NAICS Code</th>
<th>Industrieclassificatie o.b.v. Canada Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>221111</td>
<td>Hydro-Electric Power Generation</td>
</tr>
<tr>
<td>221112</td>
<td>Fossil-Fuel Electric Power Generation</td>
</tr>
<tr>
<td>221113</td>
<td>Nuclear Power Generation</td>
</tr>
<tr>
<td>221119</td>
<td>Other Electric Power Generation</td>
</tr>
<tr>
<td>221121</td>
<td>Electric Bulk Power Transmission and Control</td>
</tr>
<tr>
<td>221122</td>
<td>Electric Power Distribution</td>
</tr>
<tr>
<td>324110</td>
<td>Petroleum Refineries</td>
</tr>
<tr>
<td>324121</td>
<td>Asphalt Paving Mixture and Block Manufacturing</td>
</tr>
<tr>
<td>324190</td>
<td>Other Petroleum and Coal Products Manufacturing</td>
</tr>
<tr>
<td>325110</td>
<td>Petrochemical Manufacturing</td>
</tr>
<tr>
<td>325120</td>
<td>Industrial Gas Manufacturing</td>
</tr>
<tr>
<td>325130</td>
<td>Synthetic Dye and Pigment Manufacturing</td>
</tr>
<tr>
<td>325181</td>
<td>Alkali and Chlorine Manufacturing</td>
</tr>
<tr>
<td>325189</td>
<td>All Other Basic Inorganic Chemical Manufacturing</td>
</tr>
<tr>
<td>325190</td>
<td>All Other Basic Organic Chemical Manufacturing</td>
</tr>
<tr>
<td>325210</td>
<td>Resin and Synthetic Rubber Manufacturing</td>
</tr>
<tr>
<td>325310</td>
<td>Chemical Fertilizer (except Potash) Manufacturing</td>
</tr>
<tr>
<td>325314</td>
<td>Mixed Fertilizer Manufacturing</td>
</tr>
<tr>
<td>325320</td>
<td>Pesticide and Other Agricultural Chemical Manufacturing</td>
</tr>
<tr>
<td>325410</td>
<td>Pharmaceutical and Medicine Manufacturing</td>
</tr>
<tr>
<td>325520</td>
<td>Adhesive Manufacturing</td>
</tr>
<tr>
<td>325599</td>
<td>All Other Miscellaneous Chemical Product Manufacturing</td>
</tr>
<tr>
<td>325910</td>
<td>Printing Ink Manufacturing</td>
</tr>
<tr>
<td>325920</td>
<td>Explosives Manufacturing</td>
</tr>
<tr>
<td>325991</td>
<td>Custom Compounding of Purchased Resins</td>
</tr>
<tr>
<td>325999</td>
<td>All Other Miscellaneous Chemical Product Manufacturing</td>
</tr>
<tr>
<td>332991</td>
<td>Ball and Roller Bearing Manufacturing</td>
</tr>
<tr>
<td>333110</td>
<td>Agricultural Implement Manufacturing</td>
</tr>
<tr>
<td>333120</td>
<td>Construction Machinery Manufacturing</td>
</tr>
<tr>
<td>333130</td>
<td>Mining and Oil and Gas Field Machinery Manufacturing</td>
</tr>
<tr>
<td>333210</td>
<td>Sawmill and woodworking Machinery Manufacturing</td>
</tr>
<tr>
<td>333220</td>
<td>Rubber and Plastics Industry Machinery Manufacturing</td>
</tr>
<tr>
<td>333291</td>
<td>Paper Industry Machinery Manufacturing</td>
</tr>
<tr>
<td>333299</td>
<td>All Other Industrial Machinery Manufacturing</td>
</tr>
<tr>
<td>333310</td>
<td>Commercial and Service Industry Machinery Manufacturing</td>
</tr>
<tr>
<td>Code</td>
<td>Industry Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>333413</td>
<td>Industrial and Commercial Fan and Blower and Air Purification Equipment</td>
</tr>
<tr>
<td>333416</td>
<td>Heating Equipment and Commercial Refrigeration Equipment Manufacturing</td>
</tr>
<tr>
<td>333611</td>
<td>Turbine and Turbine Generator Sets Units Manufacturing</td>
</tr>
<tr>
<td>333619</td>
<td>Other Engine and Power Transmission Equipment Manufacturing</td>
</tr>
<tr>
<td>333910</td>
<td>Pump and Compressor Manufacturing</td>
</tr>
<tr>
<td>333920</td>
<td>Material Handling Equipment Manufacturing</td>
</tr>
<tr>
<td>333990</td>
<td>All Other General-Purpose Machinery Manufacturing</td>
</tr>
<tr>
<td>334110</td>
<td>Computer and Peripheral Equipment Manufacturing</td>
</tr>
<tr>
<td>334210</td>
<td>Telephone Apparatus Manufacturing</td>
</tr>
<tr>
<td>334220</td>
<td>Radio and Television Broadcasting and Wireless Communications</td>
</tr>
<tr>
<td>334290</td>
<td>Other Communications Equipment Manufacturing</td>
</tr>
<tr>
<td>334310</td>
<td>Audio and Video Equipment Manufacturing</td>
</tr>
<tr>
<td>334410</td>
<td>Semi-Conductor and Other Electronic Component Manufacturing</td>
</tr>
<tr>
<td>334511</td>
<td>Navigational and Guidance Instruments Manufacturing</td>
</tr>
<tr>
<td>334512</td>
<td>Measuring, Medical and Controlling Devices Manufacturing</td>
</tr>
<tr>
<td>335311</td>
<td>Power Distribution and Specialty Transformers Manufacturing</td>
</tr>
<tr>
<td>335312</td>
<td>Motor and Generator Manufacturing</td>
</tr>
<tr>
<td>335315</td>
<td>Switchgear and Switchboard, and Relay and Industrial Control Apparatus</td>
</tr>
<tr>
<td>335920</td>
<td>Communication and Energy Wire and Cable Manufacturing</td>
</tr>
<tr>
<td>336320</td>
<td>Motor Vehicle and Electronic Equipment Manufacturing</td>
</tr>
<tr>
<td>336410</td>
<td>Aerospace Products and Parts Manufacturing</td>
</tr>
<tr>
<td>486110</td>
<td>Pipeline Transportation of Crude Oil</td>
</tr>
<tr>
<td>486210</td>
<td>Pipeline Transportation of Natural Gas</td>
</tr>
<tr>
<td>486910</td>
<td>Pipeline Transportation of Refined Petroleum Products</td>
</tr>
<tr>
<td>486990</td>
<td>All Other Pipeline Transportation</td>
</tr>
<tr>
<td>511210</td>
<td>Software Publishers</td>
</tr>
<tr>
<td>512110</td>
<td>Motion Picture and Video Production</td>
</tr>
<tr>
<td>512190</td>
<td>Post-Production and Other Motion Picture and Video Industries</td>
</tr>
<tr>
<td>513210</td>
<td>Pay and Specialty Television</td>
</tr>
<tr>
<td>513220</td>
<td>Cable and Other Program Distribution</td>
</tr>
<tr>
<td>513310</td>
<td>Wired Communications Carriers</td>
</tr>
<tr>
<td>513320</td>
<td>Wireless Communications Carriers (Except Satellite)</td>
</tr>
<tr>
<td>513330</td>
<td>Telecommunications Resellers</td>
</tr>
<tr>
<td>513340</td>
<td>Satellite Communications</td>
</tr>
<tr>
<td>513390</td>
<td>Other Telecommunications</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>514210</td>
<td>Data Processing Services</td>
</tr>
<tr>
<td>541310</td>
<td>Architectural Services</td>
</tr>
<tr>
<td>541320</td>
<td>Landscape Architectural Services</td>
</tr>
<tr>
<td>541330</td>
<td>Engineering Services</td>
</tr>
<tr>
<td>541340</td>
<td>Drafting Services</td>
</tr>
<tr>
<td>541360</td>
<td>Geophysical Surveying and Mapping Services</td>
</tr>
<tr>
<td>541370</td>
<td>Surveying and Mapping (Except Geophysical) Services</td>
</tr>
<tr>
<td>541380</td>
<td>Testing Laboratories</td>
</tr>
<tr>
<td>541510</td>
<td>Computer Systems Design and Related Services</td>
</tr>
<tr>
<td>541620</td>
<td>Environmental Consulting Services</td>
</tr>
<tr>
<td>541690</td>
<td>Other Scientific and Technical Consulting Services</td>
</tr>
<tr>
<td>541710</td>
<td>Research and Development in the Physical, Engineering and Life Sciences</td>
</tr>
</tbody>
</table>
Bijlage 2: tabel 13 – definitie kennisintensieve sectoren van industry Canada

<table>
<thead>
<tr>
<th>Code</th>
<th>Industry</th>
<th>Code</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0239</td>
<td>Services incidental to agriculture</td>
<td>3741</td>
<td>Pharmaceutical and medicine industry</td>
</tr>
<tr>
<td>3211</td>
<td>Aircraft and aircraft parts manufacture</td>
<td>3911</td>
<td>Indicating, recording and controlling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>instruments</td>
</tr>
<tr>
<td>3341</td>
<td>Record player, radio and television</td>
<td>3912</td>
<td>Other instruments and related products</td>
</tr>
<tr>
<td></td>
<td>receiver manufacture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3351</td>
<td>Telecommunications equipment manufacture</td>
<td>4814</td>
<td>Cable television</td>
</tr>
<tr>
<td>3352</td>
<td>Electronic parts and components manufacture</td>
<td>4812</td>
<td>Telecommunications carriers</td>
</tr>
<tr>
<td>3359</td>
<td>Other communications and equipment manufacture</td>
<td>4839</td>
<td>Other telecommunications</td>
</tr>
<tr>
<td>3361</td>
<td>Electronic computing an peripheral equipment</td>
<td>7721</td>
<td>Computer services</td>
</tr>
<tr>
<td>3362</td>
<td>Electronic office and store and business</td>
<td>7759</td>
<td>Other scientific and technical services</td>
</tr>
<tr>
<td></td>
<td>equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3381</td>
<td>Other electronic office and store and business</td>
<td>9611</td>
<td>Motion picture and video recording</td>
</tr>
<tr>
<td></td>
<td>equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3369</td>
<td>Communications and energy wire and</td>
<td>9619</td>
<td>Other motion picture, audio and video</td>
</tr>
<tr>
<td></td>
<td>cable manufacture</td>
<td></td>
<td>recording</td>
</tr>
</tbody>
</table>
Bijlage 3: Enkele van de R&D en human capital factoren waarop Lee en Has (1996) zich baseren om kennisintensieve sectoren aan te wijzen:

- The ratio of industry R&D spending to the value of industry output.
- Ratio of total R&D employees to total employees.
- Ratio of professional (scientist, engineer,...) to total employees.
- Post secondary educated workers as a percent of total employees.
- Workers who are university educated in professional disciplines (scientists, management specialist, lawyers, engineers..) as a percent of total employees.
- Employed scientist and engineers as a percent of total work force.
Bijlage 4: 3-digit SIC-code van hightech en niet-hightech bedrijven (Kwon en Yin 2002)

Hightech bedrijven

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
<td>Drugs</td>
</tr>
<tr>
<td>355</td>
<td>Special Industry Machinery</td>
</tr>
<tr>
<td>357</td>
<td>Computer and Office Equipment</td>
</tr>
<tr>
<td>362</td>
<td>Electrical Industrial Apparatus</td>
</tr>
<tr>
<td>363</td>
<td>Household Appliances</td>
</tr>
<tr>
<td>364</td>
<td>Electric Lighting and Wiring Equipment</td>
</tr>
<tr>
<td>365</td>
<td>Household Audio and Video Equipment</td>
</tr>
<tr>
<td>366</td>
<td>Communications Equipment</td>
</tr>
<tr>
<td>367</td>
<td>Electronic Components and Accessories</td>
</tr>
<tr>
<td>369</td>
<td>Misc. Electrical Equipment and Supplies</td>
</tr>
<tr>
<td>382</td>
<td>Measuring and Controlling Devices</td>
</tr>
<tr>
<td>481</td>
<td>Telephone Communications</td>
</tr>
<tr>
<td>489</td>
<td>Communications Services, NEC</td>
</tr>
<tr>
<td>573</td>
<td>Radio, TV, and Electronic Stores</td>
</tr>
<tr>
<td>737</td>
<td>Computer and Data Processing Services</td>
</tr>
</tbody>
</table>

Low-tech bedrijven

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>Heavy Construction, Excluding Building</td>
</tr>
<tr>
<td>170</td>
<td>Special Trade Contractors</td>
</tr>
<tr>
<td>202</td>
<td>Dairy Products</td>
</tr>
<tr>
<td>220</td>
<td>Textile Mill Products</td>
</tr>
<tr>
<td>240</td>
<td>Lumber and Wood Products</td>
</tr>
<tr>
<td>245</td>
<td>Wood Buildings and Mobile Homes</td>
</tr>
<tr>
<td>260</td>
<td>Paper and Allied Products</td>
</tr>
<tr>
<td>300</td>
<td>Rubber and Misc. Plastics Products</td>
</tr>
<tr>
<td>308</td>
<td>Misc. Plastics Products</td>
</tr>
<tr>
<td>331</td>
<td>Blast Furnace and Basic Steel Products</td>
</tr>
<tr>
<td>356</td>
<td>General Industrial Machinery and Equipment</td>
</tr>
<tr>
<td>371</td>
<td>Motor Vehicles and Equipment</td>
</tr>
<tr>
<td>399</td>
<td>Misc. Manufacturing Industries</td>
</tr>
<tr>
<td>451</td>
<td>Scheduled Air Transportation</td>
</tr>
<tr>
<td>541</td>
<td>Grocery Stores</td>
</tr>
</tbody>
</table>
Bijlage 5: Resultaat regressie Modified Jones model

<table>
<thead>
<tr>
<th>NAICS 2-digit Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>4 1 (Constant)</td>
<td>.008</td>
<td>.076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.046</td>
<td>.143</td>
<td>-0.085</td>
</tr>
<tr>
<td></td>
<td>-0.187</td>
<td>.229</td>
<td>-0.214</td>
</tr>
<tr>
<td>11 1 (Constant)</td>
<td>.014</td>
<td>.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.577</td>
<td>.143</td>
<td>-0.400</td>
</tr>
<tr>
<td></td>
<td>-0.149</td>
<td>.071</td>
<td>-0.209</td>
</tr>
<tr>
<td>21 1 (Constant)</td>
<td>-0.010</td>
<td>.018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.245</td>
<td>.110</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>-0.064</td>
<td>.029</td>
<td>-0.241</td>
</tr>
<tr>
<td>22 1 (Constant)</td>
<td>-0.014</td>
<td>.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.718</td>
<td>.117</td>
<td>-0.481</td>
</tr>
<tr>
<td></td>
<td>-0.021</td>
<td>.032</td>
<td>-0.052</td>
</tr>
<tr>
<td>23 1 (Constant)</td>
<td>0.009</td>
<td>.014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.103</td>
<td>0.091</td>
<td>-0.053</td>
</tr>
<tr>
<td></td>
<td>-0.046</td>
<td>.034</td>
<td>-0.064</td>
</tr>
<tr>
<td>31 1 (Constant)</td>
<td>-0.018</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.144</td>
<td>.028</td>
<td>-0.185</td>
</tr>
<tr>
<td></td>
<td>-0.068</td>
<td>.018</td>
<td>-0.135</td>
</tr>
<tr>
<td>32 1 (Constant)</td>
<td>-0.070</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.087</td>
<td>.044</td>
<td>-0.068</td>
</tr>
<tr>
<td></td>
<td>.080</td>
<td>.024</td>
<td>.113</td>
</tr>
<tr>
<td>33 1 (Constant)</td>
<td>.309</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.753</td>
<td>.005</td>
<td>-2.006</td>
</tr>
<tr>
<td></td>
<td>-1.329</td>
<td>.012</td>
<td>-1.493</td>
</tr>
<tr>
<td>42 1 (Constant)</td>
<td>.002</td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.211</td>
<td>.034</td>
<td>-0.228</td>
</tr>
<tr>
<td></td>
<td>-0.076</td>
<td>.036</td>
<td>-0.078</td>
</tr>
<tr>
<td>44 1 (Constant)</td>
<td>-0.024</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.225</td>
<td>.083</td>
<td>-0.200</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>PPE/At-1</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>45</td>
<td>-0.037</td>
<td>0.032</td>
<td>-0.085</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>-0.025</td>
<td>0.014</td>
<td>-1.828</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>-0.201</td>
<td>0.218</td>
<td>-1.206</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>-0.062</td>
<td>0.013</td>
<td>2.727</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.086</td>
<td>0.032</td>
<td>5.092</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.038</td>
<td>0.028</td>
<td>1.359</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.047</td>
<td>0.015</td>
<td>3.138</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.008</td>
<td>0.032</td>
<td>1.245</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0.060</td>
<td>0.030</td>
<td>2.025</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0.006</td>
<td>0.050</td>
<td>1.120</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>0.056</td>
<td>0.028</td>
<td>2.309</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>(Constant)</td>
<td>-0.062</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>-1.176</td>
<td>1.152</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>0.012</td>
<td>0.034</td>
</tr>
<tr>
<td>81</td>
<td>1</td>
<td>(Constant)</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>-1.205</td>
<td>1.677</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>-1.369</td>
<td>2.853</td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td>(Constant)</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>-0.450</td>
<td>1.421</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>-0.217</td>
<td>0.336</td>
</tr>
</tbody>
</table>

a. Dependent Variable: TA/At-1
<table>
<thead>
<tr>
<th>NAICS 2-digit</th>
<th>Model</th>
<th>(Constant)</th>
<th>(ΔREV-ΔREC)/At-1</th>
<th>PPE/At-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0,084</td>
<td>0,103</td>
<td>0,424</td>
<td>-0,230</td>
<td>0,192</td>
<td>-0,307</td>
<td>-1,230</td>
<td>0,123</td>
<td>0,103</td>
<td>-0,172</td>
<td>0,033</td>
<td>-5,290</td>
<td>0,030</td>
<td>0,045</td>
<td>0,714</td>
<td>-0,014</td>
<td>0,015</td>
<td>0,964</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Bijlage 6 : Resultaat regressie vlottend-accrua model

Coefficients

Unstandardized Coefficients	Standardized Coefficients	t	Sig.	Collinearity Statistics
B | Std. Error | Beta | | Tolerance | VIF

4 | 1 | (Constant) | 0,084 | 0,103 | 0,822 | 0,424 |
| (ΔREV-ΔREC)/At-1 | -0,230 | 0,192 | -0,307 | -1,197 | 0,250 | 0,924 | 1,082 |
PPE/At-1 | -0,123 | 0,123 | -0,307 | -0,399 | 0,695 | 0,924 | 1,082 |

11 | 1 | (Constant) | -0,172 | 0,033 | -5,290 | 0,000 |
| (ΔREV-ΔREC)/At-1 | -0,190 | 0,159 | -0,090 | -1,196 | 0,234 | 0,960 | 1,042 |
PPE/At-1 | 0,870 | 0,101 | 0,650 | 8,620 | 0,000 | 0,960 | 1,042 |

21 | 1 | (Constant) | 0,030 | 0,021 | 1,467 | 0,146 |
| (ΔREV-ΔREC)/At-1 | 0,057 | 0,045 | 0,138 | 1,283 | 0,203 | 0,984 | 1,016 |
PPE/At-1 | -0,043 | 0,034 | -0,136 | -1,266 | 0,209 | 0,984 | 1,016 |

22 | 1 | (Constant) | 0,014 | 0,015 | 0,964 | 0,337 |
| (ΔREV-ΔREC)/At-1 | -0,203 | 0,064 | -0,272 | -3,184 | 0,002 | 0,925 | 1,081 |
PPE/At-1 | -0,024 | 0,017 | -0,121 | -1,410 | 0,161 | 0,925 | 1,081 |

23 | 1 | (Constant) | 0,026 | 0,013 | 1,975 | 0,049 |
| (ΔREV-ΔREC)/At-1 | -0,168 | 0,090 | -0,087 | -1,865 | 0,063 | 0,992 | 1,008 |
PPE/At-1 | -0,037 | 0,033 | -0,052 | -1,116 | 0,265 | 0,992 | 1,008 |

31 | 1 | (Constant) | 0,004 | 0,008 | 0,547 | 0,585 |
| (ΔREV-ΔREC)/At-1 | -0,135 | 0,025 | -0,195 | -5,352 | 0,000 | 0,998 | 1,002 |
PPE/At-1 | -0,009 | 0,018 | -0,019 | -0,512 | 0,609 | 0,998 | 1,002 |

32 | 1 | (Constant) | -0,030 | 0,010 | -2,974 | 0,003 |
| (ΔREV-ΔREC)/At-1 | -0,134 | 0,040 | -0,111 | -3,381 | 0,001 | 0,930 | 1,075 |
PPE/At-1 | 0,124 | 0,024 | 0,169 | 5,133 | 0,000 | 0,930 | 1,075 |

33 | 1 | (Constant) | 0,334 | 0,009 | 35,552 | 0,000 |
| (ΔREV-ΔREC)/At-1 | -0,742 | 0,005 | -1,951 | -150,024 | 0,000 | 0,217 | 4,612 |
PPE/At-1 | -1,239 | 0,012 | -1,374 | -105,644 | 0,000 | 0,217 | 4,612 |

42 | 1 | (Constant) | 0,018 | 0,009 | 1,876 | 0,061 |
| (ΔREV-ΔREC)/At-1 | -0,214 | 0,033 | -0,235 | -6,508 | 0,000 | 0,995 | 1,005 |
PPE/At-1 | -0,020 | 0,035 | -0,021 | -0,573 | 0,567 | 0,995 | 1,005 |

44 | 1 | (Constant) | 0,029 | 0,014 | 2,029 | 0,044 |
<p>| (ΔREV-ΔREC)/At-1 | 0,071 | 0,041 | 0,143 | 1,703 | 0,090 | 0,729 | 1,371 |</p>
<table>
<thead>
<tr>
<th></th>
<th>PPE/At-1</th>
<th>(.006, .029)</th>
<th>(.199, -2.372)</th>
<th>(.019, .729)</th>
<th>(1,371)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1 (Constant)</td>
<td>(.033, .045)</td>
<td>(.747, .457)</td>
<td>(.128, .081)</td>
<td>(.179, 1.582)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.150, .048)</td>
<td>(.248, -3.093)</td>
<td>(.002, .554)</td>
<td>(.1,806)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.047, .028)</td>
<td>(.136, -1.699)</td>
<td>(.090, .554)</td>
<td>(.1,806)</td>
</tr>
<tr>
<td>48</td>
<td>1 (Constant)</td>
<td>(.018, .018)</td>
<td>(.959, .338)</td>
<td>(.1,45)</td>
<td>(.1,45)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(-2.545, .807)</td>
<td>(.493, -3.154)</td>
<td>(.004, .991)</td>
<td>(.1,009)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.577, .467)</td>
<td>(.193, 1.237)</td>
<td>(.226, .991)</td>
<td>(.1,009)</td>
</tr>
<tr>
<td>51</td>
<td>1 (Constant)</td>
<td>(-.006, .012)</td>
<td>(-.502, .615)</td>
<td>(.037, .032)</td>
<td>(.043, 1.173)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.244, .062)</td>
<td>(.268, -3.927)</td>
<td>(.000, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.240, .144)</td>
<td>(-.114, -1.673)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>52</td>
<td>1 (Constant)</td>
<td>(.104, .043)</td>
<td>(2.412, .017)</td>
<td>(.244, .067)</td>
<td>(.268, -3.633)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.2,244)</td>
<td>(.268, -3.248)</td>
<td>(.000, .944)</td>
<td>(.1,059)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,40)</td>
<td>(.144, .144)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>53</td>
<td>1 (Constant)</td>
<td>(.038, .023)</td>
<td>(1.680, .095)</td>
<td>(.244, .067)</td>
<td>(.268, -3.633)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.2,44)</td>
<td>(.268, -3.248)</td>
<td>(.000, .944)</td>
<td>(.1,059)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,40)</td>
<td>(.144, .144)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>54</td>
<td>1 (Constant)</td>
<td>(.016, .019)</td>
<td>(8.34, .404)</td>
<td>(.052, .031)</td>
<td>(1,494, 1.679)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.2,44)</td>
<td>(.268, -3.248)</td>
<td>(.000, .944)</td>
<td>(.1,059)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,40)</td>
<td>(.144, .144)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>55</td>
<td>1 (Constant)</td>
<td>(.033, .032)</td>
<td>(1.023, .306)</td>
<td>(.066, .128)</td>
<td>(.014, .513)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.2,44)</td>
<td>(.268, -3.248)</td>
<td>(.000, .944)</td>
<td>(.1,059)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,40)</td>
<td>(.144, .144)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>56</td>
<td>1 (Constant)</td>
<td>(.132, .107)</td>
<td>(1.233, .220)</td>
<td>(.434, .344)</td>
<td>(.108, -1.261)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.352, .481)</td>
<td>(.063, -.731)</td>
<td>(.466, .997)</td>
<td>(.1,003)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,40)</td>
<td>(.144, .144)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>57</td>
<td>1 (Constant)</td>
<td>(.2,04)</td>
<td>(.000, .000)</td>
<td>(.1,116)</td>
<td>(.714)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.352, .481)</td>
<td>(.063, -.731)</td>
<td>(.466, .997)</td>
<td>(.1,003)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,40)</td>
<td>(.144, .144)</td>
<td>(.096, 1.000)</td>
<td>(.1,000)</td>
</tr>
<tr>
<td>58</td>
<td>1 (Constant)</td>
<td>(.094, .047)</td>
<td>(1.975, .052)</td>
<td>(.860, .298)</td>
<td>(.327, -2.891)</td>
</tr>
<tr>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>(.2,02)</td>
<td>(.081, -2.485)</td>
<td>(.016, .987)</td>
<td>(.1,013)</td>
</tr>
<tr>
<td></td>
<td>PPE/At-1</td>
<td>(.2,02)</td>
<td>(.081, -2.485)</td>
<td>(.016, .987)</td>
<td>(.1,013)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td>.003</td>
<td>.026</td>
<td>.132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>-.133</td>
<td>.049</td>
<td>-.198</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPE/At-1</td>
<td>-.040</td>
<td>.038</td>
<td>-.076</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>-.005</td>
<td>.023</td>
<td>.223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>.033</td>
<td>.124</td>
<td>.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPE/At-1</td>
<td>-.009</td>
<td>.031</td>
<td>-.027</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td>.230</td>
<td>.323</td>
<td>.710</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>-.441</td>
<td>.393</td>
<td>-.605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPE/At-1</td>
<td>-.767</td>
<td>1.028</td>
<td>-.402</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td>.129</td>
<td>.235</td>
<td>.549</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ΔREV-ΔREC)/At-1</td>
<td>-.636</td>
<td>1.499</td>
<td>-.462</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPE/At-1</td>
<td>-.219</td>
<td>.355</td>
<td>-.672</td>
</tr>
</tbody>
</table>

a. Dependent Variable: CA/At-1
Bijlage 7: Regressie met als afhankelijke variabele EM-proxy van Teoh et al.

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>51,441</td>
<td>9</td>
<td>5,716</td>
<td>138,012</td>
<td>.000^a</td>
</tr>
<tr>
<td>Residual</td>
<td>106,226</td>
<td>2565</td>
<td>.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>157,667</td>
<td>2574</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, TAX, INTASSETS, Age, ROA, LNAssets, Market Capitalisation

b. Dependent Variable: DA Teoh et al.

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>.355</td>
<td>.030</td>
<td></td>
</tr>
<tr>
<td>INTASSETS</td>
<td>-.091</td>
<td>.013</td>
<td>-1,113</td>
</tr>
<tr>
<td>LNAssets</td>
<td>-.004</td>
<td>.002</td>
<td>-0,036</td>
</tr>
<tr>
<td>ROA</td>
<td>.006</td>
<td>.000</td>
<td>.301</td>
</tr>
<tr>
<td>Age</td>
<td>.000</td>
<td>.000</td>
<td>-0,052</td>
</tr>
<tr>
<td>ΔSales</td>
<td>7,245E-10</td>
<td>.000</td>
<td>.024</td>
</tr>
<tr>
<td>TAX</td>
<td>.001</td>
<td>.012</td>
<td>.001</td>
</tr>
<tr>
<td>Market Capitalisation</td>
<td>5,152E-14</td>
<td>.000</td>
<td>.002</td>
</tr>
<tr>
<td>CFO/At-1</td>
<td>-.386</td>
<td>.012</td>
<td>-.536</td>
</tr>
<tr>
<td>LEV (VV/EV)</td>
<td>2,732E-18</td>
<td>.000</td>
<td>.005</td>
</tr>
</tbody>
</table>

a. Dependent Variable: DA Teoh et al.
Bijlage 8: Regressie met als afhankelijke variabele EM-proxy van DeAngelo

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.494a</td>
<td>.244</td>
<td>.242</td>
<td>.337819081</td>
<td>2,214</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, Age, Intangibles/Total assets, 0=low financial and tax alignment, 1 = high, LNAssets, Return on total assets, Market Capitalisation

b. Dependent Variable: TA-TA-1/At-1 DeAngelo

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>88,000</td>
<td>9</td>
<td>9,778</td>
<td>85,679</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>271,952</td>
<td>2383</td>
<td>,114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>359,953</td>
<td>2392</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LEV (VV/EV), CFO/At-1, ΔSales, Age, INTASSETS, TAX, LNAssets, ROA, Market Capitalisation

b. Dependent Variable: TA-TA-1/At-1 DeAngelo
Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td></td>
<td></td>
<td>.174</td>
</tr>
<tr>
<td>INTASSETS</td>
<td>-.156</td>
<td>.030</td>
<td>-.094</td>
</tr>
<tr>
<td>LNAssets</td>
<td>-.005</td>
<td>.004</td>
<td>-.026</td>
</tr>
<tr>
<td>ROA</td>
<td>.005</td>
<td>.001</td>
<td>.161</td>
</tr>
<tr>
<td>Age</td>
<td>.000</td>
<td>.000</td>
<td>-.046</td>
</tr>
<tr>
<td>ΔSales</td>
<td>-1.928E-10</td>
<td>.000</td>
<td>-.004</td>
</tr>
<tr>
<td>TAX</td>
<td>-.005</td>
<td>.020</td>
<td>-.005</td>
</tr>
<tr>
<td>Market Capitalisation</td>
<td>5.956E-13</td>
<td>.000</td>
<td>.018</td>
</tr>
<tr>
<td>CFO/At-1</td>
<td>-.575</td>
<td>.022</td>
<td>-.496</td>
</tr>
<tr>
<td>LEV (VV/EV)</td>
<td>-5.674E-18</td>
<td>.000</td>
<td>-.006</td>
</tr>
</tbody>
</table>

a. Dependent Variable: TA-TA-1/At-1 DeAngelo
Bijlage 9: Correlatiematrix

<table>
<thead>
<tr>
<th></th>
<th>Intangibles/Total assets</th>
<th>ROA</th>
<th>CFO</th>
<th>ΔSales</th>
<th>LNAssets</th>
<th>Age</th>
<th>LEV (VV/EV)</th>
<th>TAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangibles/Total assets Pearson Correlation</td>
<td>1,000</td>
<td>-.012</td>
<td>-.004</td>
<td>.033**</td>
<td>-.024*</td>
<td>-.019</td>
<td>-.002</td>
<td>.003</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.274</td>
<td>.706</td>
<td>.010</td>
<td>.028</td>
<td>.095</td>
<td>.873</td>
<td>.827</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8561</td>
<td>8507</td>
<td>8104</td>
<td>6341</td>
<td>8561</td>
<td>8140</td>
<td>8527</td>
<td>4949</td>
</tr>
<tr>
<td>ROA Pearson Correlation</td>
<td>-.012</td>
<td>1,000</td>
<td>.073**</td>
<td>.015</td>
<td>.111**</td>
<td>.115</td>
<td>.000</td>
<td>.038**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.706</td>
<td>.000</td>
<td>.208</td>
<td>.000</td>
<td>.005</td>
<td>.014</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8104</td>
<td>8864</td>
<td>8896</td>
<td>6788</td>
<td>8896</td>
<td>8442</td>
<td>8867</td>
<td>4935</td>
</tr>
<tr>
<td>CFO Pearson Correlation</td>
<td>-.004</td>
<td>.073**</td>
<td>1,000</td>
<td>.090**</td>
<td>.308**</td>
<td>-.031*</td>
<td>.026*</td>
<td>.052**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.706</td>
<td>.000</td>
<td>.208</td>
<td>.000</td>
<td>.005</td>
<td>.014</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8104</td>
<td>8864</td>
<td>8896</td>
<td>6788</td>
<td>8896</td>
<td>8442</td>
<td>8867</td>
<td>4935</td>
</tr>
<tr>
<td>ΔSales Pearson Correlation</td>
<td>.033**</td>
<td>.015</td>
<td>.090**</td>
<td>1,000</td>
<td>.130**</td>
<td>-.018</td>
<td>.000</td>
<td>-.014</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.010</td>
<td>.208</td>
<td>.000</td>
<td>.000</td>
<td>.133</td>
<td>.942</td>
<td>.432</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6341</td>
<td>7094</td>
<td>6788</td>
<td>7117</td>
<td>7117</td>
<td>6823</td>
<td>7066</td>
<td>3199</td>
</tr>
<tr>
<td>LNAssets Pearson Correlation</td>
<td>-.024*</td>
<td>.111**</td>
<td>.308**</td>
<td>.130**</td>
<td>1,000</td>
<td>-.045**</td>
<td>.068**</td>
<td>.142**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.028</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8561</td>
<td>9584</td>
<td>8896</td>
<td>7117</td>
<td>9656</td>
<td>9183</td>
<td>9603</td>
<td>5618</td>
</tr>
<tr>
<td>Age Pearson Correlation</td>
<td>-.019</td>
<td>.115**</td>
<td>-.031**</td>
<td>-.018</td>
<td>-.045**</td>
<td>1,000</td>
<td>.014</td>
<td>.053**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.095</td>
<td>.000</td>
<td>.005</td>
<td>.133</td>
<td>.000</td>
<td>.178</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8140</td>
<td>9111</td>
<td>8442</td>
<td>6823</td>
<td>9183</td>
<td>9184</td>
<td>9130</td>
<td>5343</td>
</tr>
<tr>
<td>LEV (VV/EV) Pearson Correlation</td>
<td>-.002</td>
<td>.000</td>
<td>.026*</td>
<td>.000</td>
<td>.068**</td>
<td>.014</td>
<td>1,000</td>
<td>.046**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>,.873</td>
<td>.992</td>
<td>.014</td>
<td>.942</td>
<td>.000</td>
<td>.178</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8527</td>
<td>9531</td>
<td>8867</td>
<td>7066</td>
<td>9603</td>
<td>9130</td>
<td>9603</td>
<td>5565</td>
</tr>
<tr>
<td>TAX</td>
<td>Pearson Correlation</td>
<td>Sig. (2-tailed)</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.003</td>
<td>.038**</td>
<td>.052**</td>
<td>-.014</td>
<td>.142**</td>
<td>.053**</td>
<td>.046**</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>.827</td>
<td>.005</td>
<td>.000</td>
<td>.432</td>
<td>.000</td>
<td>.000</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4949</td>
<td>5552</td>
<td>4935</td>
<td>3199</td>
<td>5618</td>
<td>5343</td>
<td>5565</td>
<td>6269</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).