Structural insights into extremozymes:
a study of Sulfolobus acidocaldarius and Moritella
profunda aspartate carbamoyltransferase, and of
Pseudoalteromonas haloplanktis xylanase pXyl

Dirk De Vos

Proefschrift voorgelegd tot het bekomen van de graad van
Doctor in de Wetenschappen – richting Biochemie

Promotor: Prof. Dr. J. Van Beeumen
Academiejaar 2005-2006
Word of thanks

I would like to express my sincere gratitude to everyone who was involved directly or indirectly in the realization of this thesis.

In the first place my promoter Prof. Van Beeumen for offering me the opportunity to perform this work at his lab, and for the support whenever needed.

I would also like to thank the FWO-Vlaanderen for the doctoral grant I have benefited from.

I am greatly indebted to Filip Van Petegem for introducing me into the “art” (according to some) of crystallography and for his help and encouragement, even after leaving the lab.

I wish to thank all those at the Laboratory for Protein Biochemistry and Protein Engineering for their support and kindness. Thanks, Kris and Frank for the mass spectrometric analyses, Isabel for the N terminal sequencing, and Wesley for the computer-related help. Savvas, I have appreciated your company, as much as your efforts in making life easier at the crystallography unit. I am indebted to Paco for his eternal willingness to help out on all sorts of occasions. Jan, thanks for the pleasant company and support, for instance during those first stressful expeditions to synchrotron facilities. Bjorn, thank you for your aid, availability and experience. Your criticism has been of great help. I especially think of Bjorn, Jan, Kris and Paco for their friendship. The numerous talks, discussions and laughs were worth enduring hundreds of “croques madames/spéciales” for.

I am most thankful to the people from other groups with whom I had the pleasure of collaborating:
- Thanks to Prof. Glansdorff for the supply of the ATCases.
- Thanks to Prof. Gerday, Prof. Feller and Tony Collins for the collaborations on the xylanase. Thanks Tony, for your enthusiasm and dedication made it a real pleasure to work on this subject.
- Thanks to Prof. Claeyssens and Wim Nerinckx for helping out with the docking studies. Thanks Wim for the lively discussions on glycosidase mechanisms.
- Thanks to Tony Aerts for collaboration on the ultracentrifugation studies.

Thanks Gert for the support and friendship ever since our first year in Ghent.

I am deeply grateful to my family for supporting and encouraging me. I owe a special word of thanks to my sweetheart Ilse for putting up with me, esp. during the last months and for her help with the realization of this thesis. A big kiss also for Kobe for making me smile no matter when.

Ghent, February 2006
Table of contents

Table of contents ... 1
Preface .. 2
Voorwoord ... 4

Part I Introduction .. 6
1 Extremophiles .. 7
2 Proteins at extremes ... 8
 2.1 Temperature dependence of protein stability ... 9
 2.2 Adaptation strategies of (hyper)thermophilic proteins 12
 2.3 Cold enzymes: stability - flexibility - activity ... 17
 2.4 Proteins under pressure .. 21
 2.5 Additional remarks: role of the cosolvent, allosteric regulation 24

Part II ATCase ... 26
3 Introduction to ATCase ... 27
 3.1 ATCases: function and classification .. 27
 3.2 *E. coli* ATCase is a paradigm for allosteric regulation 28
 3.3 Extremophilic ATCases .. 31
4 Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon *Sulfolobus acidocaldarius* ... 34
5 Expression, purification, crystallization and preliminary X-ray crystallographic studies of a cold-adapted aspartate carbamoyltransferase from *Moritella profunda* ... 49
6 Structural basis for cold activity and regulation ... 53
7 Supplementary experiments on the allosteric regulation of *S. acidocaldarius* and *M. profunda* aspartate carbamoyltransferase ... 84

Part III pXyl .. 91
8 Introduction to pXyl ... 92
 8.1 Xylanases and their substrate .. 92
 8.2 pXyl .. 94
9 Study of the active site residues of a glycoside hydrolase family 8 xylanase........... 96
10 Oligosaccharide binding in family 8 glycosidases: crystal structures of active site mutants of the β-1,4-xylanase pXyl from *Pseudoaltermonas haloplanktis* in complex with substrate and product ... 108

Overall conclusions and future prospects .. 132
References .. 135
Publications ... 155
Preface

In this thesis a compilation is presented of a number of studies aimed to unravel the structure-function relationships of three enzymes from extremophilic micro-organisms: the aspartate carbamoyltransferases (ATCases) from the hyperthermophilic archaeon *Sulfolobus acidocaldarius* and from the psychrophilic deep-sea bacterium *Moritella profunda*, and a glycoside hydrolase family 8 xylanase (termed pXyl) from the psychrophilic bacterium *Pseudoalteromonas haloplanktis*. What connects these enzymes is that they face the common challenge of optimally performing their function at so-called ‘extremes’ of life. Therefore, in the first part of this work an attempt is made to describe the influence of the environmental extremes considered relevant to these enzymes and their adaptational strategies towards these conditions. Given their obviously distinct structural, functional and physiological character, the two ATCases are dealt with in a section (Part II) separate from that of the xylanase (Part III). The first chapter of each part consists of a brief introduction that allows the reader to catch up with the following chapters which give a description of the experiments, results and conclusions of the studies, mainly in the form of manuscripts that have been published, are submitted, or are in preparation for submission.

Part I gives a general introduction into the diverse types of extremophiles and defines which environmental extremes are relevant to their proteins. Stability, probably the most intensively studied property in relation to protein adaptation, is discussed in sufficient depth to illustrate our current understanding of molecular adaptation to high and low temperatures. The influence of temperature on enzyme activity and the relationship between activity, flexibility and stability is shortly debated. Finally, the potential role for pressure in enzyme adaptation is discussed.

Part II deals with the ATCase from *S. acidocaldarius* and from *M. profunda*. The first chapter of this section is a short introduction into the physiological background of the enzyme, into the *Escherichia coli* ATCase as an allosteric model system, and gives an overview of extremophilic ATCases characterized to date. Chapter 4 consists of the paper “Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon *Sulfolobus acidocaldarius*”, presents the results of the structural description and molecular analysis of this enzyme, and compares it to the previously determined crystal structures of the *E. coli* enzyme in its main allosteric states and of the *Pyrococcus abyssi* R state catalytic trimer. Chapter 5 is a mainly technical paper entitled: “Expression, purification, crystallization and preliminary X-ray crystallographic studies of a cold-adapted aspartate carbamoyltransferase from *Moritella profunda*”. Chapter 6 is a manuscript in preparation entitled “Structural basis for cold regulation: biochemical properties and crystal structure of aspartate carbamoyltransferase from the psychrophilic bacterium *Moritella profunda*”, and presents the results of the functional characterization, structure determination and molecular analysis of the recombinant *M. profunda* ATCase. Chapter 7 provides a description of supplementary experiments on the allosteric regulation of the *S. acidocaldarius* and *M. profunda* ATCases. Preliminary results on the crystal structures of effector complexes and ultracentrifugation (sedimentation velocity) experiments probing the quaternary structural changes of both ATCases are presented within.
Part III deals with a glycoside hydrolase family 8 xylanase, pXyl, from *P. haloplanktis*. Chapter 8 provides a short introduction in xylanases and their substrate xylan, and describes the functional and structural characteristics of this cold-adapted enzyme. Chapter 9 consists of the recently published research paper: “Study of the active site residues of a glycoside hydrolase family 8 xylanase”. Whereas the crystal structure of the native enzyme was previously determined at our lab, a detailed structural analysis of several active site mutants is now presented in combination with their kinetic and biophysical properties. The principal aim of this study was to determine the identity of the catalytic proton donor and proton acceptor. Finally, chapter 10 consists of a manuscript, submitted for publication, entitled: “Oligosaccharide binding in family 8 glycosidases: crystal structures of active site mutants of the β-1,4-xylanase pXyl from *Pseudoalteromonas haloplanktis* in complex with substrate and product”. This paper further explores the catalytic mechanism and substrate specificity of pXyl.

At the end of this thesis, a general conclusion and proposals for future work on these topics will be formulated.
Voorwoord

In dit proefschrift worden een aantal studies voorgesteld met als doel het ontrafelen van de structuur-functie verwantschap van drie enzymen van extremofiele micro-organismen: de aspartate-carbamoyltransferases (ATCasen) van de hyperthermofiele archaeabacterie *Sulfolobus acidocaldarius* en de psychrofiele diepzeebacterie *Moritella profunda*, en een xylanase van de glycosidehydrolase-familie 8 (genaamd pXyl) van de psychrofiele bacterie *Pseudoalteromonas haloplanktis*. Het verband tussen deze enzymen is de gemeenschappelijke uitdaging optimaal te functioneren in zogenaamde ‘extreme’ leefomstandigheden. Daarom wordt in het eerste deel van dit werk gepoogd de invloed van extreme leefomstandigheden die relevant zijn voor deze enzymen te beschrijven, alsook hun strategieën om zich aan te passen aan deze omstandigheden. Gezien hun duidelijke verschillen in structuur, functie en fysiologische rol, worden de twee ATCasen in een apart onderdeel (Part II) behandeld, naast het xylanase (Part III).

Het eerste hoofdstuk van beide delen is opgevat als een korte inleiding tot de daarop volgende hoofdstukken, die een beschrijving geven van de experimenten, resultaten en besluiten van het onderzoek. Dit gebeurt voornamelijk onder de vorm van manuscripten die reeds gepubliceerd zijn, of ingediend voor publicatie, of in voorbereiding.

Deel I geeft een algemene inleiding in de verschillende types extremofielen en definieert de types van extreme leefomstandigheden die relevant zijn voor hun eiwitten. Stabiliteit, waarschijnlijk de meest intensief bestudeerde eigenschap in verband met eiwitadaptatie, wordt grondiger besproken om ons huidig begrip van moleculaire aanpassing aan hoge en lage temperaturen te duiden. De invloed van temperatuur op enzymactiviteit en het verband tussen activiteit, flexibiliteit en stabiliteit wordt kort besproken. Tenslotte wordt de potentiële rol van druk in enzymadaptatie toegelicht.

Deel II bespreekt de ATCasen van *S. acidocaldarius* en *M. profunda*. Het eerste hoofdstuk van dit onderdeel (Hoofdstuk 3) is een korte inleiding in de fysiologische achtergrond van het enzym, in het *Escherichia coli* ATCase als allosterisch modelsysteem, en geeft een overzicht van de extremofiele ATCasen die tot op heden gekarakteriseerd zijn. Hoofdstuk 4 bestaat uit de publicatie “Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon *Sulfolobus acidocaldarius*”, en stelt de resultaten van de structurele beschrijving en moleculaire analyse van dit enzym voor, naast een vergelijking met de eerder bepaalde kristalstructuur van het *E. coli* enzyme in zijn belangrijkste allosterische toestanden en met de R toestand van de katalytische trimeer van *Pyrococcus abyssi*. Hoofdstuk 5 bestaat uit een publicatie van technische aard met als titel: “Expression, purification, crystallization and preliminary X-ray crystallographic studies of a cold-adapted aspartate carbamoyltransferase from *Moritella profunda*”. Hoofdstuk 6 is een manuscript in voorbereiding, getiteld “Structural basis for cold regulation: biochemical properties and crystal structure of aspartate carbamoyltransferase from the psychrophilic bacterium *Moritella profunda*”, en geeft de resultaten van de functionele karakterisering, structuurbepaling en moleculaire analyse van het recombinant *M. profunda* ATCase. Hoofdstuk 7 bevat een beschrijving van aanvullende experimenten met betrekking tot de allosterische regulatie van de *S. acidocaldarius* en *M. profunda* ATCasen. Hierin worden ook voorlopige onderzoeksresultaten voorgesteld i.v.m.
kristalstructuren van effectorcomplexen en ultracentrifugatie- (sedimentatiesnelheids-) experimen ten die de quaternaire structuur-veranderingen van beide ATCasen nagaan.

Deel III handelt over een glycosidehydrolase-familie 8 xylanase, pXyl, van *P. haloplanktis*. Hoofdstuk 8 geeft een korte inleiding over xylanases en hun substrate, xylaan, en beschrijft de functionele en structurele karakteristieken van dit enzym aangepast aan koude omstandigheden. Hoofdstuk 9 omvat een recent gepubliceerd artikel: “Study of the active site residues of a glycoside hydrolase family 8 xylanase”. Hoewel de kristalstructuur van het natief enzym reeds bepaald werd op ons labo, wordt nu een gedetailleerde structurele analyse voorgesteld van verschillende mutanten van het actief centrum, gecombineerd met hun kinetische en biofysische eigenschappen. Het voornaamste doel van dit onderzoek was het bepalen van de identiteit van de katalytische proton donor en proton acceptor. Hoofdstuk 10 tenslotte omvat een manuscript, ingediend voor publicatie en getiteld: “Oligosaccharide binding in family 8 glycosidases: crystal structures of active site mutants of the β-1,4-xylanase pXyl from *Pseudoalteromonas haloplanktis* in complex with substrate and product”. Dit artikel gaat dieper in op het katalytisch mechanisme en de substraatspecificiteit van pXyl.

Op het einde van dit proefschrift formuleren we een algemeen besluit en doen we voorstellen voor toekomstig onderzoek.
Part I
Introduction
1 Extremophiles

An extremophile (terminology from Macelroy, 1974) is an organism that thrives in an extreme environment. ‘Extremes’ typically include physical extremes (for example, temperature, pressure or radiation) and geochemical extremes (for example: salinity, pH, dessication, oxygen species or redox potential). Yet, it could be argued that extremophiles should include organisms thriving in biological extremes (for example, nutritional extremes or extremes of population density). What one classifies as ‘extreme’ inevitably requires a definition of ‘normal’ which in this case perhaps tends to be anthropocentric. While intuitively acceptable, it presents a potential pitfall, i.e. the misconception that these organisms have had to develop adaptive strategies to colonize their extreme habitats, implying a derived character. Indeed, from an evolutionary perspective it may well be that some of these environmental conditions are more similar to those found on primitive Earth. E.g. throughout most of the early history of life the Earth has been anaerobic. Until relatively recently a high-temperature origin of life was widely favoured because hyperthermophiles (maximum growth above 80 °C) are claimed to be the oldest organisms on the Earth (Levy and Miller, 1998; Xu and Glnsdorff, 2002). Considerations like these have to be kept in mind, particularly when trying to recognize molecular mechanisms of adaptation.

The focus of this work is the study of enzymes originating from three extremophilic micro-organisms. A glycoside hydrolase family 8 (GH-8) xylanase from Pseudoaltermonas haloplanktis, and the aspartate carbamoyltransferases (ATCases) from Moritella profunda and Sulfolobus acidocaldarius. Firstly, P. haloplanktis, isolated from the Antarctic, and M. profunda, isolated from deep Atlantic sediments, are both Gram-negative psychrophilic (‘cold-loving’), moderately halophilic (‘salt loving’) bacteria. M. profunda, furthermore, is a piezophile, meaning it thrives at high pressures. S. acidocaldarius is a hyperthermophilic, acidophilic (low pH-loving) archaeon, originally isolated from a sulphur-rich hot spring in Yellowstone National Park, USA. All three organisms thrive in multiple ‘extreme’ conditions and can therefore be called ‘polyextremophiles’.

Temperature creates a series of challenges, from the structural damage brought about by ice crystals at one extreme, to the denaturation of biomolecules at the other. The solubility of gasses is correlated with temperature, creating problems at high temperature for aquatic organisms requiring O2 or CO2. Temperatures approaching 100 °C normally denature proteins and nucleic acids, and increase the fluidity of membranes to lethal levels. Chlorophyl degrades above 75 °C, excluding photosynthesis. Yet, in nature, thermal preferences range from hyperthermophilic (maximum growth >80 °C) to psychrophilic (maximum growth <15 °C). The most hyperthermophilic organisms are archaea, with Pyrolobus fumarii (Crenarchaeota) being capable of growing at the highest temperatures of up to 113 °C (Blochl et al., 1997). Representatives of all major taxa inhabit temperatures just below 0 °C. Many microbes and cell lines can be preserved successfully at –196 °C (liquid nitrogen), but the lowest recorded temperature for active microbial communities is substantially higher, at –18 °C (Clarke, 2003). At low temperatures water freezes. The resulting ice crystals can rip cell membranes, and solution chemistry stops in the absence of liquid water.
Pressure challenges life because it forces volume changes. Pressure compresses the packing of lipids, resulting in decreased membrane fluidity (Bartlett and Bidle, 1999). If a chemical reaction results in an increase in volume, as often is the case, it will be inhibited by an increase in pressure (Van Dover, 2000). High pressure can damage DNA and proteins in particular, so survival necessitates avoidance of damage or high repair rates. The Mariana trench is the world’s deepest sea floor at 10,898 m, yet it harbours organisms that can grow at standard temperature and pressure. It has also yielded obligatory piezophilic species that can grow at 70 to 80 MPa (~700–800 times atmospheric pressure), but not below 50 MPa (Kato et al., 1998).

Organisms live within a range of salinities, from essentially distilled water to saturated salt conditions. Osmophily refers to the osmotic aspects of life at high salt concentrations, especially turgor pressure, cellular dehydration and dessication. Halophily refers to the ionic requirements for life at high salt concentrations. Although these phenomena are physiologically distinct, they are environmentally linked. Thus a halophile must cope with osmotic stress.

Acidophiles thrive at low pH. The archaeal iron-oxidizing Ferroplasma acidarmanus has been described growing at pH 0 in acid mine drainage, thriving in a brew of sulphuric acid and high levels of copper, arsenic, cadmium and zinc, with only a cell membrane and no cell wall (Edwards et al., 2000). Indeed, probably the most critical factor for acidophily is the cytoplasmic membrane, as most of these organisms maintain their cytoplasm near neutrality (Rothschild and Mancinelli, 2001) in order to prevent destruction of acid-labile macromolecules of the cell. Consequently, when studying the aspartate carbamoyltransferase (ATCase) from S. acidocaldarius adaptation to low pH will, in principle, not have to be considered as it is an intracellular enzyme.

2 Proteins at extremes

While realizing that other cell components (membrane lipids, DNA, …) need to be equally well adapted to life in these conditions, we will focus our attention on a single, yet essential, cellular constituent of the types of extremophiles that are relevant to this study, i.e. their proteins and more specifically their enzymes. Like proteins in general, enzymes have a three-dimensional fold that is only marginally stable and is, among other factors, susceptible to changes in temperature, pressure and salinity. Rather than being a single static rigid structure, all the atoms in the folded state are subject to small temperature-dependent fluctuations. The molecule as a whole undergoes breathing and every atom is constantly in motion. In addition to these small breathing movements there can also be larger conformational changes which are usually essential for function (e.g. in enzymes). Stability, hence, is only one aspect of protein adaptation. Enzymes are presented with an extra challenge. Firstly, they have to achieve appropriate values of catalytic activity. Due to the complexity of any catalytic activity, the particular influence of each rate constant on the reaction velocity depends in turn on the values of the rest of the constants, through an equally complicated relationship. Therefore the achievement of appropriate values of enzyme activity is a question of multivariable optimization (Melendez-Hevia et al., 1994). Most frequently, the role of enzyme activity is the maintenance of a steady flux of products (Cornish-Bowden, 1976). In other cases (e.g. ATCase) the enzyme plays a more central role in the control or regulation of a metabolic
pathway, and therefore its activity is intricately regulated by the presence or balance of one or more effector molecules which trigger the switching between the different states that make up an allosteric enzyme system. One thereby has to bear in mind that adaptive changes of an enzyme are always context-dependent in that any enzyme is just a tool of one or more metabolic pathways (Dykhuizen et al., 1987; Fell, 1997).

2.1 Temperature dependence of protein stability

Stability is probably the most well-studied aspect of enzyme adaptation to extreme conditions, more specifically in relation to extremes of temperature. Protein stability curves describe the temperature-dependent variation of protein stability, i.e. the Gibbs free energy of unfolding ($\Delta G = G_u$ (unfolded or denatured state) - G_f (native folded state)) in function of the absolute temperature (T). For a protein or a protein domain which (i) folds in a reversible two-state manner, (ii) is stable over a temperature range, and (iii) has a constant (greater than zero) heat capacity change (ΔC_p) in this range (which was established as a valid assumption by Privalov and Khechinashvili (1974)), the following equation can be used to plot its stability

$$\Delta G = \Delta H - T \Delta S = \Delta H^0 - T \Delta S^0 + \Delta C_p [T - T^0 - T \ln(T/T^0)],$$

where T^0 is any reference temperature and ΔS^0 and ΔH^0 are the entropy and enthalpy changes at that temperature, respectively. The three parameters ΔC_p, ΔS^0 and ΔH^0 in this equation are sufficient to establish the course of the free energy over the temperature range for which the third postulate is valid. It follows that, for all of the proteins that follow a two-state transition, there are two transition temperatures where $\Delta G(T) = 0$. These are T_G and T'_G, termed the heat- and cold-denaturation transition temperatures, respectively.

To microscopically understand the macroscopic parameters of protein stability Makhatadze and Privalov (1995), in a highly authoritative paper, dissect the free energy of unfolding into separate enthalpic and entropic contributions from nonpolar (including aliphatic and aromatic amino acid residues, denoted with subscript ‘npl’) and polar groups (polar residues, denoted with ‘pol’). A further distinction is made between (i) net hydration effects (denoted with ‘hyd’) resulting from the transfer of a molecule from a fixed position in an ideal gas phase into a fixed position in (liquid) water, (ii) internal noncovalent interactions, and (iii) a conformational entropy term (denoted with ‘cnf’). The internal noncovalent interactions, contributing to the enthalpy of unfolding in vacuum, are all electrostatic in nature and present a combination of Coulombic, dipole, quadrupole, etc. interactions (Sharp and Honig, 1990). Nevertheless, in considering the interactions in proteins, it is convenient to classify them as salt links, hydrogen bonds, weak polar, and van der Waals interactions. Salt links (superscript ‘SL’)) includes the Coulombic interactions between closely located opposite-charged groups (Barlow and Thornton, 1983). Hydrogen bonds (superscript ‘HB’) include the interactions between electronegative atoms involving hydrogen (Baker and Hubbard, 1984). The interactions between the slightly polar aromatic groups are classified as weak polar interactions (Burley and Petsko, 1988; superscript WP). Van der Waals interactions (superscript ‘vdW’) are the London dispersion forces between induced dipoles. Because dispersion forces are proportional to the polarizability of groups, van der Waals interactions must be especially large between aliphatic groups (Makhatadze and Privalov, 1995).
The overall enthalpy of protein unfolding in water can then be represented as follows:

$$\Delta H = (\Delta H^{HB} + \Delta H^{SL} + \Delta H^{\text{hyd}}_{\text{pol}}) + (\Delta H^{vdW} + \Delta H^{WP} + \Delta H^{\text{hyd}}_{\text{npl}}).$$

The enthalpy of hydration proceeds from direct noncovalent interactions with water, and also from the rearrangement of the hydrogen-bonding network of water. As temperature increases, the van der Waals (and weak polar) interactions between nonpolar groups do not change much, but the enthalpy of hydration of these groups increases (becomes less favourable). Therefore, at high temperatures, the enthalpic effect of interactions between nonpolar groups in the interior of a native protein overbalances the hydration enthalpy of these groups on protein unfolding. The positive enthalpy of interaction between polar groups in a protein does not depend significantly on temperature, while the negative hydration enthalpy of these groups increases in magnitude linearly with increasing temperature. Therefore, above a given temperature, the hydration enthalpy of polar groups overcompensates the enthalpy of hydrogen bonding between polar groups. The stronger interaction of polar groups with water than with each other is in accord with the observation that the partial volumes of polar side chains are larger in proteins than in water (Harpaz et al., 1994).

The overall entropy of protein unfolding in water is comprised of three terms: the conformational (also called configurational) entropy, ΔS^{cnf}, the entropy of hydration for polar groups, $(\Delta S^{\text{hyd}})_{\text{pol}}$, and the entropy of hydration for nonpolar groups, $(\Delta S^{\text{hyd}})_{\text{npl}}$.

$$\Delta S = \Delta S^{\text{cnf}} + (\Delta S^{\text{hyd}})_{\text{pol}} + (\Delta S^{\text{hyd}})_{\text{npl}}.$$

Calculation of these terms (per mole of amino acid residues) for several model proteins shows that the negative hydration entropies of nonpolar groups converge to zero at about 125 °C (Makhatadze and Privalov, 1995). The negative hydration entropies of polar groups slightly diverge and increase in magnitude with increasing temperature. Despite many doubts (Dill, 1990; Williams, 1991), it appears that the contribution of hydrogen bonds to the stabilization of protein structure is significant, due (to a large extent) to this negative entropy of hydration of polar groups (Privalov and Makhatadze, 1993). According to Shirley et al. (1992) who studied ribonuclease T1 mutants, and Pace et al. (1996) who analyzed hydrogen bonding mutants in a number of proteins, the contribution of the hydrogen bond to stabilization of protein structure is between 3 and 7 kJ/mol (i.e. comparable to hydrophobic interactions). This contrasts with the traditional view of Kauzmann (1959) who regards hydrophobic interactions as the primary source of stability and hydrogen bonding as the source of specificity. The positive (favourable for unfolding) conformational entropies do not change much with an increase in temperature (Makhatadze and Privalov, 1995).

In considering the hydrophobic effect in proteins, the entropy of association of nonpolar groups on protein folding is usually assigned to the conformational entropy of the polypeptide chain. Therefore, the effect which we can regard as a hydrophobic interaction (denoted with ‘HPH’) in proteins should include only the enthalpy of the van der Waals interactions between nonpolar groups and the Gibbs energy of hydration of these groups:

$$\Delta G^{\text{HPH}} = \Delta G^{\text{hyd}} + \Delta H^{vdW}.$$
At room temperature the enthalpy of hydration of nonpolar groups becomes equal in magnitude and opposite in sign to the enthalpy of van der Waals interactions between these groups. These two enthalpic effects compensate each other, and it is only the entropy of hydration of nonpolar groups which contributes to the Gibbs energy of their transfer into water, i.e., to the magnitude of the hydrophobic effect at this temperature. At high temperature (around 75 °C), the entropy of hydration of nonpolar groups decreases to zero and Gibbs energy of the hydrophobic effect becomes completely enthalpic (Baldwin, 1986; Privalov and Gill, 1988). The dual character of the hydrophobic effect is nicely illustrated in a study by Eriksson et al. (1992) on six “cavity-creating” mutants in T4 lysozyme. This study demonstrates that the energy, associated with the replacement of a buried nonpolar residue by a less bulky nonpolar residue consists of two parts. The first part is constant and presumed to depend only on the identities of the two amino acids being compared. Physically, this can be considered as the difference in hydration energy. The second part of the change in protein stability depends on the context within the three-dimensional structure and the way in which the protein adjusts in response to the substitution, which can be considered as resulting from the removal of favourable van der Waals contacts.

From the less traditional (and more convenient) viewpoint of separating hydration effects and intramolecular interactions, Makhatadze and Privalov (1995) conclude that in spite of the positive contribution of hydration of nonpolar groups (aromatic not included according to Makhatadze and Privalov, 1995), hydration effects are destabilizing the compact native state, and this effect increases with decreasing temperature. The destabilizing action also comes from a thermal dissipative force, which is proportional to the gain of conformational entropy on protein unfolding and the absolute temperature – $T \Delta S_{\text{cnf}}$. This negative force thus decreases with temperature. The destabilizing effects are then counterbalanced by enthalpic interactions between the groups tightly packed in the protein interior, which do not depend significantly on temperature.

Kumar et al. (2001) propose a two-state molecular model of the water structure which is useful to understand the temperature dependence of protein stability. In such a model, water consists of different dynamically transforming intermolecular hydrogen-bonding types (Vedamuthu et al., 1994; Robinson and Cho, 1999). The first one is the enthalpically favoured, “normal” icelike, tetrahedrally connected hexagonal hydrogen bonding type, with optimal hydrogen-bonding networks. The second is the entropically favourable, enthalpically unfavourable, highly fluctuating liquid form. At high temperatures, the denser liquid types dominate, with a fluctuating gradient of interconverting hydrogen-bonding types from low to high temperatures. The water structure is dynamic, with the hydrogen-bonds continuously broken and created on a very short time scale (Ruelle and Kesselring, 1998).

Below the cold-denaturation temperature ($T < T'_{\text{c}}$), the fraction of normal hexagonal ice in solvent water increases and the protein denatures because of the loss of the hydrophobic effect. In the denatured state of the protein, the exposure of the nonpolar surface promotes optimally-ordered hydrogen-bond formation at the first shell of the water molecules, propagating to the outer shells. The entropy contribution to the Gibbs free energy change is negative. However, this effect is overcome by the optimized hydrogen-bond networks resulting in a reduced enthalpy.
At temperatures above the protein heat-denaturation temperature \((T > T_G)\), the protein denatures because of an increase in the entropy of the system. Liquid water dominates, with favourable entropy and unfavourable enthalpy terms. Order cannot propagate in highly fluctuating water molecules. The increase in the entropy of the system overrides the enthalpically unfavourable exposure of the nonpolar surface area of the protein, and the denatured state of the protein is energetically favourable. While giving an accurate description of the hydration effects of nonpolar groups, it ignores the role of the growth in hydration of polar groups with decreasing temperature (Makhatadze and Privalov, 1995). The main difficulty appears to be the difference in temperature dependencies of the hydration enthalpy and entropy of polar groups compared to nonpolar groups (first noted by Edsall, 1935), or in other words: why do the heat capacity increments of hydration of these groups have opposite signs. This finding suggests that the presence of aliphatic groups in water intensifies its ice-like structure, while the polar groups reorganize the water structure. Apparently this is achieved more readily at higher temperatures for polar groups.

2.2 Adaptation strategies of (hyper)thermophilic proteins

After the discovery of the first hyperthermophilic bacterium (Brock et al., 1972), studies of proteins extracted from these microorganisms showed that they retain their thermal resistance after purification, suggesting that this property is intrinsic to protein structure, independent of the presence of some particular compounds produced in the microorganism (although some stabilizing factors as polyamines and ectoines, so called intrinsic factors, have been found occasionally in some extremophiles, Lippert and Galinski, 1992). A further confirmation of the intrinsic thermostability of the proteins from extremophiles was obtained by the production of a thermoactive and thermostable recombinant protein in a mesophilic host. Thermotolerance was thus encoded in the genetic blueprint and (as the same 20 canonical are found in these organisms) could be ascribed to the presence of a different and/or increased number of weak interactions that are essential for the stability of the native three-dimensional structure (Tanaka et al., 1981; Jaenicke, 1991).

The high level of similarity encountered in the core of mesophilic and hyperthermophilic protein homologues suggests that even mesophilic proteins are packed almost as efficiently as possible, and that there is not much room left for stabilization inside the protein core. Stabilizing interactions are often found in the less conserved areas of the protein. Enough experimental evidence (e.g. sequence, mutagenesis, structure, and thermodynamics) has been accumulated on hyperthermophilic proteins to conclude that no single mechanism is responsible for their remarkable stability. Increased stability must be found, instead, in a small number of highly specific mutations that often do not obey any obvious traffic rules (Vieille and Zeikus, 2001).

Protein amino acid composition has long been thought to be correlated to its thermostability. The first statistical analyses comparing amino acid compositions in mesophilic and thermophilic proteins indicated a trend towards substitutions such as Gly \(\rightarrow\) Ala and Lys \(\rightarrow\) Arg. A higher alanine content in thermophilic proteins was supposed to reflect the fact that Ala is the best helix-forming residue (Argos et al., 1979). Nevertheless, the comparison of residue contents in hyperthermophilic and mesophilic proteins based on genome sequences of mesophilic and hyperthermophilic organisms shows some general
trends. More charged residues are found in hyperthermophilic proteins than in mesophilic proteins, mostly at the expense of uncharged polar residues (Cambillau and Claverie, 2000). Hyperthermophilic proteins also contain slightly more hydrophobic and aromatic residues than mesophilic proteins do (Vieille and Zeikus, 2001). These data obtained from genome sequencing cannot be generalized, since large variations exist among hyperthermophilic genomes themselves. Thus, a bias in a hyperthermophilic protein amino acid composition might often be evolutionary relevant, rather than being an indication of its adaptation to high temperatures. Indeed, a recent analysis of structures of several hyperthermostable proteins from various sources reveals two major physical mechanisms of thermostabilization. The first mechanism is “structure-based”, whereby some hyperthermostable proteins (namely hyperthermophilic archaea) are more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization. Organisms that evolved as mesophiles but later recolonized a hot environment (in casu Thermotoga maritima) are suggested to employ an alternative, “sequence-based” mechanism (Berezovsky and Shakhnovich, 2005).

Probably more relevant to thermostability are the distribution of the residues and their interactions in the protein (Vieille and Zeikus, 2001). In relation to the idea that protein stability is determined by the stability and tight packing of its core, the propensity of the individual residues to participate in helical or strand structures was studied as a potential stability mechanism. The only trend that was detected by Facchiano et al. (1998) was a decreasing content in (destabilizing) β-branched residues (Val, Ile, and Thr) in the helices of thermophilic proteins. On the other hand, according to Dill (1990), Ile might be favoured for its ability to better fill various voids that occur during protein core packing (it has more favourable rotamers than its isomer leucine). Several properties of Arg residues suggest that they would be better adapted to high temperatures than Lys residues: the Arg δ-guanidino moiety has a reduced chemical reactivity due to its high pKₐ and its resonance stabilization. Arg, furthermore, has more surface area for charged interactions than Lys. The average Arg/Lys ratios in the protein pools of the mesophiles and hyperthermophiles are associated with large standard deviations (Vieille and Zeikus, 2001). If an increased Arg is indeed stabilizing, this mechanism is not universally used among hyperthermophiles. A decreased number of thermolabile residues, e.g. Asn and Gln which are susceptible to deamidation, or Cys and Met which are sensitive to oxidation, has also been reported as a possible adaptation strategy (Russell et al., 1997). Matthews et al. (1987) proposed that proteins of known three-dimensional structure can be stabilized by decreasing their entropy of unfolding. In the unfolded state, glycine is the residue with the highest conformational entropy. Proline, which can adopt only a few conformations and restricts the possible conformations of the preceding residue (Sriprapundh et al., 2000), has the lowest conformational entropy. This technique has been used to engineer enzymes that are more thermodynamically stable (Eijsink et al., 1993), and a number of thermophilic and hyperthermophilic proteins also use this stabilization mechanism (Nakai et al., 1999). For the same reason disulfide bridges are proposed to be thermostabilizing (Matsumura et al., 1989). Interestingly, substitution of residues (in a left-handed helical conformation) with Gly has been demonstrated to increase thermodynamic stabilities of two proteins by conformational strain release (Kimura et al., 1992; Kawamura et al., 1996).

Although it was concluded by several studies (Karshikoff and Ladenstein, 1998; Kumar et al., 2000) that packing and fractional polar and nonpolar surface areas are not common thermostabilization mechanisms, a few examples exist of hyperthermophilic
proteins that gain part of their stability from better packing (Chan et al., 1995; Russell et al., 1997). Thermodynamic stabilization was demonstrated experimentally for Methanobacterium formicicum histone by filling of a solvent-accessible cavity by bulkier hydrophobic side chains (Li et al., 1998). Several examples exist of a reduced hydrophobic accessible surface areas (Auerbach et al., 1998; Grabarse et al., 1999) but, more frequently, extra hydrophobic interactions at subunit interfaces of oligomers are reported in structural studies. Kirono et al. (1994) furthermore demonstrated with Thermus thermophilus 3-isopropylmalate dehydrogenase mutants that extra (compared to the E. coli homologue) hydrophobic interactions make the dimer more resistant to dissociation.

Two types of noncovalent interactions involving aromatic residues can be distinguished: aromatic-aromatic interactions (aromatic pairs) defined by a distance of less than 7 Å, and cation-π interactions between positive charges (e.g. metal cations or cationic side chains of Arg and Lys) and an aromatic ring center. Both types are electrostatic in nature but are potentially stabilizing because of the lower desolvation penalty for aromatic residues (Burley and Petsko, 1985; Dougherty, 1996). Some examples of the first type are suggested to play a role in stabilizing thermophilic and hyperthermophilic proteins (Ishikawa et al., 1993; Teplyakov et al., 1990). The second type has not been intensively studied in relation to thermostability (Massant).

As mentioned earlier, the role of hydrogen bonds in the stability of proteins has always been controversial (Dill, 1990; Pace et al., 1996; Privalov). Because the identification of H bonds is highly dependent on the distance cutoff and because a number of hyperthermophilic protein structures have not been refined to sufficiently high resolutions, studying the role of H bonds in thermostability by comparative structure analysis has not provided clear-cut answers. An interesting discrepancy is found between the results of the large-scale statistical studies of Vogt et al. (Vogt and Argos, 1997; Vogt et al., 1997) and those of Szilagyi and Zavodszky (2000). The former found hydrogen bonds to be the most important stabilizing factor, whereas the latter did not found a significant difference in hydrogen bonds between mesophilic and thermophilic proteins, possibly because of the better balance in quality of the mesophilic and thermophilic datasets (Szilagyi and Zavodszky, 2000). Finally, one study (Tanner et al., 1996) propagates the potentially stronger stabilizing role of charged-neutral hydrogen bonds due to (i) the lower desolvation penalty in comparison with ion pairs, and (ii) the greater enthalpic reward compared to neutral-neutral hydrogen bonds.

Because ion pairs are usually present in small numbers in proteins and because they are not highly conserved, they seem less important in protein folding (Dill, 1990; Makhatadze and Privalov (1995) do not distinguish salt links from other polar groups in their study of protein stability). However, the most consistent trend that comes out of individual and systematic studies is the increase in the number of ion pairs (Vogt et al., 1997; Kumar et al., 2000, Szilagyi and Zavodszky, 2000). On the other hand, some theoretical and a number of experimental studies have indicated that salt bridges usually destabilize, or at most only slightly stabilize the native state of proteins (Sali et al., 1991; Hendsch and Tidor, 1994; Waldburger et al., 1995). Most of these studies, however, were made at room temperature. The major reason for the low stability of ion pairs at room temperature is the large desolvation penalty upon association, which is not fully compensated for by the electrostatic energy of the ion pair. In a theoretical study, Elcock (1998) shows that, as the temperature increases, the unfavourable change in the electrostatic solvation of the separated molecules results in a lowering of the desolvation
penalty for bringing the two together. This effect is only partially compensated by the hydration free energy of the salt bridge itself, being adversely affected by the increase in temperature. This effect can be partly ascribed to a decrease of the water dielectric constant (from 80.20 at 0°C to 55.12 at 100 °C) in his solvation model. Apart from demonstrating the potential role of electrostatic interactions in the thermodynamic stability of hyperthermophilic proteins, the model of Elcock suggests that a sizeable energetic barrier exists for breaking a salt bridge, and the level of this barrier increases with temperature. A similar barrier is not seen with hydrophobic isosteres. The presence of this barrier may go some way toward explaining the apparent role of salt bridges in increasing the kinetic barrier to unfolding (Pappenberger et al., 1997). An interesting observation is that the calculated stability curves for the hyperthermophilic model proteins studied by Elcock differ from the curves of their mesophilic counterparts in that they are mainly shifted along the temperature axis towards higher temperatures. This corresponds to one of the three major ways of promoting thermal stability as proposed by Nojima et al. (1977), which are illustrated in figure 2.1 (in this case curve c).

![Figure 2.1](image)

Figure 2.1 Hypothetical temperature profile of the free energy of stabilization (ΔG_{stab}) for (a) mesophilic and (b-d) thermophilic proteins. ΔG_{stab} is defined as the difference in the free energies between the native and denatured proteins. T_m and T'_m are the melting temperatures (corresponds to the heat-denaturation transition temperature T_G) of the mesophilic and thermophilic variants, respectively. The maximum stability for a given protein is observed at a temperature that is much below the optimal growth temperature (T_{opt} and T'_{opt}) of the respective mesophilic or thermophilic organism. Adapted from Jaenicke and Böhm (1998) and Jaenicke (2000).

Although the assumptions involved in this approach are too extensive to illustrate a general principle, it clearly illustrates that if ion pairs are the dominant factor in the stability of hyperthermophilic proteins, one might expect destabilization of the native state at mesophilic temperatures. In a comparative study of thermophilic/mesophilic (T/M) proteins within different protein families, Kumar et al. (2001) found that greater protein stability and resistance to higher temperatures are generally obtained by an upshift and
broadening of their stability curves (corresponding with curves b and d of Figure 2.1). Indeed, regardless of the heat transition temperatures (T_G), the temperature of maximal stability (T_S) falls frequently around room temperature and, in most cases, the estimated cold-denaturation temperatures are also lower for the thermophilic proteins. An upshift of the curve would be the outcome of a larger ΔH_G (responsible for the slope of the curve at T_G) resulting from specific additional noncovalent interactions. If the curvature (specified largely by the heat capacity of unfolding ΔC_p) is smaller, the curve would be broader, leading to the third way of increasing thermostability. While it has been recognized that a reduced ΔC_p may represent a common mechanism by which thermophilic proteins achieve thermostability, the origin of this phenomenon is still controversial. It is well established that hydration of the hydrophobic core of a protein upon unfolding contributes to ΔC_p (Privalov and Makhatadze, 1990; Makhatadze and Privalov, 1990). Various equations have been developed to give an estimate of ΔC_p based on the change of accessible-surface area upon unfolding (ΔASA) (Murphy and Freire, 1992; Myers et al., 1995). However, these equations fail to account for the big differences in ΔC_p values observed for T/M pairs of proteins, which are very similar in structure, and are expected to have similar ΔASA values (Hollien and Marqusee, 1999; Motono et al., 2001). A large positive value is taken to indicate the dominance of hydrophobic interactions in driving protein folding, because of the well-known fact that exposure of nonpolar compounds to water also gives rise to a large positive ΔC_p (Baldwin, 1986; Livingstone et al., 1991; Makhatadze and Privalov, 1995). Based on heat capacity data for transferring model compounds to water, it was also contended that the exposure of polar groups to water gives rise to a negative ΔC_p (Spolar et al., 1992; Murphy and Freire, 1992; Makhatadze and Privalov, 1995). Theoretical calculations based on a simple electrostatic model predict that favourable electrostatic interactions should reduce the value of ΔC_p (Zhou, 2002). As more favourable electrostatic interactions and reduced ΔC_p are both common in thermophilic proteins, it is likely that the reduced ΔC_p is contributed by electrostatic interactions. In a recent study Lee et al. (2005) have tested this hypothesis by creating charge-to-neutral mutants of Thermococcus celer ribosomal protein L30e. Their results demonstrate that charge-to-neutral mutants (having disrupted electrostatic interactions) that destabilize the protein have increased ΔC_p values. However, the technical difficulty in the accurate measurement of ΔC_p and the relative scarcity of data available on protein thermodynamics have to be noted.

A particularly important role appears to be reserved for ion pairs that participate in networks often prominent at the surface or partially buried at intersubunit interfaces (Lebbink et al., 1999; Rahman et al., 1998; Van Boxstael et al., 2003). Compared to isolated ion pairs, the desolvation cost for each new pair is cut in half: only one additional residue must be desolvated and immobilized. An extremely large ion pair network (composed of 24 residues connected by 18 ion pairs) has been shown to be important for thermostability of Pyrococcus furiosus glutamate dehydrogenase (Yip et al., 1995; 1998). However, one has to keep in mind that local environment and geometrical arrangements of interaction partners define the potential for stabilization. Optimization of these parameters, independent from simply increasing numbers of interactions, may even be sufficient to significantly increase protein stability (Xiao and Honig, 1999; Kumar and Nussinov, 1999).

Frequently, intersubunit interactions are mentioned as a potential major stabilization mechanism (Grabarse et al., 1999; Chi et al., 1999; Dams et al., 2000). Interestingly, there is no single type of intersubunit interaction responsible for this stabilization (electrostatic interactions, hydrophobic interactions or disulfide bridges). In addition to a strengthened or increased surface area buried upon oligomerization, various...
examples exist of hyperthermophilic proteins with a higher oligomerization state than their mesophilic homologues (Voorhorst et al., 1995; Hess et al., 1995; Villeret et al., 1998; Chi et al., 1999). For *Thermotoga maritima* phosphoribosylanthranilate isomerase, experimental evidence is available demonstrating that dimerization is a stabilization factor (Thoma et al., 2000).

Finally, a multitude of other strategies for protein stabilization, which we will not consider in detail here, have been reported: deletion or shortening of loops, increased secondary structural content, helix dipole stabilization, docking of termini, anchoring of flexible loops, metal binding, posttranslational modifications and extrinsic parameters (Kumar et al., 2000; Vieille and Zeikus, 2001).

2.3 Cold enzymes: stability - flexibility - activity

From homology-based models and a (small) number of X-ray structures, it appears that all structural factors currently known to stabilize the protein molecule can be attenuated in strength and number in cold-active enzymes (Russell, 2000; Sheridan et al., 2000; Feller and Gerday, 2003). This involves the clustering of glycine residues (providing local mobility), the disappearance of proline residues in loops (providing enhanced chain flexibility between secondary structures), a reduction in arginine residues capable of forming multiple salt bridges and hydrogen bonds, as well as a lower number of ion pairs, aromatic interactions or hydrogen bonds compared to mesophilic enzymes. Frequently, stabilizing cofactors bind weakly, and loose or relaxed protein extremities seem to favour unzipping. The protein surface is generally characterized by the disappearance of several solvent-exposed ion pairs, the exposure of a higher proportion of nonpolar groups to the surrounding medium and an excess of negative charges that favour interactions with the solvent. These factors are thought to improve interactions with the solvent, which may be of prime importance in the acquisition of flexibility near zero degrees (Feller et al., 1999). In multimeric enzymes, the cohesion between monomers is also reduced by decreasing the number and strength of interactions involved (Bell et al., 2002). However, as observed for thermophilic proteins (Zavodzsky et al., 1998), it appears that each protein family adopts its own strategy to decrease stability by using one or a combination of these structural alterations. By using this strategy the α-amylase from the Antarctic bacterium *Pseudoalteromonas haloplanktis* appears to have reached the lowest possible stability of its native state (Feller et al., 1999) as indicated by a global collapse of its stability curve compared to its mesophilic homologue (corresponding to the reverse of strategy b in Figure 2.1).

Low temperatures slow down and strongly inhibit chemical reaction rates as is basically described by the Arrhenius equation:

\[
 k = Ae^{-E_a/RT},
\]

where \(k \) is the rate constant, \(A \) is the pre-exponential factor, \(E_a \) is the so-called activation energy, \(R \) is the gas constant (8.31 kJ/mol), and \(T \) is the absolute temperature. Accordingly, any decrease in temperature will induce an exponential decrease of the reaction rate, the extent of which depends on the value of \(E_a \). Therefore, the main challenge faced by psychrophilic enzymes is to maintain high catalytic activities (or rather catalytic efficiencies, as many enzymes evolved by optimizing \(k_{cat}/K_m \); Wolfenden, 1983)
Structural insights into extremozymes

Part I Introduction

at low temperatures. Although it has been demonstrated by directed evolution experiments that low temperature activity and thermal stability can be improved simultaneously (Wintrode and Arnold, 2000), it remains a fact that such enzymes are not generally found in nature. A possible explanation may be that the low stability of psychrophilic enzymes is the simplest adaptive strategy to provide a gain in activity in the absence of selection for stable proteins in cold environments but in the presence of a strong selective pressure for highly active enzymes (Giver et al., 1998; Cherry et al., 1999; Roovers et al., 2001). Similarly, the existence of highly thermostable enzymes that are more active than their mesophilic counterparts, even at 37 °C, suggests that thermostability is not incompatible with high activity (Sterner et al., 1996; Merz et al., 1996; Ichikawa and Clarke, 1998). Hyperthermophiles probably only need enzymes with activities at their living temperatures comparable to those of their homologues (Vieille and Zeikus, 2001). Interestingly, Kumar et al. (2001) found the free energy of unfolding at the living temperature of the source organism (i) to be uncorrelated with the living temperature, and (ii) to be relatively constant within T/M families, which indicates that the stability of individual proteins in the source organism may relate to their function. In other words: too high of a stability may hinder protein function. This observation is a manifestation of the concept of corresponding functional states, i.e. a high degree of similarity found in the physical and biochemical properties of homologous proteins from mesophiles and extremophiles under their respective optimum growth conditions (Somero 1983; Somero 1995).

A growing body of experimental data (including frequency domain fluorometry and anisotropy decay, hydrogen-deuterium exchange and tryptophan phosphorescence experiments) support the hypothesis that highly thermostable enzymes are more rigid (less flexible) than their mesophilic homologues and that rigidity is a prerequisite for high protein stability (Bönisch et al., 1996; Jaenicke and Böhm, 1998; Zavodszky et al., 1998; Manco et al., 2000; Gershenson et al., 2000). Lazaridis et al. (1997) argue that there is no fundamental reason for stability and rigidity to be correlated. Moreover, this “rigidity hypothesis” suffers from the lack of a single measure of flexibility. The spectrum of relaxation times characterizing conformational transition dynamics spreads over many orders of magnitudes from 10^{-11} s (local side chain rotations or hydrogen bond rearrangements on the protein surface) to hours or even years (the mean waiting time for protein spontaneous unfolding in physiological conditions) (Kurzynski et al., 1998). In other words, a protein can be rigid on a nanosecond scale but flexible on a millisecond scale. Furthermore, the contribution of dynamical effects on protein stability is poorly characterized (Daniel et al., 2003).

It has also been proposed that excessive rigidity explains why hyperthermophilic enzymes are often inactive at low temperatures (Jaenicke and Böhm, 1998). One set of evidence that tends to support this hypothesis is that denaturants, detergents and solvents often activate hyperthermophilic enzymes at suboptimal temperatures. This activation tends to disappear as the temperature gets closer to the enzyme’s temperature of maximal activity (Beaucamp et al., 1997). At that temperature, the enzyme is flexible enough in the absence of a denaturant to show full activity. Concerning psychrophilic enzymes, the current accepted hypothesis is that, in order to perform catalysis at low temperatures, they have to increase their flexibility (Gerday et al., 1997; Zavodszky et al., 1998). The high flexibility of cold-active enzymes is strongly supported by experiments using dynamic quenching of fluorescence that show an increased permeability to a small quencher molecule (Feller and Gerday, 2003). An increase in flexibility can, however, be limited to only a small but crucial part of the protein and hence not lead to a uniformly unstable
protein, which in part may explain why stabilities and activities are not always inversely correlated (Jeanicke, 2000). One hypothesis is that global flexibility may be required when concerted motions of the whole molecule are involved in activity (possibly when large substrates are processed), whereas localized flexibility might only concern the essential components of the catalytic activity (possibly when small substrates are processed) (Feller and Gerday, 2003). In a study by Fields and Somero (1998), comparison of lactate dehydrogenase A4 (A4-LDH) kinetic properties and amino acid sequences of notothenioid teleosts having different adaptation temperatures, suggests that these enzymes have adapted to low temperatures by increases in flexibility in small areas of the molecule that affect the mobility of adjacent active site structures. The authors furthermore propose a model that explains a linked temperature-adaptive variation in K_m and k_{cat}, starting from the assumption that flexibility (necessary for function) causes each enzyme to occupy an ensemble of conformational states (Hilser and Freire, 1996; Zavodszky et al., 1998). According to this model temperature-adaptive increases in k_{cat} will occur concomittantly with increases in K_m. The higher conformational mobility required for high activity (high k_{cat}) in the cold-adapted enzyme will lead to a higher number of conformational states available to the molecule and, as a result, to a larger proportion of enzyme conformations that bind substrates poorly or not at all. This will yield a higher K_m in the cold-adapted enzyme (at least at the same temperature). Indeed, most psychrophilic enzymes have higher K_m values than their mesophilic counterparts. For Moritella abyssi ornithine carbamoyltransferase (OTCase) and for Moritella profunda dihydrofolate reductase (DHFR) the higher K_m has apparently even resulted in a much lower catalytic efficiency (k_{cat}/K_m), suggesting that optimization of key metabolic enzymes at low temperatures may be constrained by natural limits (Xu et al., 2003a,b).

When explained in terms of the activated complex theory\(^1\), the increase in local flexibility may account for the lower activation enthalpies ($\Delta H^\#$) (Low et al., 1973; Lonhienne et al., 2000). Conversely, activation entropies ($\Delta S^\#$) for cold-adapted enzymes are higher, revealing the greater degree of ordering (or, in case of a positive $\Delta S^\#$, a smaller degree of disordering) these enzymes must undergo to form the activated complex (Figure 2.2).

\(^1\) equation $k_{cat} = A(T) e^{\Delta G^\#/RT} = A(T) e^{-\Delta H^\#/RT - \Delta S^\#/R}$, with $A(T)$ the pre-exponential factor
Structural insights into extremozymes

Figure 2.2 Graphical representation for the possible origin of $\Delta(\Delta S^\#)_{p-m} < 0$. The transition state intermediate $ES^\#$ can be reached through a decrease ($\Delta S^\# < 0$) or an increase ($\Delta S^\# > 0$) of the activation entropy $S^\#$. This model postulates that the activation entropy of $ES^\#$ for both psychrophilic (p) and mesophilic (m) enzymes is similar because the same reaction is catalyzed. As a result of more flexible catalytic structures in psychrophilic enzymes, the distribution of conformational states for ES is broader and is translated into a higher level of $S^\#$. It follows that $\Delta S^\#_p - \Delta S^\#_m$ is always negative. Adapted from Lonhienne et al. (2000).

This seemingly unavoidable enthalpic-entropic compensation effect then results in a minor difference in terms of free energy of activation ($\Delta G^\#$). Recent calculations on subtilisin indicate that the residual flexibility in the active site is indeed significant (Villa et al., 2000). Even without this compensatory entropic effect, according to theoretical considerations and computer simulations (Albery and Knowles, 1976; Warshel, 1998), an enzyme optimized under the evolutionary pressure of increasing k_{cat}/K_m will not gain much catalytic power from changing its ground state energy without changing the transition state (TS) energy. It then follows that, since most psychrophilic enzymes seem to fit in the model by Fields and Somero, a decrease of the temperature dependence of the enzymatic reaction by means of a decrease of the activation enthalpy probably is their main adaptive parameter. Interestingly, a number of enzymes (typically operating at subsaturating concentrations of substrate) are known to react against this adaptive drift and optimize substrate binding (lowering their K_m), while even optimizing their k_{cat} values (Bentahir et al., 2000; Hoyoux et al., 2001; Lonhienne et al., 2001). Apparently, in this case local flexibility seems to be compatible with a lower number of conformational states as required for optimum binding.

In the case of the psychrophilic phosphoglycerate kinase from the Antarctic *Pseudomonas* sp. TACI18, it has been hypothesized that a heat-stable domain may improve substrate binding (Bentahir et al., 2000), while maintaining a high k_{cat} by virtue of a heat-labile domain. Clearly, significant progress in our understanding of the role of (static/dynamic) flexibility in catalytic activity is needed to explain these findings.
2.4 Proteins under pressure

Pressure is a key physical parameter which has influenced the evolution and distribution of both micro-organisms and macro-organisms (Yayanos, 1986; Somero, 1990). The oceans have an average depth of 3800 m and thus an average pressure of 38 MPa as well as a maximal depth of approximately 11,000 m (~110 MPa). Additional high-pressure environments include deep lakes and the deep subsurface regions. Communities of micro-organisms have been detected as deep as 3500 m below the surface (Szewzyk et al., 2000), and it is predicted that the largest number of prokaryotes in the biosphere are likely to reside in this realm below our feet (Whitman et al., 1998). Finally, while astrobiologists ponder the possibility of life on Jupiter’s moon Europa (Chyba and Phillips, 2001), it is interesting to note that such life may exist at pressures approximately twice that found in the deepest ocean trench on earth.

Comparative studies have shown that pressure sensitivities of enzymes, structural proteins, and membrane based systems differ markedly between shallow- and deep-living species, and have indicated that the terms deep and high pressure begin to apply at depths of only 500 m or even less (corresponding to ~5 MPa) (Somero, 1992). In the case of enzymes, adaptation is characterized by pressure insensitive \(K_m \) values and reduced \(k_{cat} \) values (Somero, 1990; Somero, 1992). A recent comparison of orthologous proteins from a non-barophile (Pyrococcus furiosus) and a barophile (Pyrococcus abyssi) identifies the amino acids arginine, serine, glycine, valine and aspartic acid as having the most barophilic character and tyrosine and glutamine as the least barophilic (Di Giulio, 2005).

Pressure denaturation of monomeric proteins commonly requires a pressure in the 100 MPa range, which indicates that protein denaturation cannot play a significant role as a stress phenomenon in the adaptation of micro-organisms towards deep-sea conditions. In contrast to this well-documented finding, pressure-induced dissociation of oligomeric and multimeric proteins is observed well within the biologically relevant range of pressures, and has therefore been discussed as a possible mechanism underlying the growth inhibition of microorganisms at high pressures (Jaenicke, 1981; Jaenicke, 1987). All pressure effects accompany system volume changes in physical or biochemical processes and the response of the system is governed by the principle of Le Chatelier. Two fundamental relationships describe the pressure effects:

\[
(\partial \ln K / \partial p)_T = - \Delta V / RT \quad (\partial \ln k / \partial p)_T = - \Delta V^\# / RT,
\]

where \(K \) is the equilibrium constant, \(k \) the rate constant, \(p \) the pressure, \(T \) the absolute temperature, \(R \) the gas constant and \(\Delta V \) the difference of the final and initial volumes in the entire system at equilibrium, including the solute and surrounding solvent. \(\Delta V^\# \) is the activation volume according to the Eyring theory. When a reaction is accompanied by a volume decrease, it is inhibited by elevated pressure, and vice versa. Applied to the structure and stability of biological macromolecules Gross and Jaenicke (1994) consider three kinds of interactions: ionic, hydrophobic and hydrogen bonding. Ion pairs in aqueous solution are strongly destabilized by hydrostatic pressure. This effect is attributed to the electrostrictive effect of the separated charges: each of it arranges water molecules in its vicinity more densely than bulk water. Thus the overall volume change favours the dissociation of ionic interactions under pressure. Formation of hydrogen bonds in biomacromolecules is connected to a negligibly small reaction volume, which may be positive or negative depending on the model system. Concerning the hydrophobic effect
Kauzmann (1987) reported that the volume change upon protein unfolding (ΔV), largely accounted for in terms of exposure of apolar residues to the aqueous medium, is positive at low pressures but negative at pressures higher than 100 – 200 MPa, and that the transfer of hydrocarbons into water is governed by an opposite behaviour, i.e. it shows a negative ΔV at low pressures and a positive one at high pressures. This failure of the ‘liquid-hydrocarbon model’ for pressure effects on protein stability has been addressed by Hummer et al. (1998), who pointed out that pressure and heat denaturation represent processes underlying distinct mechanisms: the first corresponds to the incorporation of water into protein, the second to the transfer of nonpolar groups into water. Thus pressure-denatured proteins have reduced compactness, yet they retain a considerably more ordered structure with respect to heat-denatured proteins (Zhang et al., 1995; Hummer et al., 1998). Generally speaking, there seems to be a great deal of experimental evidence that the pressure denatured state may resemble a molten globule state (Vidugiris and Royer, 1998).

As a general rule, excluding high temperatures, the volume change upon the unfolding (partial or complete) of proteins is negative. The magnitude of the volume change is so small that it may well represent the sum of large contributions of opposite sign. A substantial negative contribution to ΔV is the elimination of internal cavities and voids upon disruption of the folded structure (Frye et al., 1996; Richards, 1979). The origin and sign of various other contributions remain subjected to debate (Royer, 2002).

Structural determinants of protein piezostability are poorly characterized. The majority of experimental findings shows that thermostable proteins are piezostable as well (Mombelli et al., 2002). It has been found, in fact, that thermophilic proteins in many cases are also stabilized by pressure values which lead to inactivation of the mesophilic counterparts (Hei and Clark, 1994; Bec et al., 1996; McLean et al., 1998; Summit et al., 1998). Studies on a 7 kDa DNA-binding from *S. solfataricus* (Sso7d) have shown that aromatic interactions are important for increased thermal and piezostability (Konisky et al., 1995). It was shown for the piezostable cytochrome P450 from *Sulfolobus solfataricus* that mutations decreasing the volume of the active site increase pressure stability (Tschirret-Guth et al., 2001). Amino acid substitutions that decrease chain flexibility in staphylococcal nuclease result in an increase of stability of the protein at high pressure (Royer et al., 1993). Therefore, increased structural homogeneity may be favoured by the high-pressure environments of the deep-sea. The results on the single-stranded DNA-binding protein of *Schewanella* strains pointed in the same direction: a decreased number of helix breaking and helix destabilizing residues in the central region of the protein suggests diminished flexibility and compressibility (Chilikuri and Bartlett, 1997).

The increase in protein stability on increasing pressure may be accounted for on the basis of the pressure-temperature phase diagram (Figure 2.3). A few elaborate studies have revealed elliptic contours for p/T diagrams, which corresponds to the well-known fact that proteins can undergo heat and cold denaturation, but also indicates that, over a broad temperature range proteins are first stabilized and then destabilized by increasing pressure. The stabilizing effect should correspond, for each tested protein, to the lower pressure range of the diagram. This implies that, for thermophilic proteins, both stabilization and destabilization occurs in a higher range of pressure as compared to mesophilic counterparts (Mombelli et al., 2002).
Pressure influences enzyme behaviour mainly by affecting the individual rate constants involved in the kinetic mechanism and that concur to the definition of k_{cat} and K_m. Although the prediction of these effects on K_m is not straightforward, it is expected that an increase in pressure will increase the k_{cat} in reactions for which ΔV° of the rate limiting step has a negative value (Gross and Jaenicke, 1994; Mozhaev et al., 1996; Mozhaev et al., 1994). On changing from sea level to the ocean floor, 20 °C difference in temperature may decelerate reaction rates by a factor of 4 – 10 (depending on the activation energy), whereas effects of the increase in pressure will hardly exceed 15 %. Thus it seems clear that, from the evolutionary point of view, adaptation to deep-sea conditions is dominated by low temperature rather than high pressure (Gross and Jaenicke, 1994). However, protein compressibility is directly related to the structural and conformational fluctuations of proteins at normal atmospheric pressure (Cooper, 1976; Gekko and Hasegawa, 1986). The reduced specific volume of a pressurized protein has been proposed to bring a reduced flexibility and hence an inhibition of activity in cases where flexibility is crucial for biological function (Tsou, 1986; Huber, 1988; Gross and Jaenicke, 1992).
2.5 Additional remarks: role of the cosolvent, allosteric regulation

The influence of different types of cosolvent on protein stability is a vast and diverse subject that will not be discussed in detail here. As a major type of cosolvent, ions have widely different effects according to their size and charge: e.g. all the major intracellular anions (phosphates, sulphates and carboxylates) are kosmotropes (interacting strongly with solvent molecules), whereas the major intracellular monovalent cations (K⁺, ammonium, guanidinium and imidazolium groups) are chaotropes (interacting weakly with solvent molecules). Among physiologically relevant anions, Cl⁻ is the only chaotrope and tends to interact with basic groups of proteins with significant affinity (Collins, 2004).

The potential origins for salt interactions with proteins can be summarized as: (i) differential cation binding, (ii) differential anion binding, (iii) differential hydration, (iv) differential screening causing a variation of the macromolecular activity coefficient and (v) effects of electrolytes on the activity coefficient of a ligand (Record et al., 1978).

Enzymes from extreme halophiles, while performing identical functions as their non-halophilic counterparts, have been shown to exhibit substantially different properties. Among them is the requirement for high salt concentrations, in the 1 – 4 M range, for activity and stability, and a high excess of acidic over basic amino acid residues. It is argued that the high negative surface charge of halophilic proteins renders them more flexible at high salt concentrations, conditions under which non-halophilic proteins tend to aggregate and become rigid. This high surface charge is neutralized mainly by tightly bound water dipoles (Mevarech et al.,). The requirement of high salt concentrations for the stabilization of halophilic proteins appears to result, according to Elcock and McCammon (1998), from repulsive electrostatic interactions between the abundant negative surface charges that remain destabilizing, even at high salt concentrations. Consequently, the role of acidic residues may be more to prevent aggregation than to make a positive contribution to protein stability. Except for the need to maintain normal hydration, halophilic proteins do not seem to exhibit specific structural properties (Jaenicke, 2000).

The fundamental ‘linkage relations’ between stability and binding were developed by Wyman (1948). In general, the Gibbs free energy of any given protein state, i, is modified by ligand binding as follows:

\[\Delta G_i = \Delta G_i^0 - RT \ln \left(\frac{(1 + K_{B,i}[L])}{(1 + K_{B,0}[L])} \right), \]

where \(\Delta G_i^0 \) is the Gibbs free energy in the absence of ligand, \(K_{B,0} \) is the binding constant to the native state, \(K_{B,i} \) is the binding constant to state i, and [L] the free ligand concentration. This equation dictates that protein states are structurally stabilized proportionally to their binding affinity towards a ligand. The equation has usually been applied to the equilibrium between the native and the unfolded state in denaturation experiments but is equally valid for the equilibrium between two different allosteric states. Indeed, although we have not discussed the effect of physical variables (like pressure and temperature) on allosteric equilibria, the problem is fundamentally the same: as for protein stability, both (or multiple) states are differentially stabilized by means of the typical (non-covalent) interactions that themselves are a complex function of these physical variables.
If one considers proteins in their native state as an ensemble of fluctuating conformational states, binding of a ligand will result in a redistribution of the population of states, in which states that were only negligibly populated in the unliganded ensemble become significantly populated. This redistribution corresponds to a separate functional state (different biological activity) in an allosteric protein. Luque et al. (2002) have shown that the propagation of binding effects is more efficient when the binding site is located in a region of low stability (in other words a more extensive redistribution of states takes place). Stability and functional cooperativity hence seem to be linked, and attempts are even made to identify signal transmission pathways by mapping regions prone to local unfolding on protein structures (Freire, 2000).

As a final remark, we note the (potential and established) economic benefits of extremophilic enzymes (discussed or reviewed in: Vieille and Zeikus, 2001; Gerday et al., 2000; Gross and Jaenicke, 1994; Mombelli et al., 2002).
Part II

ATCase
3 Introduction to ATCase

3.1 ATCases: function and classification

The de novo synthesis of pyrimidines is universal. The pathway consists of six enzymatic steps leading to the formation of UMP, which is further converted into UTP, CTP, dCTP, and dTTP. Studies of de novo pyrimidine biosynthesis and salvage are actively pursued because of the relationship of these pathways to growth, development, and chemotherapy. Organisms from the Archaea, Bacteria and Eukarya all produce aspartate carbamoyltransferase (ATCase, E.C. 2.1.3.2), the enzyme that catalyzes the committed step of the pyrimidine biosynthetic pathway, i.e. the reaction of carbamoyl phosphate and L-aspartate to form N-carbamoyl-L-aspartate and inorganic phosphate (Jones et al., 1955). There are four major classes or forms of quaternary structure known for aspartate carbamoyltransferases. In prokaryotes, ATCase is known to exist in three classes. Class A consists of 480 kDa dodecamers of two catalytic trimers and six subunits that are either dihydro-orotase (as in *Thermus aquaticus*; Van de Casteele et al., 1997), the third enzyme in the pathway, or inactive dihydro-orotase homologues (e.g. as for *Pseudomonas aeruginosa*; Schurr et al., 1995; Vickrey et al., 2002). Class B ATCases are 310 kDa dodecamers consisting of two catalytic trimers and three regulatory dimers that bind allosteric effectors (e.g. as in *Escherichia coli*; Wiley and Lipscomb, 1968). Class C ATCases are unregulated 100 kDa catalytic trimers (e.g. as in *Bacillus subtilis*; Brabson and Switzer, 1975). In eukaryotes, aspartate carbamoyltransferase is often part of a large multifunctional protein, such as those found in yeast and hamster (Simmer et al., 1989). The core catalytic subunit is common to all known ATCases, because the active sites are composed of residues contributed by adjacent subunits within the trimer (Robey and Schachman, 1985).
Figure 3.1 Allosteric control patterns for *de novo* pyrimidine and arginine biosynthesis in *E. coli*. CTP and UTP provide synergistic feedback inhibition of ATCase, whereas ATP provides competitive heterotropic activation. The feedback inhibition of carbamoylphosphate synthetase (CPsase) by UMP is subject to antagonism by ornithine (ORN) and the enzyme is activated by IMP. *N*-acetylglutamate synthase is subject to feedback inhibition by L-arginine (ARG). The biosynthetic intermediates of the *de novo* pyrimidine pathway are glutamine (GLN), carbamoylphosphate (CP), aspartate (ASP) carbamoyl aspartate (CAA), dihydroorotic acid (DHOA), orotic acid (OA), orotidine-5’-monophosphate (OMP) and the common uridylates (UMP, UDP and UTP). The identified intermediates of the arginine biosynthetic pathway are glutamate (GLU), *N*-acetylglutamate (NAG), ornithine (ORN), citrulline (CIT), arginosuccinate (ARGS) and arginine (ARG). Adapted from Wild *et al.* (1989).

Aspartate carbamoyltransferase (together with and independently from threonine deaminase; Umbarger, 1956) is the first enzyme for which feed-back inhibition was demonstrated (Yates and Pardee, 1956). Since then the enzyme from *Escherichia coli* has been extensively studied and has become the prototype of allosteric enzymes (Allewell, 1989; Hervé, 1989; Wild and Wales, 1990; Lipscomb, 1994). *E. coli* ATCase exhibits positive homotropic interactions between catalytic sites for binding of the substrate L-aspartate, which is explained by a concerted transition of the enzyme from a conformation of low affinity for aspartate (T or “taut” state) to a conformation of high affinity (R or “relaxed” state) for this substrate. The enzyme also exhibits heterotropic interactions between catalytic and regulatory sites. The enzyme is feedback inhibited by the end product CTP; UTP is a synergistic inhibitor in the presence of CTP, and ATP is an (antagonistic) activator. Wild *et al.* (1989) have pointed at the inherent metabolic logic when integrating these allosteric patterns with other findings on the regulation of *de novo* pyrimidine and arginine biosynthesis in *E. coli* (Figure 3.1). Elevated levels of CTP would exert two simultaneous regulatory functions, as a partial inhibitor for the entire de novo pathway through ATCase and for direct control over its own synthesis through competitive inhibition of CTP synthetase. Since the inhibition of ATCase is only partial, significant pyrimidine synthesis would continue. However, this would primarily serve to increase the UTP pool since the conversion of UTP to CTP would be restricted at CTP synthetase. Ultimately, CTP and UTP pools would be elevated, thus permitting the thorough inhibition of ATCase. Elevated ATP levels would oppose the effects of CTP and UTP on ATCase and thus provide for a balancing of pyrimidine nucleotide pools with their purine counterparts.

3.2 *E. coli* ATCase is a paradigm for allosteric regulation

The catalytic (c) and regulatory (r) chains of *E. coli* ATCase have molecular masses of 34 and 17 kDa, respectively (A). The three c chains of each catalytic trimer are related by a threefold axis, while three twofold axes relate pairs of c chains in the two trimers and pairs of r chains within the three regulatory dimers (Figure 3.2). Each chain consists of two domains (Monaco *et al.*., 1978). The N- and C-terminal domains of the c chains are termed the polar and equatorial domains, respectively; the corresponding domains of the r chains are designated the allosteric and zinc domains. Carbamoyl phosphate binds between the two c chains in such a way as to interact with the polar domains of both (Robey and Schachman, 1985; Krause *et al.*, 1985). Groups with which L-Asp interacts, except for Lys 84, are located in the equatorial domain of a single chain. The primary nucleotide binding
site is in the N-terminal domain of the r chain; the C-terminal domain contains a Zn ion coordinated by four sulfhydryl groups. There are five unique interchain interfaces in the unliganded protein: C1–C2, between c chains within catalytic trimers; C1–C4, between c chains in different catalytic trimers; C1–R1 and R1–C4, two types of c:r contacts; and R1–R6, the r:r contact within the regulatory dimers (Honzatko et al., 1982) (Figure 3.2). The twofold molecular symmetry is distorted in the crystal in the space group P321, particularly when CTP is bound. Under these conditions, the C5–C6, C6–R6, C6–R3, and analogous interfaces in one half of the molecule are not equivalent to the C1–C2, C1–R1, C1–R4, and analogous interfaces, in the other half of the molecule (Kim et al., 1987).

Figure 3.2 (A) Schematic diagram of the structure of ATCase. (B) Close-up of the structures of the catalytic and regulatory chains. Adapted from Roche and Field (1999).

High resolution crystal structures are available of E. coli ATCase in the unliganded form and in complex with substrates, products and/or isosteric inhibitors (Honzatko et al., 1982; Ke et al., 1984; Krause et al., 1985; Krause et al., 1987; Gouaux and Lipscomb, 1990; Huang and Lipscomb, 2004). These studies indicate that there are two distinct structural states, each characterized by a strong conservation of molecular symmetry among the monomers, in accordance with the symmetry model of allosteric regulation (Monod et al., 1965). Binding of the bisubstrate analogue PALA (N-phosphonacetyl-L-aspartate) causes the enzyme to expand by 12 Å along the threefold axis while the catalytic trimers and regulatory dimers rotate 10° and 15°, respectively, about their symmetry axes (Ladner et al., 1982) (Figure 3.3). A multitude of other studies seem to confirm that substrate binding induces a concerted shift in the equilibrium between two quaternary conformations of the oligomeric protein (Schachman, 1988). In contrast to the transitions from ‘taut’ to ‘relaxed’ structures postulated in early models of allostery, the T – R transition involves breaking of bonds at some interfaces and simultaneous formation of new bonds at others, as illustrated in Figure 3.4. Bonds are broken at the interfaces between zinc and allosteric domains in the r chain and at the C1–C4 and R1–C4 interfaces between subunits. New bonds form at the interface between polar and equatorial domains in the c chain and at the C1–R1 and C1–C2 interfaces between subunits. Changes at the R1–R6 interface are minor.
Figure 3.3 Dodecameric structure of T and R states of ATCase. The threefold axis is in the plane of the page, and the twofold axis is perpendicular to the plane of the page. The dots indicate the surfaces of the enzyme involved in the C1-R4 and symmetry-related R1-C4 interfaces. The slashes define the region involved in the C1-C4 interface. In the T to R transition, the separation of catalytic trimers increases by 10.8 Å along the threefold axes while the trimers rotate 12° relative to one another around the threefold axes. The regulatory dimers rotate 15° about each of the three noncrystallographic twofold axes, and the dimers separate by 1.4 Å. Adapted from Stevens and Lipscomb (1992).

The crystallographic results suggest the following sequence of events (Kantrowitz and Lipscomb, 1988; Ke et al., 1988; Wang et al., 2005). Binding of carbamoyl phosphate first triggers changes in tertiary structure in residues 50 – 55 and 73 – 85 of the polar domains, accompanied by a transformation of the active site electrostatics, thus creating the binding site for Asp. Binding of Asp would then cause the Asp domain, the 240s loop, and the 80s loop of the adjacent chain to close in on the two substrates. This motion has two consequences. Firstly, it forces the substrates together, thereby lowering the activation energy of the reaction, and secondly, it further weakens the intersubunit interactions that specifically stabilize the T quaternary state. The weakening of these interactions triggers the initiation of the global quaternary conformational change. In fact, the 240s loops cannot attain their final domain-closed conformation without an expansion along the threefold axis, which allows the 240s loops from the upper and lower catalytic subunits to slide past each other.

Figure 3.4 Schematic representation of interactions related to homotropic cooperativity in the T state (left) and R state (right) of the E. coli ATCase holoenzyme. Adapted from Lipscomb (1994).
Studies with hybrid enzymes (more specifically with c and r chains from a different source) have indicated that the heterotropic response of B-class ATCases is determined by the regulatory subunit, independent from the source of the catalytic polypeptides (Wild and Wales, 1990). Interestingly, the heterotropic regulatory behaviour of the E. coli enzyme may be more related to the sequential allosteric model (Koshland et al., 1966), with “local” (pairwise) rather than global conformational changes as the primary mechanism. One of the main arguments opposing the simple two-state model is the possibility of (i) decoupling heterotropic and homotropic effects, and (ii) CTP and ATP effects, suggesting multiple mechanisms rather than effectors shifting the same equilibrium (Enns and Chan, 1978; Kantrowitz et al., 1981; Baillon et al., 1985; Foote et al., 1985). Alternative structural models were subsequently proposed (Thiry and Hervé, 1978; Xi et al., 1991; Stevens and Lipscomb, 1992).

Crystal structures are also available of effector (CTP and ATP) complexes in both allosteric states, and structural changes upon effector binding have been described in detail (Kim et al., 1987; Stevens et al., 1990; Gouaux et al., 1990). These studies (but also solution X-ray scattering experiments; Hervé et al., 1985; Fetler et al., 1995) indicate that the structural changes caused by the binding of nucleotides are small. Binding of ATP and CTP causes 0.3 Å changes in the separation distance between the two chains in the regulatory dimers, and 0.4 – 0.5 Å changes in the separation distance between the catalytic trimers (Stevens and Lipscomb, 1992). Structural changes within the effector sites and the active sites were also observed. However, the structures reveal no information on the transmission of the information between the effector sites and the active sites. Site-directed mutagenesis has been more successful in identifying residues that appear to be involved in the communication pathway(s) for the regulatory signals (Aucoin et al., 1996; De Staercke et al., 1995; Xi et al., 1994). Nevertheless, the mechanism of heterotropic regulation of E. coli ATCase remains debated.

3.3 Extremophilic ATCases

Several ATCases from extremophilic organisms have been characterized. Hyperthermophilic archaea such as Pyrococcus abyssi, Sulfolobus acidocaldarius and Methanococcus jannaschii produce B-class ATCases (as do Enterobacteriaceae) (Purcarea et al., 1994; Durbecq et al., 1999; Hack et al., 2000; Labedan et al., 2004). P. abyssi ATCase exhibits homotropic cooperative behaviour for aspartate, and heterotropic interactions for ATP (activator) and CTP and UTP (inhibitors). Although intrinsically thermostable, the catalytic trimers are further stabilized by association with the regulatory dimers. A remarkably high affinity for the highly thermostable substrate carbamoyl phosphate is a possible adaptation to high temperature. It is suggested to be correlated with the metabolic channelling of this substrate between the carbamoyl phosphate synthetase (CPSase) and the ATCase. The high resolution X-ray structure of the catalytic trimer of this enzyme has also been reported and has identified ion pairs, ion pair networks and shortening of loops and termini as potentially thermostabilizing features (Purcarea et al., 1994; Van Boxstael et al., 2003; Van Boxstael et al., 2005). S. acidocaldarius ATCase (a subject of this work) also exhibits homotropic interactions for aspartate, yet the (holo-) enzyme is activated by the nucleotides ATP, CTP and UTP (these effectors exert an inhibitory effect on the catalytic subunits by competing with carbamoyl phosphate for the same binding site). Only monomers could be found in extracts of recombinant E. coli or Saccharomyces cerevisiae cells expressing the catalytic chain. In the presence of carbamoyl phosphate these monomers assemble into trimers. The S. acidocaldarius
catalytic trimer is not intrinsically stable and the stability of the enzyme is achieved by the association of the catalytic and regulatory subunits. A more comprehensive description of the biochemical and kinetic properties of the *S. acidocaldarius* ATCase has been given by Durbecq *et al.* (1999). *M. jannaschii* ATCase shows limited homotropic cooperativity for aspartate and has little if any regulatory properties (Hack *et al.*, 2000). The weak allosteric properties of the *Methanococcus* ATCase might be related to an inherently unstable association between catalytic and regulatory subunits.

Of the domain of the Bacteria, (hyper-)thermophilic ATCases are characterized from *Thermotoga maritima* and *Aquifex aeolicus*. *Thermotoga maritima* ATCase contains catalytic and regulatory regions within a single polypeptide (also called class B’ ATCases). It shows homotropic cooperative interactions towards aspartate and heterotropic effects towards the nucleotides ATP (activator), CTP and UTP (inhibitors) (Chen *et al.*, 1998). The *Aquifex aeolicus* is a homotrimer of 34 kDa catalytic chains. The K_m values for both substrates are 30 – 40 fold lower than the corresponding values of the *E. coli* ATCase catalytic trimer. Furthermore, there is strong evidence for channelling and transient complex formation between *A. aeolicus* ATCase and CPSase (Purcarea *et al.*, 2003). The moderate thermophile *Thermus ZO5* has an ATCase that is part of a multi-enzyme complex with a molecular mass of 480 kDa. The complex also contains a (ATCase stabilizing) DHOase and probably the *bbc*-encoded protein. The *bbc*-protein appears to play a role in (UTP) feedback inhibition of the ATCase (Van De Casteele *et al.*, 1997).

Psychrophilic ATCases have been described from the Antarctic bacterial strain *TAD1* and from the deep-sea *Vibrio* strain 2693 (later identified as *Moritella abyssi*; Xu *et al.*, 2003c). The first ATCase was studied in dialyzed cell-free extracts. It shows no cooperativity nor regulation by ATP, but (mutual antagonistic) inhibition by CTP and UTP (Sun *et al.*, 1998). The K_m for carbamoyl phosphate was 100 times higher than for *E. coli* ATCase, which was suggested to result from an increase in k_{cat} (instead of a lower affinity). The high activity at low temperatures was suggested to be caused by a discrete modification at the active site, having no influence on the global thermostability of the enzyme. The *Moritella abyssi* ATCase has a molecular weight of 320 kDa compatible with the [2(3c):3(2r)] class B architecture (Xu *et al.*, 1998). It exhibits homotropic interactions for aspartate and heterotropic inhibition by CTP, but no activation by ATP and no synergistic inhibition by CTP and UTP. The *M. abyssi* ATCase was studied in *M. abyssi* and recombinant *E. coli* extracts. In the present thesis we report on the functional characteristics and the crystal structure of the purified recombinant ATCase of the closely related organism *Moritella profunda*.

Finally, the ATCase has been studied of the extremely halophilic archaeon *Halobacterium cutirubrum*, and of the moderately halophilic eubacterium *Vibrio costicola*. The activity of the *H. cutirubrum* enzyme was dependent on high salt concentration, optimal activity requiring 3.5 – 4 M NaCl or KCl. With aspartate, sigmoidal curves indicative for homotropic interactions were found when extracts were assayed immediately after preparation. The enzyme was highly sensitive to retroinhibition by CTP; inhibition was also dependent on high salt concentration, but was independent on assay temperature. The estimated molecular weight is 160 kDa (Liebl *et al.*, 1969; Norberg *et al.*, 1973). The ATCase of *V. costicola* (estimated MW 130 – 150 kDa) also looses activity rapidly at lower salt concentrations, yet differs from the extremely halophilic archaeabacterium in its salt-response patterns of activity and regulation. ATCase activity is optimal at about 1.5 M NaCl or 1 M KCl, although high activity was detected at 0.15 M NaCl. Significantly,
strong regulation by CTP takes place in low (0.15 – 0.3 M), but not high, NaCl concentrations (Ahonkhai et al., 1989).
4 Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon *Sulfolobus acidocaldarius*
Crystal Structure of T State Aspartate Carbamoyltransferase of the Hyperthermophilic Archaeon *Sulfolobus acidocaldarius*

Dirk De Vos¹, Filip Van Petegem¹, Han Remaut¹, Christianne Legrain², Nicolas Glansdorff³ and Jozef J. Van Beeumen¹*

¹Laboratorium voor Eiwitbiochemie en Eiwitengineering, Universiteit Gent, Gent, Belgium
²Institut de Recherches Microbiologiques J-M Wiame (IRMW), Brussels, Belgium
³Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Brussels Belgium

Aspartate carbamoyltransferase (ATCase) is a model enzyme for understanding allosteric effects. The dodecameric complex exists in two main states (T and R) that differ substantially in their quaternary structure and their affinity for various ligands. Many hypotheses have resulted from the structure of the *Escherichia coli* ATCase, but so far other crystal structures to test these have been lacking. Here, we present the tertiary and quaternary structure of the T state ATCase of the hyperthermophilic archaeon *Sulfolobus acidocaldarius* (*Sa*ATCT), determined by X-ray crystallography to 2.6 Å resolution. The quaternary structure differs from the *E. coli* ATCase, by having altered interfaces between the catalytic (C) and regulatory (R) subunits, and the presence of a novel C1–R2 type interface. Conformational differences in the 240s loop region of the C chain and the C-terminal region of the R chain affect intersubunit and interdomain interfaces implicated previously in the allosteric behavior of *E. coli* ATCase. The allosteric-zinc binding domain interface is strengthened at the expense of a weakened R1–C4 type interface. The increased hydrophobicity of the C1–R1 type interface may stabilize the quaternary structure. Catalytic trimers of the *S. acidocaldarius* ATCase are unstable due to a drastic weakening of the C1–C2 interface. The hyperthermophilic ATCase presents an interesting example of how an allosteric enzyme can adapt to higher temperatures. The structural rearrangement of this thermophilic ATCase may well promote its thermal stability at the expense of changes in the allosteric behavior.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: *Sulfolobus acidocaldarius*; aspartate carbamoyltransferase; crystal structure; thermostability; allostery

*Corresponding author

Introduction

Aspartate carbamoyltransferase (ATCase, EC 2.1.3.2) catalyzes the formation of phosphate and N-carbamoyl-L-aspartate from carbamoyl phosphate and L-aspartate, initiating the first step in the synthesis of pyrimidines.¹² ATCase is extensively studied as a model for structure–function relationships in cooperativity and allosteric regulation mechanisms. The structure and properties of the *Escherichia coli* enzyme have been studied in detail.¹³–⁸ This dodecameric enzyme is composed of two types of polypeptide chains: the 34 kDa catalytic chains (c) encoded by the *pyrB* gene, and the 17 kDa regulatory chains (r) encoded by the *pyrI* gene.⁹–¹¹ The quaternary structure of this enzyme results from the association of two catalytic chain trimers (c₃) held together through their interactions with three regulatory chain dimers (r₂). Both chain

0022-2836/ - see front matter © 2004 Elsevier Ltd. All rights reserved.
types consist of two domains, carbamoyl phosphate and aspartate binding domains in the case of the catalytic chains and allosteric and zinc (Zn) domains in the case of the regulatory chains. The catalytic sites are located at the interface between two catalytic chains belonging to the same trimer and involve residues belonging to both chains.12,13 The allosteric domain contains the binding site for nucleotide effectors and the zinc binding domain makes contacts with the catalytic subunits.

\textit{E. coli} ATCase shows positive homotropic interactions between catalytic sites for binding of the substrate L-aspartate, a phenomenon which is explained by the transition from a T state (referred to as \textit{EcATCT}) having a low affinity for aspartate to an R state (\textit{EcATCR}) with a high affinity for this substrate. The crystal structures of these two extreme conformations have been solved at 2.6 Å and 2.1 Å resolution, respectively.14,15 Analysis of these structures indicates that the holoenzyme undergoes substantial conformational changes upon T–R transition. Changes at the quaternary level include an expansion by 12 Å along the molecular 3-fold axis, along with rotations of the catalytic subunits about the 3-fold axis and rotations of the regulatory subunits about their respective 2-fold axes. Changes at the tertiary level include the closure of the aspartate and carbamoyl phosphate domains to form the active site, as well as the rearrangement of the 80s and 240s loop regions. The enzyme also exhibits heterotropic interactions between catalytic and regulatory sites. Its activity is synergistically feedback inhibited by the two end products CTP and UTP, and is stimulated by ATP. These effectors bind to the same regulatory sites, at a distance of 60 Å from the catalytic sites.16

The enzymatic properties of the ATCase from \textit{Sulfolobus acidocaldarius}, a thermoacidophilic archaeon of the \textit{Crenarchaeota} group, were investigated previously.17 This enzyme was shown to be highly thermostable and to display cooperativity between catalytic sites for the binding of its substrate aspartate. It exhibits, however, a very different regulation pattern: the holoenzyme is strongly activated by all nucleoside triphosphates, while \textit{E. coli} ATCase is inhibited by pyrimidine nucleotides and activated only by ATP. It was shown furthermore that, in contrast to \textit{E. coli} and other hyperthermophilic ATCases,18,19 the catalytic trimer is not intrinsically stable and the stability of the enzyme is achieved by the association of the catalytic and the regulatory subunits.

Previously, 3.5 Å and 1.8 Å resolution structures of the catalytic trimer of \textit{Methanococcus jannaschii} and \textit{Pyrococcus abyssi} ATCase were described,20,21 but the structure of a complete dodecameric enzyme to test the hypotheses from the \textit{E. coli} ATCase has been lacking. We now report the first hyperthermophilic ATCase structure of the intact (unliganded) holoenzyme ([2C1 : 3R3]) at 2.6 Å resolution. We compare the tertiary and quaternary structure with the \textit{EcATCT} and \textit{EcATCR} structures in terms of the overall architecture and possible implications for its high thermostability. Special attention was given to the different interfaces between the different subunits because of their important role in the allosteric behavior and the thermostability of this enzyme.

Figure 1. (a) Overview of the \textit{S. acidocaldarius} ATCase holoenzyme viewed along its molecular 3-fold axis. Each Cn–Rn dimer is depicted in its own color. (b) and (c) Ribbon diagrams of the \textit{SaATCT} catalytic and regulatory subunit structures. α-Helical regions are numbered in accordance with Figure 7.
Results

Overall structure

The catalytic and regulatory monomers of the *S. acidocaldarius* ATCase form a dodecamer with *D*₃ point group symmetry. The enzyme crystallizes in space group *P*6₃22 with one catalytic and one regulatory subunit in the asymmetric unit. The heterododecameric complex (Figure 1(a)) is generated by the crystallographic symmetry operators of the *P*6₃22 space group, resulting in two dodecameric enzymes per unit cell. The statistics of the structure determination can be found in Table 1. The overall quaternary structure resembles that of a T state ATCase.¹² We will therefore refer to this structure as *SaATC*T.

Catalytic monomer structure

The *SaATC*T catalytic subunit has 299 residues and shares 43% sequence identity with the *E. coli* ATCase catalytic subunit. It is composed of two domains: the carbamoyl phosphate domain (or polar domain) and the aspartate domain (or equatorial domain), linked by two α-helices. Each domain consists of a β-sheet of five parallel strands surrounded by α-helices (Figure 1(b)). Superposition leads to root-mean-square deviation (rmsd) values of 1.4 Å for *EcATC*T and 1.6 Å for *EcATC*T (based on 272 Cα atoms of Protein Data Bank (PDB) entries 1D09 and 9AT1, respectively). The similarity with *EcATC*T is mainly due to several α-helical regions (helix numbers α₁–α₇). Furthermore, the polar and equatorial domains of the *SaATC*T catalytic chain are in closer contact compared to the *E. coli* T state. This is illustrated by the total number of interdomain ion pairs and hydrogen bonds, the *S. acidocaldarius* ATCase totaling 14 of them, *E. coli* T state only ten. More specifically, the E50–R167 and E50–R234 salt bridges are characteristic and necessary interactions for the *E. coli* R state.²² In *SaATC*T, the first ion pair is present (E47–R162), indicating yet another agreement with *EcATC*T.

The region that undergoes the largest changes upon the T to R transition in *E. coli*, namely the 240s loop region, is closer to the *E. coli* T state (Figure 2(a)). In region 227–233 an extra Val is inserted (V226), and maximal distances between Cα atoms of T state *S. acidocaldarius* and *E. coli* T and R state ATCase of 2.3 Å and 11.8 Å, respectively, are found. In region 236–238 the maximal distances are 7.7 Å and 5.0 Å.

Other important differences between the *S. acidocaldarius* and *E. coli* Cα traces can be found mostly at the surface of the monomer. The N-terminal region 7–43 shows considerable differences with the corresponding region of the *E. coli* enzyme. Helix α₁ is shifted about 2 Å along its longitudinal axis. Loop region 33–37 (residues 36–41 in *E. coli*) has moved 1.5 Å away from its position at the C1–C2 interface in *E. coli*. The E37(C1)–K40(C2) salt bridge interaction between the catalytic subunits in the *E. coli* ATCase is thereby absent. Loop region 175–177 (residues 180–182 in *E. coli*) has a different conformation in *S. acidocaldarius*. An equivalent of the R17–D180 interdomain salt link of *E. coli* ATCase is absent.

The recently determined structure of the *P. abyssi* ATCase catalytic subunit in complex with PALA was found to be very similar to the *E. coli* R state catalytic subunit (rmsd 1.2 Å, based on 301 Cα atoms), except for the 240s region and the same α₁-helical region.²¹ Apart from this region, the *S. acidocaldarius* catalytic subunit shows more similarity with the *P. abyssi* catalytic subunit than with that from *E. coli* in regions 110–116, 202–212 and 269–272.

All important active site residues of *E. coli* ATCase¹⁵,²⁴ are conserved in *S. acidocaldarius*. Most of them show good positional agreement. Exceptions are R221 and Q223, which are located further away from the active site (Figure 3). Since they move closer to the active site on forming the high affinity, high activity R state in *E. coli*, one could expect a larger conformational change taking

Table 1. Data collection and refinement statistics

| Crystal | Space group | *P*6₃22 | Unit-cell parameters (Å, deg.) | *a* = *b* = 132.85, *c* = 140.28, *α* = *β* = 90°, *γ* = 120° | Packing density *V*₃ (*Å³Da⁻¹*) | Solvent content (%) | 64.3 |
|---------|-------------|--------|--------------------------------|---|-----------------------------|-------------------|
| Data collection | Resolution range (Å) | 20.0–2.59 | Unique/measured reflections | 23,141/201,357 | Completeness (%) | 99.7 (98.9) | 99.7 (98.9) |
| | | | | | | | |
| Reflections in the test set (%) | 5 | No. of protein atoms | 5 | No. of water molecules | 1 | |
| Mean *B*-factor (Å²) | Catalytic subunit (main-chain/side-chain) | 25.4/28.2 | Regulatory subunit (main-chain/side-chain) | 29.1/32.5 | Solvent atoms | 40.1 | |
| Rfree (%) | | | | | | | |
| Rfree (%) | 0.025 | Rms bond length deviations (Å) | 2.45 | Rms bond angle deviations (deg.) | 7.64 | |
| Ramachandran plot | Most favored regions (%) | 88.9 | Additional allowed regions (%) | 10.9 | Generously allowed regions (%) | 0.3 | |
| | Disallowed regions (%) | 0.0 | | | | | |

Values between parentheses reflect the data in the 2.64–2.59 Å resolution shell.

* R*free = *S*ₙ [*I*(h) − <I(h)>]/*S*ₙ *I*(h), where *I*(h) is the intensity of the *i*th measurement of reflection *h* and <I(h)> is the average value over multiple measurements.
place in \textit{S. acidocaldarius} ATCase. However, the positioning of residue K126 of \textit{SaATCT} is not compatible with the large displacement of R234 seen in \textit{E. coli} ATCase.

\textbf{Regulatory monomer structure}

The \textit{SaATCT} regulatory subunit has 164 residues and shares 30\% sequence identity with the \textit{E. coli} ATCase regulatory subunit and consists mainly of \(\beta\)-sheets (Figure 1(c)). It is composed of an N-terminal allosteric domain (effector-binding domain) and a C-terminal Zn-binding domain. The core of each domain consists of an anti-parallel \(\beta\)-sheet with five and four \(\beta\)-strands, respectively. The Zn ion is coordinated by four Cys residues. Superposition leads to rmsd values of 1.7 \(\text{Å}\) for \textit{EcATCT} and 2.0 \(\text{Å}\) for \textit{EcATCR} (based on 142 C\(_\text{a}\) atoms of PDB entries 6AT1 and 1D09, respectively), showing that, in contrast with the catalytic chain, the regulatory subunit resembles more \textit{EcATCT}. The largest differences are situated in loop regions at the surface of the molecule and in a prolonged C-terminal helix which is shifted 4 \(\text{Å}\) towards the allosteric domain (Figure 2(b)).

The effector binding sites are well preserved between the two enzymes14,17 (Figure 4). Although not directly involved in effector binding, residues 52–56 of \textit{E. coli} (50s loop) define portions of the triphosphate and ribose subsites of the nucleotide binding site. The 50s loop changes conformation upon T to R transition and has been put forward as one of the ways in which the effector binding sites are coupled to the allosteric-Zn domain.
53–60 of the 50s region of SaATCT resemble EcATCR more closely (Figure 2(b)).

Quaternary structure

The S. acidocaldarius ATCase has the subunit composition [2c : 3r] (Figure 1(a)). The catalytic subunits are arranged as two sets of trimers (c) in complex with three sets of regulatory dimers (r). The dimension along the 3-fold axis is 6 Å longer than for EcATCT and 6 Å shorter than for EcATCR. Despite the various resemblances between the SaATCT and EcATCR, the overall subunit orientation is in good agreement with EcATCT, so we can confidently consider the structure presented as a T state ATCase (Figure 5).

Upon comparison of the subunit interfaces, SaATCT has six extra C1–R2 types of interface, never observed in either EcATCR or EcATCT. All other interfaces previously described in E. coli are still present, but important deviations occur. What follows is a detailed description of the various types of interfaces. For the nomenclature of the interfaces, see Figure 1(a).

C1–R2 type interfaces

A unique feature of the S. acidocaldarius ATCase is the presence of a C1–R2 type of interface. The surface area buried in it is small (Table 2) and polar because of a salt bridge between residues R268(C1) and E125(R2). This salt link is part of an extensive ionic network of six residues, involved in 13 salt links and located in three interfaces (C1–C2; C1–R1; C1–R2, see Figure 6).

C1–C2 type interfaces

This type of interface, which connects two catalytic subunits from one trimer, contains the catalytic site and involves both the aspartate and carbamoyl phosphate binding domains of one monomer and the 80s loop of the adjacent catalytic monomer. In comparison with EcATCT and EcATCR, the surface area buried in this interface is about 28% smaller (Table 2). In this calculation we took the flexible region encompassing residues 74–80 into account. This large difference can in part be attributed to the different conformation of the loop region following helix α1.

While the EcATCR C1–C2 interface has fewer (14) polar interactions (salt bridges and hydrogen bonds) than EcATCT (19), SaATCT has only seven. However, five of these interactions are part of a six-residue ion pair network (Figure 6), whereas in E. coli, only a three-residue network is found here. It has been observed that the same network is
extended to four residues in the *P. abyssi* ATCase structure.21

C1–R1 type interfaces

Most of the interactions between the catalytic and regulatory chains occur at the C1–R1 type interface, which is mainly composed of carbamoyl phosphate and Zn-binding domain regions. The amount of surface area buried in this interface is almost equal to that in *EcATCT*; the hydrophobic content of this area is 18% higher (Table 2). Four aromatic residues (Y104(C), F110(C), Y117(R) and Y144(R)) are present in the *SaATCT* interface, compared to only one (Y140(R)) in *EcATCT*. In contrast to a previous modeling study 17 in which fewer polar interactions were inferred in the C1–R1 interface, a total of 14 polar interactions was found compared with 12 of these in *EcATCT*. The unique R state interactions between Zn-binding and aspartate binding domains are absent from the *SaATCT*

C1–R4 type interfaces

The five-stranded β-sheets of the allosteric domains of two neighboring regulatory chains form a ten-stranded antiparallel β-sheet. Most of the polar interactions involved in this interface are hydrogen bonds connecting two β-strands. In contrast to *EcATCT* and *EcATCR* there are no salt bridges present.

Table 2. Comparative analysis of the surface area buried in the different subunit and domain interfaces of the *S. acidocaldarius*, *E. coli* and *P. abyssi* ATCases

<table>
<thead>
<tr>
<th>Interface type</th>
<th>E. coli</th>
<th>S. acidocaldarius</th>
<th>P. abyssi</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–R1 type interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>1333</td>
<td>1617</td>
<td>1356</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>651</td>
<td>795</td>
<td>769</td>
</tr>
<tr>
<td>(48.9)</td>
<td>(49.2)</td>
<td>(56.7)</td>
<td></td>
</tr>
<tr>
<td>C1–C2 type interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>2176</td>
<td>2186</td>
<td>1357</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>1318</td>
<td>1271</td>
<td>827</td>
</tr>
<tr>
<td>(60.6)</td>
<td>(58.1)</td>
<td>(60.9)</td>
<td></td>
</tr>
<tr>
<td>R1–R6 type interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>1657</td>
<td>2105</td>
<td>1700</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>948</td>
<td>1251</td>
<td>1072</td>
</tr>
<tr>
<td>(57.2)</td>
<td>(59.4)</td>
<td>(63.1)</td>
<td></td>
</tr>
<tr>
<td>C1–C4 type interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>717</td>
<td>310</td>
<td>500</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>246</td>
<td>247</td>
<td>246</td>
</tr>
<tr>
<td>(34.3)</td>
<td>(79.5)</td>
<td>(49.3)</td>
<td></td>
</tr>
<tr>
<td>C1–R4 type interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>632</td>
<td>0</td>
<td>339</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>404</td>
<td>0 (0)</td>
<td>188</td>
</tr>
<tr>
<td>(63.9)</td>
<td>(55.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1–R2 type interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>0</td>
<td>0</td>
<td>177</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>56</td>
</tr>
<tr>
<td>(31.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalytic chain–domain interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>2337</td>
<td>2587</td>
<td>2743</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>1205</td>
<td>1342</td>
<td>1540</td>
</tr>
<tr>
<td>(51.6)</td>
<td>(51.9)</td>
<td>(56.2)</td>
<td></td>
</tr>
<tr>
<td>Regulatory chain–domain interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>954</td>
<td>930</td>
<td>1021</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>704</td>
<td>674</td>
<td>835</td>
</tr>
<tr>
<td>(73.7)</td>
<td>(72.5)</td>
<td>(81.7)</td>
<td></td>
</tr>
</tbody>
</table>

Values between parentheses are percentages of apolar buried surface area compared to total buried surface area.

C1–R1 interface; however, these domains are located closer to each other than in the *EcATCT* structure and salt link E292(C1)–R141(R1) is present.

R1–R6 type interfaces

The five-stranded β-sheets of the allosteric domains of two neighboring regulatory chains form a ten-stranded antiparallel β-sheet. Most of the polar interactions involved in this interface are hydrogen bonds connecting two β-strands. In contrast to *EcATCT* and *EcATCR* there are no salt bridges present.

C1–C4 type interfaces

The C1–C4 type interface in *E. coli* ATCase is a small interaction area that undergoes drastic changes upon the T to R transition and has major influence on the stability of the T and R state.26–28 Although structurally more comparable to *EcATCT* than to *EcATCR*, *SaATCT* shows a different organization. Large conformational differences are known to occur in the 240s loop region, which contains residues important in stabilizing *EcATCT*. The *E. coli* E239(C1)–K164(C4) and E239(C1)–Y165(C4) interactions are replaced in *S. acidocaldarius* by D229(C1)–R190(C4) interactions (Figure 5). While residues E239 and D229 are located at almost equivalent positions, residues K164 (K159 in *S. acidocaldarius*) and R190 are not positionally related. There is, however, a structural connection between the regions that contain residues K159 and R190, namely a hydrogen bond between the main-chain atoms of L158 and L187 and a three-residue ionic network between R169, E192 and E196, not present in *EcATCT/R*.

Figure 6. Six-residue ion pair network connecting three types of interfaces (C1–C2, C2–R2 and C1–R2) of the *S. acidocaldarius* ATCase.
R1–C4 type interfaces

The R1–C4 interface is observed in EcATCT, but not in EcATCR. It is considered important in stabilizing the T state. The R1–C4 type interface is also present in SaATCT but it is about 50% smaller (Table 2) and the number of apolar van der Waals contacts is reduced. An important salt bridge in EcATCT (D236(C4)–K143(R1)) links the 240s loop region with the C-terminal region of the regulatory chain. This salt bridge, as well as other polar interactions, is absent from this interface (Figure 5).

Analysis of thermostability

Amino acid composition

Of the 20 amino acids, the residues Asn, Gln, Met and Cys can be classified as thermolabile due to their tendency to undergo deamidation or oxidation at high temperatures. A comparison of the amino acid composition of S. acidocaldarius and E. coli ATCase shows that only Gln occurs significantly less in the thermostable ATCase. As reported for the P. abyssi catalytic chain, more charged residues are found in S. acidocaldarius ATCase, especially residues Lys and Glu. In accordance with the general tendency, most of these extra charges are found at the surface of SaATCT. The catalytic chain has significantly more Tyr residues. As discussed above, several of them are found in the C1–R1 type interface of SaATCT. Although Pro is known to potentially hamper thermal unfolding by conferring more rigidity to surface loops, there are no important differences in proline content between the two enzymes.

Secondary structure elements

A small difference in α-helical content can be found for the regulatory subunits (Table 3). This higher α-helical content can be attributed to the extended C-terminal helix. In the catalytic monomers there are only small local differences in secondary structure.

α-Helix distortion can be a factor in protein stability, e.g. the presence of proline residues or β-branched residues (Val, Ile, Leu) can distort α-helix geometry. The numbers of these residues present in α-helices are comparable in E. coli and S. acidocaldarius. Helix dipole stabilization does not seem to be responsible for the higher thermal stability of S. acidocaldarius ATCase either.

Loops and N and C termini are usually the regions with the highest thermal factors in a protein crystal structure and it has been stated that they are likely to unfold first during thermal denaturation. In the SaATCT catalytic chain, the N and C-terminal regions (located on the surface of the molecule), are six and four residues shorter, respectively, than in E. coli. The N and C-terminal regions of the regulatory chain are three and six residues shorter in E. colí. In contrast to the P. abyssi catalytic subunit, loop shortening (compared to the E. coli ATCase) is not a general feature of the S. acidocaldarius ATCase (Figure 7).

Packing density and cavities

The packing densities of SaATCT catalytic and regulatory monomers were found to be very similar to those of EcATCT, EcATCR, and P. abyssi ATCase (Table 3). The search of probe-accessible cavities with the program VOIDOO led to the

Table 3. Comparative analysis of S. acidocaldarius, E. coli and P. abyssi ATCase subunit structures

<table>
<thead>
<tr>
<th></th>
<th>E. coli</th>
<th>S. acidocaldarius</th>
<th>P. abyssi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalytic subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>290</td>
<td>295</td>
<td>269</td>
</tr>
<tr>
<td>Per residue</td>
<td>0.93</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>Salt bridges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>Per residue</td>
<td>0.045</td>
<td>0.100</td>
<td>0.087</td>
</tr>
<tr>
<td>Aromatic pairs</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>VDW-volume</td>
<td>31,870</td>
<td>31,730</td>
<td>31,280</td>
</tr>
<tr>
<td>Packing density</td>
<td>0.74</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>Total ASA</td>
<td>13,271</td>
<td>12,839</td>
<td>13,358</td>
</tr>
<tr>
<td>Apolar ASA</td>
<td>7370</td>
<td>7106</td>
<td>6973</td>
</tr>
<tr>
<td>(Å²)</td>
<td>(55.5)</td>
<td>(55.2)</td>
<td>(52.2)</td>
</tr>
<tr>
<td>Regulatory subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
<td>94</td>
<td>116</td>
</tr>
<tr>
<td>Per residue</td>
<td>0.73</td>
<td>0.61</td>
<td>0.71</td>
</tr>
<tr>
<td>Salt bridges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Per residue</td>
<td>0.092</td>
<td>0.098</td>
<td>0.091</td>
</tr>
<tr>
<td>Aromatic pairs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VDW-volume</td>
<td>15,110</td>
<td>15,880</td>
<td>15,580</td>
</tr>
<tr>
<td>Packing density</td>
<td>0.75</td>
<td>0.76</td>
<td>0.75</td>
</tr>
<tr>
<td>Total ASA</td>
<td>8937</td>
<td>9596</td>
<td>8901</td>
</tr>
<tr>
<td>Apolar ASA</td>
<td>4448</td>
<td>5316</td>
<td>5095</td>
</tr>
<tr>
<td>(Å²)</td>
<td>(52.0)</td>
<td>(55.4)</td>
<td>(57.2)</td>
</tr>
</tbody>
</table>

ASA, accessible surface area; values between parentheses are percentages of total ASA.
identification of one cavity of 38.5 Å³ in the 240s region of EcATCT (24.1 Å³ in EcATCR) and a cavity with a volume of 47 Å³ at the C1–C4 type interface of EcATCT. In SaATCT a different Cα trace of residues 236–238, combined with the replacement by residues having bulkier side-chains (V160L, V230I, L235F, S238M, V243I and V248I, EcATCT numbering), results in denser packing and thus in the absence of the first cavity. The cavity volume calculated for the P. abyssi catalytic trimer is similar to that of EcATCT and EcATCR. Nevertheless, closer examination reveals that the cavity cited above is absent from P. abyssi ATCase (its Y248 side-chain is pointing into the cavity). The second cavity mentioned is lined by the residues that form the typical interactions of the C1–C4 interface in EcATCT. Due to the altered C1–C4 interface in SaATCT, this cavity is absent.

Figure 7. Sequence alignment of S. acidocaldarius and E. coli ATCase. Residues in boxes are conserved, residues shaded in black are strictly conserved. The secondary structure is indicated: β-strands are shown as arrows, 3_10-helices are represented by thinner coils than α-helices and labeled separately. (a) Catalytic chains of S. acidocaldarius (pyrB_S.) and E. coli (pyrB_E.). (b) Regulatory chains of S. acidocaldarius (pyrB_S.) and E. coli (pyrB_E.).
Hydrogen bonds, ion pairs and aromatic interactions

The total number of hydrogen bonds of the *S. acidocaldarius* and *E. coli* ATCase is not significantly different. Whereas the regulatory subunits contain an equal number of ion pairs, the catalytic subunits contain twice as many ion pairs compared to EcATCT. More important, however, is the presence of ion pair networks. In the SaATCT, 68% of the salt links are part of ion pair networks, in contrast with only 19% for EcATCT and 59% for EcATCR.

Five interacting aromatic pairs are detected in the SaATCT catalytic monomer. In comparison, the EcATCT and EcATCR and *P. abyssi* catalytic subunits contain two and four aromatic pairs, respectively (Table 3).

Accessible surface area (ASA)

A detailed comparison of the buried (total and apolar) surface areas of the different subunit interfaces can be found in Table 2. In order to obtain a better estimate of the degree of interaction between the domains within each subunit, an approximating calculation of the buried surface area between the domains was made. The result points out that the aspartate and carbamoyl phosphate domains have a more intimate contact compared to *E. coli* T state ATCase. Furthermore, the *S. acidocaldarius* ATCase has 19% more buried apolar surface area between its regulatory chain domains than the unliganded *E. coli* ATCase. This can be attributed to the extended C-terminal helix interacting with the allosteric domain instead of the R1–C4 type interface. The intimate contact between the allosteric and Zn-binding domains is further emphasized by the average crystallographic B-factors, which are more comparable for the two domains in SaATCT (32.4 Å² and 28.3 Å² compared to 45.9 Å² and 26.5 Å² for EcATCT).

Discussion

In a previous study the kinetic behavior of *S. acidocaldarius* ATCase, including Michaelian saturation kinetics for carbamoyl phosphate and homotropic cooperative interactions for aspartate, was found to be similar to that of the *E. coli* ATCase. In *E. coli* ATCase, two main structural and functional states are generally accepted to be present: a low affinity, low activity T state (EcATCT) and a high affinity, high activity R state (EcATCR). Based upon the overall quaternary structure and the absence of ligands known to induce the R state, the crystal structure of the unliganded ATCase of *S. acidocaldarius* described here is thought to represent the functional T state of SaATCT.

Comparison of the SaATCT and EcATCT structures shows that their quaternary organization is similar, i.e. [2c1 : 3r1]. Important structural differences occur in the N-terminal and 240s regions of the catalytic chains and the C-terminal region of the regulatory chains. The differences in the N-terminal region of the former chains are partially responsible for the weakening of the interactions between the subunits within the catalytic trimers (c3), explaining why *S. acidocaldarius* ATCase catalytic chains mostly remain monomeric in the absence of regulatory chains. This distinguishes the enzyme from the *E. coli* ATCase. A considerable transition to the trimeric state is observed in the presence of carbamoyl phosphate. In our crystal structure the 80s loop could not be modeled due to a lack of electron density. Possibly, carbamoyl phosphate can move the 80s loop in an active conformation at the interface between monomers, thus stabilizing the monomer–monomer interactions.

Upon the T to R state transition in *E. coli*, the two domains of the catalytic chains move closer to each other, bringing the active site residues in their high affinity, high activity conformation. It has been shown for *E. coli* ATCase that weakening of the C1–C2 type interface promotes this domain closure. The C1–C2 type interface is weakened in the SaATCT structure, bringing the two domains closer to each other. Therefore, even though the overall quaternary structure is consistent with a T state ATCase, the SaATCT catalytic chain conformation is intermediate between EcATCT and EcATCR.

Large conformational differences between the 240s regions of *S. acidocaldarius* and *E. coli* ATCase have marked effects on the C1–C4 and R1–C4 type interfaces. It has been proposed that because of steric hindrance, domain closure in one catalytic chain in *E. coli* cannot occur without some change in the quaternary structure of the enzyme, making the elongation of the enzyme a necessary feature of the allosteric transition. This elongation requires the breaking of the T state intersubunit interactions involving D236(C) and E239(C). When the side-chain of either of these residues is replaced by uncharged substitutes, the net results are the inability of the *E. coli* enzyme to exist in the T state, and the formation of a new structural state that is neither T nor R. In SaATCT the important interactions E239(C1)–K164(C4), E239(C1)–Y165(C4) and D236(C4)–K143(R1) are absent and although a shift can be seen at the C1–C4 type interfaces towards the *E. coli* R state, the *S. acidocaldarius* holoenzyme still shows homotropic cooperativity between the catalytic sites, which can be explained by the existence of two distinct functional states. The unique D229(C1)–R190(C4) salt bridges therefore are likely to be major contributors to the stabilization of the low affinity, low activity state of *S. acidocaldarius* ATCase. A unique feature observed in this crystal structure is the existence of a C1–R2 type of interface which is a potentially stabilizing factor for the T state of *S. acidocaldarius* ATCase. An extensive ion pair network connects...
this novel interface with three other interface types (C1–C2, C1–R1 and C1–R2).

The R1–C4 type of interface is important for homotropic cooperativity in E. coli ATCase. More specifically, it is thought that the intersubunit link involving D236(C) is important for the stabilization of the 240s loop in its tight-state position. In SaATCT, this link is not present due to structural changes in the C-terminal region of the regulatory chain. This may again explain why the 240s loop in SaATCT cannot be held in the same position as in EcATCT, and why the catalytic chain domains are located closer to each other in the unliganded enzyme.

Although similar in kinetic behavior, S. acidocaldarius ATCase exhibits a different regulation pattern compared to the E. coli enzyme. All nucleoside triphosphate effectors activate the Sulfolobus holoenzyme, whereas E. coli ATCase is synergistically feedback inhibited by the end products CTP and UTP, and activated only by ATP. Studies on hybrid enzymes built from regulatory and catalytic polypeptides of ATCases with divergent functional characteristics established that the regulatory subunits determine the type of allosteric regulatory properties exhibited by the holoenzyme. For a signal to propagate from the nucleotide binding site to the active site, it must pass through different interfaces. Mutagenesis studies have assessed the importance of different regions in these interfaces in the modulation of the heterotropic effects, but no clear signal transduction pathways have been described.

When comparing the structures of SaATCT and EcATCT/R, considerable differences are found in all of these regions, especially in the allosteric-zinc domain interface and the contact regions between the regulatory and catalytic chains (C1–R1 and R1–C4 type interfaces). It has been described that replacing D236(C) with an alanine in E. coli ATCase results in the elimination of heterotropic interactions, which suggests that the D236(C)–K143(R) interaction at the R1–C4 interface may function to transmit heterotropic signals. Furthermore, it has been suggested that the interactions between residues 146 to 149 of the regulatory chain and the 240s loop region of the catalytic chain might be important in the modulation of the ATP effect. Since S. acidocaldarius is a hyperthermophilic archaeon thriving at temperatures around 80 °C, its ATCase is highly thermostable. Despite the high thermostability, we find that the C1–C2 type is drastically weakened. This contrasts with the recently reported findings on the catalytic subunit trimer structure of P. abyssi ATCase, where this interface is stronger than in E. coli. Therefore, the stability of the holoenzyme has to be achieved through the association of the catalytic and the regulatory subunits whose main interaction area is situated at the C1–R1 type interfaces. A comparison of this type of interface in the EcATCT and SaATCT shows that the apolar fraction of the buried surface area is higher in SaATCT, in agreement with a stabilized interface. In EcATCT/R, the regulatory chains are considerably less thermostable than the catalytic subunits. In comparison with the catalytic chains, the regulatory chains are indeed more loosely organized in terms of tertiary structure. Whereas the catalytic chain domains are connected by two polypeptide chains and several non-covalent interactions, the regulatory chain domains are connected by one polypeptide chain and contain considerably less non-covalent interdomain interactions. Consequently, thermo-adaptation of ATCases with regulatory chains should have required more substantial modifications of the regulatory chains than of the catalytic chains.

The SaATCT and EcATCT regulatory chains are indeed more divergent than their catalytic chains. The regulatory chain C terminus of SaATCT is extended in comparison to EcATCT. This region is stabilized in SaATCT due to the presence of extra secondary and tertiary structural features at the allosteric-zinc domain interface, including an increase in buried hydrophobic surface. Due to this rearrangement of the C terminus, the R1–C4 interface is substantially weakened compared to EcATCT. This does not necessarily reduce the overall thermostability, because weakening of the R1–C4 interface has been shown to be possible without decreasing the overall thermostability of E. coli ATCase. Overall, we can therefore hypothesize that the C1–R1, the allosteric-zinc and the novel C1–R2 type interfaces are important for thermostability, whereas C1–C2 and R1–C4 interfaces can even be weaker.

We further analyzed a number of other factors...
Materials and Methods

Crystallization

Protein purified following a method described earlier\(^\text{37}\) was used to grow crystals with the hanging-drop, vapour-diffusion technique at 293 K. Protein solution (1 μl) (10 mg/ml in 100 mM sodium phosphate buffer (pH 7.3), 2 mM β-mercaptoethanol, 0.2 mM EDTA) was mixed with 1 μl of reservoir solution (100 mM sodium acetate (pH 4), 30% saturated ammonium sulfate). Within three to four days large crystals (0.6 mm × 0.3 mm) with the shape of a hexagonal prism appeared, which often had smooth edges that gave the crystals an egg-like appearance. Crystals obtained at a higher pH diffracted to lower resolution.

Data collection

Selected crystals were transferred to a solution containing 20% (v/v) glycerol in mother liquor prior to flash-cooling in liquid nitrogen. The X-ray diffraction data were collected on a MAR CCD (MAR Research) detector system on the XRD synchrotron beamline at the ELETTRA synchrotron in Trieste using radiation with a wavelength of 1.00 Å. Data collection was performed at 100 K on a single crystal. A high-resolution dataset was collected to 2.5 Å, followed by a low-resolution dataset to 2.8 Å. Data processing was carried out using the programs DENZO and SCALEPACK.\(^\text{69}\) The diffraction intensities were scaled and merged to 2.6 Å resolution using the program SCALEPACK. Intensities were converted into amplitudes using the program TRUNCATE from the CCP4 suite.\(^\text{70}\) The full data collection statistics are presented in Table 1.

Structure determination

One catalytic subunit of the E. coli ATCase (PDB 8AT1) served as a starting model for solving the structure by molecular replacement. Rotation and translation searches have been performed using the program AMoRe\(^\text{3}\) and the best solution calculated had a correlation coefficient of 54.9 and an R-factor of 49.8% in the resolution range 20–3.5 Å. Cycles of rigid body refinement were performed using the program Refmac of the CCP4 package.\(^\text{70}\) Visual inspection of the resulting maps revealed interpretable electron density for most secondary structure elements of the catalytic subunit. Alternating rounds of simulated annealing refinement according to the slow-cooling protocol of CNS\(^\text{2}\) and model building using TURBO-FRODO\(^\text{3}\) resulted in maps with a clear density in the regions corresponding to the ATCase regulatory chain. In the final stages of refinement, Refmac was used for ARP-water cycling to refine the solvent structure, in combination with TLS refinement.\(^\text{74}\) Although the density is good for both subunits, exceptions occur in solvent-exposed loops. Specifically the electron density in residues 28–31 and 225–226 of the catalytic subunit and in residues 11–14 and 38–44 of the regulatory subunit is weak. Residues 74–80 of the catalytic subunit and residues 1–10, 40–41 and 161–164 of the regulatory subunit were not modeled due to absence of electron density.

Structure analysis

PDB entries 6AT1 and 1D09 were chosen as T and R state models of the E. coli ATCase for molecular comparison with S. acidocaldarius ATCase. PDB entry 1ML4 was used for molecular comparison with the P. abyssi ATCase catalytic subunit. Structure validation was performed with the program PROCHECK;\(^\text{75}\) secondary structure was assigned using DSSP.\(^\text{76}\) Hydrogen bonds between protein atoms were calculated with the program HBPLUS\(^\text{77}\) with the default parameters for distance and angles. The presence of salt-bridges was inferred when Asp or Glu side-chain carbonyl oxygen atoms were found to be within a 4.0 Å distance from the nitrogen atoms in Arg, Lys and His side-chains. We defined an interacting aromatic pair as one for which the distance between phenyl ring centroids was less than 7 Å and with dihedral angles within 30° of 90°.\(^\text{78}\) Accessible surface areas were calculated with the programs ACCESS and ACCFMT.\(^\text{79}\) Probe-accessible cavity volumes were searched with the program VOIDOO\(^\text{80}\) using a 1.2 Å probe radius and a minimum volume of 10 Å\(^3\), corresponding to “real” cavities as described.\(^\text{81}\) VOIDOO was also used for van der Waals volume determination of the proteins. The real volumes were calculated by the Voronoi procedure\(^\text{82}\) using the programs ACCESS and VOLUME.\(^\text{79}\) The packing density was calculated as the ratio of the van der Waals volume to the real volume.
Figures were prepared with MOLSCRIPT⁸³ and rendered with Raster3D⁸⁴.

Protein Data Bank accession number

The coordinates of the *S. acidocaldarius* T state ATCase have been deposited in the RCSB Protein Data Bank, with accession code 1PGS.

Acknowledgements

This research has been supported by the Fund for Scientific Research-Flanders (grants 3G006896 and 3G044899). D. De V. is a research fellow of the same institution. We acknowledge the use of the XRD beamline at the ELETTRA synchrotron, Trieste.

References

25. Gouaux, J. E., Stevens, R. C. & Lipscomb, W. N.
(1990). Crystal structures of aspartate carbamoyltransferase ligated with phosphonoacetamide, malonate and CTP or ATP at 2.8 Å resolution and neutral pH. Biochemistry, 27, 7002–7175.

Edited by R. Huber

(Received 4 November 2003; received in revised form 24 March 2004; accepted 26 March 2004)
Expression, purification, crystallization and preliminary X-ray crystallographic studies of a cold-adapted aspartate carbamoyltransferase from *Moritella profunda*
Expression, purification, crystallization and preliminary X-ray crystallographic studies of a cold-adapted aspartate carbamoyltransferase from *Moritella profunda*

Aspartate carbamoyltransferase (ATCase) catalyzes the carbamoylation of the α-amino group of L-aspartate by carbamoyl phosphate (CP) to yield N-carbamoyl-L-aspartate and orthophosphate in the first step of de novo pyrimidine biosynthesis. Apart from its key role in nucleotide metabolism, the enzyme is generally regarded as a model system in the study of proteins exhibiting allosteric behaviour. Here, the successful preparation, crystallization and diffraction data collection of the ATCase from the psychrophilic bacterium *Moritella profunda* are reported. To date, there is no structural representative of a cold-adapted ATCase. The structure of *M. profunda* ATCase is thus expected to provide important insights into the molecular basis of allosteric activity at low temperatures. Furthermore, through comparisons with the recently reported structure of an extremely thermostable ATCase from *Sulfolobus acidocaldarius*, it is hoped to contribute to general principles governing protein adaptation to extreme environments. A complete native data set to 2.85 Å resolution showed that the crystal belongs to space group P3_{2}1, with unit-cell parameters \(a = 129.25\), \(b = 129.25\), \(c = 207.23\) Å, \(\alpha = \beta = 90\), \(\gamma = 120^\circ\), and that it contains three catalytic and three regulatory subunits per asymmetric unit. The three-dimensional structure of the *Escherichia coli* ATCase was sufficient to solve the structure of the *M. profunda* ATCase via the molecular-replacement method and to obtain electron density of good quality.

1. Introduction

Aspartate carbamoyltransferase (ATCase; EC 2.1.3.2) catalyzes the carbamoylation of the α-amino group of L-aspartate by carbamoyl phosphate (CP) to yield N-carbamoyl-L-aspartate and orthophosphate in the first step of de novo pyrimidine biosynthesis. Apart from its key role in nucleotide metabolism, this enzyme is generally regarded as a model system in the study of proteins exhibiting allosteric behaviour. In this regard, the ATCase from *Escherichia coli* has been the subject of extensive structural and biochemical studies (reviewed in Alleviwell, 1989; Lipscomb, 1994; Helmhasteda et al., 2001). The *E. coli* ATCase consists of catalytic chains encoded by the pyrB gene and regulatory chains encoded by the pyrl gene. The catalytic chains, organized into trimers (\(c_{3}\)), and the regulatory chains, organized into dimers (\(r_{2}\)), combine to form a dodecameric complex with the subunit composition \(2(c_{3})\cdot3(r_{2})\). ATCase exists in different quaternary structures in different organisms. For example, in *Bacillus subtilis* the enzyme exists as a trimer of catalytic chains without any regulatory chains (Lerner & Switzer, 1986).

The X-ray structure of the dodecameric enzyme from *E. coli* has been determined in both the absence and presence of substrates/inhibitors/products (Kim et al., 1987; Ke et al., 1988; Gouaux & Lipscomb, 1988, 1990; Gouaux et al., 1990; Jin et al., 1999; Huang & Lipscomb, 2004). Furthermore, a low-resolution C′ trace of the *B. subtilis* enzyme is also available (Stevens et al., 1991). Recently, we reported the first structure of the intact (unliganded) dodecameric ATCase from a hyperthermophilic organism (De Vos et al., 2004). To date, however, the three-dimensional structure of a cold-adapted ATCase is an important missing component in our understanding of extremophilic proteins. The structure of a psychrophilic ATCase would thus lead to a better understanding of cold activity and thermolability of enzymes in general and in particular in relation to...
allosteric regulation. Furthermore, structural characterization of psychrophilic enzymes may provide clues on how to improve their stability at higher temperatures while maintaining their flexibility in a colder environment, a feature that may be useful in many biotechnological applications (Gerday et al., 2000).

Here, we report the successful expression, purification, crystallization and structure determination of the ATCase from Motillia profunda, a psychrophilic eubacterium isolated from deep Atlantic sediments. The pyrB and pyrI genes of M. profunda were isolated previously by complementation of an E. coli pyrBI mutant; they show sequence identities of 74 and 52%, respectively, with their E. coli counterparts (Xu, 2002). Based on this, tertiary and quaternary structures similar to the E. coli ATCase were expected for the M. profunda enzyme. We have now been able to determine the structure of M. profunda ATCase using maximum-likelihood methods as implemented in the recently launched program Phaser v1.2 (Storoni et al., 2004). We have identified three copies of the catalytic chain and three copies of the regulatory chain in the asymmetric unit. Model building and refinement of the structure are under way.

2. Materials and methods
2.1. Protein preparation

The cloning of the pyrB and pyrI genes of M. profunda by complementation of an E. coli pyrBI mutant has been described previously (Xu, 2002). These genes were subsequently inserted into the expression plasmids pET-Duet and pACYC-Duet (Novagen), which are designed to coexpress two target genes using separate promoters. The pyrB gene was cloned for production of the catalytic chain with an N-terminal 6xHis tag containing the sequence MGSSHHHHHHSSDQPS. When transformed into E. coli BL21(DE3), both constructs resulted in substantial amounts of recombinant protein. SDS–PAGE analysis revealed that similar amounts of catalytic and regulatory chain were present. Comparison of the protein expressed in the native host with the recombinant protein shows that they display very similar functional properties (work to be published). A 10 ml volume of an overnight 301 K starter culture was inoculated into 1 Luria–Bertani medium (Sambrook et al., 1989) at the same temperature. When the culture medium reached an optical density (at 600 nm) of 0.5, isopropyl-β-d-thiogalactoside (IPTG) was added to a final concentration of 0.5 mM, after which the culture was incubated overnight at 288 K. The cell pellet obtained after centrifugation was resuspended in 50 mM Tris–HCl containing 300 mM NaCl at a final pH of 8.0 (buffer A). The cells were lysed by sonication and the cell-free supernatant was loaded onto an Ni–NTA column (Qiagen). After washing the column with buffer A containing 10 mM imidazole, the protein was eluted with buffer A containing 250 mM imidazole. The protein was then further purified to homogeneity on a Superdex-200 size-exclusion column (Amersham) and the quality of the purification was evaluated with SDS–PAGE (Fig. 1). The high NaCl concentration in buffer A served mainly to prevent precipitation of the recombinant ATCase on the Ni–NTA column.

2.2. Crystallization and data collection

Owing to the temperature lability of the enzyme, all crystallization trials were performed at 277 K. Because the protein precipitates at lower temperatures, it was stored at this temperature at a concentration of 10 mg ml⁻¹ in 5 mM Tris–HCl with 30 mM NaCl at a final pH of 8.0. Under these conditions, the protein is stable and retains its activity for at least six months. Crystallization experiments were performed using the hanging-drop vapour-diffusion method. Drops were prepared by mixing equal volumes of protein solution and precipitant solution and were allowed to equilibrate against 500 μl reservoir solution.

Selected crystals were transferred to a solution containing 20% (v/v) glycerol in mother liquor prior to flash-freezing by plunging directly into liquid nitrogen. From crystals tested on our in-house FR591 rotating-anode generator (Bruker–Nonius), those diffracting the best were selected for further testing with synchrotron radiation. X-ray diffraction data were collected at a wavelength of 0.92 Å at beamline BW7A (DESY, EMBL, Hamburg Outstation, Germany) using a MAR CCD (MAR Research) detector system. A native data set was collected from a single crystal. The crystal-to-detector distance was 220 mm. A total of 240 rotation images were collected with an oscillation angle of 0.5°. Data processing was carried out using the programs DENZO and SCALEPACK (Otwinowski & Minor, 1997). The diffraction intensities were indexed using the program DENZO and were scaled and merged to 2.85 Å resolution using the program SCALEPACK. Intensities were converted into structure-factor amplitudes using the program TRUNCATE from the CCP4 suite (Collaborative Computational Project, Number 4, 1994).

Figure 1
SDS–PAGE analysis of recombinant M. profunda ATCase. Lane 1, purified enzyme. Molecular standards (kDa) are indicated by M.

Figure 2
Trigonal crystals of the M. profunda ATCase. The crystals grew as rhombohedra with typical dimensions of 0.3 x 0.3 x 0.3 mm.
Table 1
X-ray data-collection statistics.
Values in parentheses refer to the highest resolution shell.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P3221</td>
</tr>
<tr>
<td>Unit-cell parameters (Å, °)</td>
<td>a = b = 129.25, c = 207.23, α = β = γ = 90.0</td>
</tr>
<tr>
<td>Packing density Vm (Å³ Da⁻¹)</td>
<td>3.1</td>
</tr>
<tr>
<td>Solvent content (%)</td>
<td>60.5</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50.0–2.85 (2.93–2.85)</td>
</tr>
<tr>
<td>Ns of unique reflections</td>
<td>45065 (3817)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>6.7 (6.8)</td>
</tr>
<tr>
<td>Rint (%)</td>
<td>14.9 (53.6)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>98.1 (97.3)</td>
</tr>
</tbody>
</table>

* Rint = Σ Σ |h(h,i) − ⟨h(h)⟩|/Σ Σ |h(h,i)|, where h(h,i) is the intensity of the ith measurement of reflection h and ⟨h(h)⟩ is the average value over multiple measurements.

3. Results and discussion

From an initial screening of crystallization conditions with Structure Screen 1 (Molecular Dimensions Ltd), five conditions were found that produced crystals (conditions 27, 30, 32, 44 and 45). Except for condition 45 (4.0 M sodium formate), all other conditions contained lithium or ammonium sulfate as the precipitant. Starting from condition 32 (0.1 M Tris pH 8.5, 2.0 M ammonium sulfate), the buffer pH and precipitant concentration were optimized. Lowering the ammonium sulfate concentration to 1.5 M was sufficient to provide crystals that grew overnight to dimensions of 0.3 × 0.3 × 0.3 mm (Fig. 2). Crystals could be obtained within the pH range 7.0–8.5 and their quality did not vary in a pH-dependent manner. The relative ease with which the *M. profunda* ATCase crystallizes challenges the general notion that cold-adapted proteins are difficult to crystallize because of inherent flexibility. Similar cases have been reported in the past (Villeret et al., 1997; Van Petegem et al., 2002).

A complete data set was collected to 2.85 Å resolution using a single crystal grown at pH 8.0. The full data-collection statistics are presented in Table 1. Assuming a subunit molecular weight for the catalytic and regulatory chains of 36 152 and 16 899 Da, respectively, and assuming three copies of each chain in the asymmetric unit, the solvent content of the crystal was 60.5%, with a volume-to-weight ratio of 3.1 Å³ Da⁻¹. These values are within the frequently observed ranges for protein crystals (Matthews, 1968).

One subunit of the *E. coli* ATCase catalytic chain (Stevens et al., 1990; PDB code 6at1) served as the starting model for solving the structure by molecular replacement using maximum likelihood methods implemented in the program PHASER v1.2 (Storoni et al., 2004). In a fully automated rotational and translational search, three copies of the catalytic chain with reasonable packing could be located in the asymmetric unit. Three copies of the smaller regulatory subunits could also be located. This was performed by refeeding PHASER with the catalytic chain after a first round of model refinement and searching with the *E. coli* ATCase regulatory chain (PDB code 6at1). Furthermore, we were able to resolve the ambiguity between the enantiomorphic space groups P3221 and P32121 in favour of the second. After applying the crystallographic symmetry operations of space group P3221, we found that the positions of the catalytic and regulatory chains correspond well with their position in the *E. coli* ATCase dodecameric complex. Combining this with the result from size-exclusion chromatography and with our finding that the regulatory chains were co-purified on Ni–NTA in equal amounts with the histidine-tagged catalytic chains suggests that the *M. profunda* ATCase quaternary organization is in agreement with that of *E. coli*, i.e. 2(c):3(r). Initial electron-density maps revealed several unique structural features of *M. profunda* ATCase compared with the search models and thus confirmed the correctness of our solution. Model building and refinement of this structure are under way.

We gratefully acknowledge access to EMBL beamline BW7A at the DORIS storage ring, DESY, Hamburg. DDV is a Research Fellow of the Research Foundation-Flanders (FWO-Vlaanderen).

References

6 Structural basis for cold activity and regulation

Biochemical properties and crystal structure of aspartate carbamoyltransferase from the psychrophilic bacterium *Moritella profunda*
STRUCTURAL BASIS FOR COLD ACTIVITY AND REGULATION: BIOCHEMICAL PROPERTIES AND CRYSTAL STRUCTURE OF ASPARTATE CARBAMOYLTRANSFERASE FROM THE PSYCHROPHILIC BACTERIUM MORITELLA PROFUNDA*

Dirk De Vos§, Bjorn Vergauwen§, Paco Hulpiau§, Ying Xub, Nicolas Glansdorfb and Jozef J. Van Beeumen$*

§From the Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
$From the Laboratory of Microbiology, Free University of Brussels (VUB) and J.M. Wiame Research Institute 1, ave E. Gryzon, B-1070, Brussels, Belgium

Running title: Psychrophilic ATCase of Moritella profunda

Aspartate carbamoyltransferase (EC 2.1.3.2) is extensively studied as a model for cooperativity and allosteric regulation. The structure of the Escherichia coli enzyme has been thoroughly analyzed by X-ray crystallography, and recently the crystal structures of two hyperthermophilic ATCases of the same structural class have been characterized. We here report the detailed functional and structural investigation of the ATCase from the psychrophilic deep sea bacterium Moritella profunda. Our analysis indicates that the enzyme conforms to the E. coli model in that two allosteric states exist that are influenced by similar homotropic interactions. The heterotropic properties differ in that CTP and UTP inhibit the holoenzyme, but ATP seems to exhibit a dual regulatory pattern. The crystal structure of the unliganded M. profunda ATCase structure shows resemblance to a more extreme T state reported previously for an E. coli ATCase mutant. A detailed molecular analysis reveals potential features of adaptation to cold activity and cold regulation. Finally, structural and functional comparison of ATCases across the full physiological temperature range demonstrates the important, but fundamentally different role for electrostatics in protein adaptation at both extremes.

Aspartate carbamoyltransferase (ATCase; E.C. 2.1.3.2) is one of the most widely studied allosteric enzymes (1-4). ATCase catalyzes the first reaction in the pyrimidine biosynthetic pathway, the reaction of carbamoyl phosphate with aspartate to form phosphate and N-carbamoyl-L-aspartate (5). Since Yates and Pardee (6) observed that the enzyme from Escherichia coli is subject to feedback inhibition, there has been an intense effort to determine and understand the regulatory mechanism of this enzyme. In addition to heterotropic control, the enzyme also exhibits positive homotropic interactions between catalytic sites (7,8).

The enzyme is a dodecamer of 310 kDa, comprising six catalytic chains (34 kDa each) which assemble to form two catalytic trimers, and six regulatory chains (17 kDa each) which assemble to form three regulatory dimers. The X-ray structure of the enzyme reveals that both the catalytic and regulatory chains are composed of two folding domains. The aspartate and carbamoyl phosphate domains of the catalytic chain are responsible for binding the substrates aspartate and carbamoyl phosphate, respectively, while the allosteric and zinc domains of the regulatory chain are responsible for binding the substrates aspartate and carbamoyl phosphate, respectively.

Changes at the tertiary level include the closure of the carbamoyl phosphate and aspartate domains to form the active site, as well as the rearrangement of the 80s and 240s loops (9).
A number of structure-function studies have been carried out on B-class (10,11) ATCases, mostly programmed around the paradigm enzyme from *E. coli*. In two cases, other B-class ATCases were concurrently analyzed structurally and functionally, with both enzymes originating from (hyper)thermophilic organisms (12-14). We here report the first crystal structure of an ATCase from a cold-adapted organism, *Moritella profunda*, in combination with a characterization of its steady-state kinetics and allosteric behavior.

M. profunda is a psychrophilic γ-proteobacterium isolated from deep sea sediments, with an optimal growth temperature of ~2 °C (15). *E. coli* and *M. profunda* ATCases display high amino acid sequence identities both for the catalytic and regulatory chains (73 % and 53 %, respectively), thus providing a good starting point to elucidate the molecular determinants of cold-activity which are still poorly understood (16). Recent interest in the isolation and understanding of psychrophilic enzymes has been spurred by their biotechnological potential (17). Indeed, to provide their hosts with sufficient catalytic power, enzymes from psychrophiles must be highly active at low temperatures. However, to survive such extreme growth conditions, these enzymes must also retain their regulatory properties. Both functional characteristics are shown here to be valid for the *M. profunda* ATCase. Given the complex allosteric behavior of the *E. coli* enzyme (cfr. effector signals influencing remote sites at distances of over 60 Å), the question indeed arises how this dynamic system is able to sustain its intricate regulatory characteristics at low temperatures.

EXPERIMENTAL PROCEDURES

Biochemical reagents

All biochemical reagents used in this study were from Sigma-Aldrich (St-Louis, MO), unless indicated otherwise.

Cloning, expression and purification

The *M. profunda pyrBI* genes were cloned and recombinantly expressed in *E. coli* as described previously (18), which also describes the purification scheme for the recombinant His-tagged ATCase. Purified ATCase was stored in 50 mM Tris-HCl buffer, pH 7.5, containing 300 mM NaCl, at 4°C. When stored under these conditions, the enzyme did not lose activity for at least 6 months. Protein concentration was determined using the Bradford (19) colorimetric protein assay of Bio-Rad Laboratories (Hercules, CA), using bovine serum albumin (BSA) as the standard.

Bacterial strains, culture conditions, and preparation of native ATCase

M. profunda LMG 21259 (15) was obtained from the BCCM Culture Collection of the Laboratory of Microbiology at the Ghent University, Ghent, Belgium. *M. profunda* was grown in rich Marine broth 2216 (Difco, BD Biosciences, Cockeysville, MD), pH 7.6, at 8 °C, in a 7-L fermentor vessel (Applitek, Nazareth, Belgium) at an aeration rate of about 100 ml min⁻¹ liter⁻¹, until late exponential phase. Cells were collected by centrifugation (15,000 x g, 15 min, 4 °C), resuspended in buffer A (50 mM Tris-HCl, pH 7.5, 300 mM NaCl) and disrupted by sonication (Branson sonifier, model 450) using a 2-s pulses at 2-s intervals routine at 30% of the maximum intensity. The crude cell lysate was centrifuged for 30 min, at 15,000 x g and 4 °C, after which the supernatant was applied onto a desalting column (HiPrepTM 26/10 Desalting Column (Amersham Pharmacia Biotech, Uppsala, Sweden); 10 ml/min), pre-equilibrated with buffer A. The protein eluate was collected, quantitated using the Bio-Rad Bradford protein assay, and used immediately as a source of native ATCase in enzyme assays.

Enzyme assays

ATCase activity was measured using the colorimetric method of Prescott and Jones (20). Absorptions at 2.5 min intervals for 10 min were measured at 466 nm using an Uvikon 943 UV-visible double beam spectrophotometer (Kontron Instruments, Watford, UK). Progress curves were linear in this time frame. Both recombinant His-tagged and native ATCase aggregate in the absence of NaCl. Unless otherwise indicated, assays were therefore performed in 50 mM Tris-HCl buffer, pH 7.5, containing 300 mM NaCl, which creates an ionic strength that should closely resemble that of the interior of marine organisms (21). L-Asp saturations were performed in the presence of 5 mM CP. CP saturations were performed in the presence of 300 mM L-Asp. Saturation curves were fitted to
the Hill equation using a non-linear curve fitting routine (Graphpad PRISM 4.0 software package). The experiments were performed in duplicate; mean values for kinetic parameters are reported with errors representing the standard error of the mean (SEM).

One enzyme unit (U) is defined as the amount of protein that converts 1 µmol substrate to product per h.

Structure refinement

The crystallization, data collection and structure solution of the unliganded MpATC have been described previously (18). The structure of the unliganded Mortiella profunda ATCase (referred to as MpATC) was refined starting from the C1 and R1 chains of the unliganded *E. coli* ATCase (referred to as EcATC, pdb entry 6AT1), using the program REFMAC (22) (Collaborative Computational Project Number 4, 1994 (23)) by monitoring the convergence of R_{work} and R_{free} (Table 2). Inspection of electron density maps and model refinement were carried out with TURBO-FRODO (created by Roussel and Cambillau (1992); http://www.afmb.univ-mrs.fr/~TURBO-) and side chains with missing electron density were not modelled. In the final stages TLS refinement, as implemented in Refmac, was used to further improve the electron density in ill-defined regions (with 9 TLS groups corresponding to three catalytic chains, three zinc domains and three allosteric domains). After refinement of the protein, ligand and water molecules were built into the remaining difference density of the $F_o - F_c$ electron density maps, followed by further refinement and editing of the waters. Refinement statistics (shown in Table 2) indicate high average crystallographic B factors. The quality of the electron density, however, in general is as can be expected for a crystal structure at this resolution. Residues missing from the final model are the N-terminal affinity tag including the first residue of the catalytic chains, and regions with less well-defined electron density for side chains are the 80s and 240s loops. The electron density of the N-terminal allosteric domains of the regulatory chains is of lower quality than can be expected at this resolution (esp. chain F) and were therefore excluded from certain analyses of thermal stability.

Protein Data Bank accession codes

Atomic coordinates and related structure factors have been deposited in the RCSB Protein Data Bank, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/) with identification code 2BE7.

RESULTS

Sequence analysis

Unless stated differently, PDB entry 6AT1 was chosen as T state model of the *EcATC* for molecular comparison with *MpATC*. Structural superpositions were performed using LSQKAB (Collaborative Computational Project Number 4, 1994 (23)). Secondary structure was assigned using DSSP (25). Hydrogen bonds between protein atoms were calculated using the program HBPLUS (26) with the default parameters for distance and angles. The presence of salt-bridges was inferred when Asp or Glu side-chain carbonyl oxygen atoms were found to be within a 4.0 Å distance from the nitrogen atoms in Arg, Lys and His side-chains. Accessible surface areas were calculated with the programs ACCESS and ACCFMT (27). Probe-accessible cavity volumes were searched with the program VOIDOO (28) using a 1.2 Å probe radius and a minimum volume of 10 Å³, corresponding to ‘real’ cavities according to Hubbard and Argos (29). VOIDOO was also used for van der Waals volume determination of the proteins. The real volumes were calculated by the Voronoi procedure (30), using the programs ACCESS and VOLUME (27). The packing density was calculated as the ratio of the van der Waals volume to the real volume. Figures were prepared with the program PYMOL (31). Electrostatic surface potential representations were generated by PYMOL from pdb entries 2BE7 for *MpATC*, 6AT1 for *EcATC* and 1PG5 for *SaATC*, after adding missing side chains with the program DEEPVIEW/SWISS-PDBVIEWER 3.7 (32).
Cloning and expression of Mortella profunda pyrB and PyrI genes have been described previously (18). Comparison of deduced amino acid sequences clearly shows homology to ATCases from mesophilic and thermophilic bacteria, from psychrophilic archaea and from eukaryotes. High sequence identities were seen on comparison with enterobacterial ATCases, E. coli in particular (identities of 73 % and 53 % for pyrB and pyrI gene products, respectively; Fig. 1). Sequence identities with the ATCases from hyperthermophilic archaea that also share the pyrBI pattern of genetic organisation were about 20 % lower, but this still gives 45-50 % identity for the catalytic chain (e.g. 45 % for the S. acidocaldarius ATCase) and about 25-35 % identity for the regulatory chain (e.g. 28 % for S. acidocaldarius ATCase).

Resistance to thermoinactivation

The protein stability of the psychrophilic recombinant M. profunda holoenzyme ATCase was measured by determining the residual activity at 4 °C after incubation for increasing periods at temperatures ranging from 50 to 65 °C (Fig. 2). More than 50 % activity remained after incubating the enzyme for one hour at 55 °C. However, 10 min at 65 °C almost completely inactivated the enzyme. For a comparison, a 40 min incubation period of the EcATC holoenzyme at 66 °C resulted in half maximal velocity (33). These results therefore indicate that the M. profunda enzyme is characterized by a lowered resistance to thermoinactivation compared to the E. coli ATCase.

Temperature dependence of enzyme activity

Under laboratory conditions, the maximal growth rate of M. profunda is at 2 °C or less, and no growth has been observed above 13 °C (15). At 4 °C, the psychrophilic ATCase was ~5.6 times more active than the E. coli enzyme (77.9 µmol min⁻¹ mg⁻¹ vs. 14.0 µmol min⁻¹ mg⁻¹), while both enzymes are comparably active at 30 °C.

Steady-state saturation kinetics

Table 1 depicts the steady-state kinetic parameters for the recombinant MpATC holoenzyme, which were determined under physiologically relevant conditions (i.e. 50 mM Tris-HCl buffer, 300 mM NaCl, pH 7.5, and 4 °C). For comparison, Table 1 also includes kinetic parameters for a mesophilic (E. coli) and for a hyperthermophilic ATCase (Pyrococcus abyssi). For the EcATC holoenzyme, cooperativity is apparent for both CP and L-Asp; however, L-Asp saturation curves are more sigmoidal (nH between 1.7 and 2.2) than carbamoyl phosphate (CP) saturation curves (nH of ~1.2). These differences in cooperativity reflect the ordered BiBi binding of substrates (34); CP binds before L-Asp, and carbamoyl-aspartate is released before inorganic phosphate (35). The L-Asp and CP saturation curves for the psychrophilic ATCase of M. profunda are shown in Fig. 3; both curves are S-shaped, with nH,Asp > nH,CP, indicating an E. coli-like mechanism of substrate binding. While the S0.5-values for CP are more comparable, those for L-Asp increase in the following order: thermophile (2.3 mM) < mesophile (7.5 mM) < psychrophile (101 ± 10 mM).

The foregoing indications for cooperative rather low-affinity L-Asp binding are corroborated by the N-phosphonacetyl-L-aspartate (PALA) inhibition titration curves shown in Fig. 4. In the presence of lower than half-saturating L-Asp concentrations, PALA stimulates the activity of the E. coli ATCase: while PALA blocks the sites which it occupies, it converts the remaining sites to a more active state, resulting in an increase in activity (36). Whereas at the S0.5-concentration of 100 mM only direct inhibition by PALA can be observed, at 1/5 of this L-Asp-concentration the M. profunda ATCase reaction was stimulated more than 100%, indicating E. coli-like cooperativity towards L-Asp. The concentration range (10-80 µM) at which PALA stimulated the psychrophilic reaction was 10-fold that at which the E. coli enzyme is activated by the inhibitor (1-8 µM), which is in agreement with the (~10-fold) difference in the enzymes’ S0.5-values for L-Asp.

Saturation by the nucleotide effectors

EcATC is inhibited by CTP and UTP and activated by ATP, all nucleotides acting in the high micromolar range. Titration curves by these nucleotide effectors are shown in Fig. 5 for the MpATC and the results are summarized and compared to the E. coli and P. abyssi values in Table 1. The titration studies were conducted at 20 mM L-Asp, a concentration corresponding to 1/5 the S0.5-value, and in the presence of S0.5 concentrations of CP (0.5 mM). CTP and UTP inhibited the psychrophilic enzyme. As shown
for the *E. coli* enzyme, inhibition was never complete; CTP maximally inhibited 83% (cf. 60-80% for the *E. coli* enzyme), while UTP inhibited no more than 40% (cf. no more than 10% for the *E. coli* enzyme). The CTP concentration at which half the maximal effect (i.e. the $E_{50,\text{CTP}}$-value) is observed was calculated to be 3.39 ± 0.50 µM, which is about two orders of magnitude lower than the $E_{50,\text{CTP}}$-value of ~206 µM (37,38) reported for *EcATC*. UTP inhibited the psychrophilic ATCase less effectively; 1.65 ± 0.43 mM UTP is required to obtain half the maximal effect.

Interestingly, the ATP-titration curve showed a dual pattern; stimulation was seen up to 3 mM, while higher concentrations of ATP inactivated the reaction. At concentrations exceeding 8 mM, ATP inhibited the reaction completely. The relative activity maximally increased ~2.5-fold in the presence of about 1.25 mM ATP and the $E_{50,\text{ATP}}$-value was calculated to be 145 ± 34 µM.

M. profunda ATCase in the native host

The specific activity, determined at 4°C, of ATCase in *M. profunda* crude lysate, prepared from late exponential phase cultures grown in rich Marine broth at 8 °C, was 0.83 U (mg protein)$^{-1}$. Saturation kinetics, cooperativity, as well as temperature and nucleotide dependence of activity were found to be similar for native enzyme in crude *M. profunda* extract and for His-tagged recombinant protein expressed in *E. coli* (Table 1). These results suggest that the recombinant enzyme is a suitable molecular form for the study of structure-function relations of this psychrophilic ATCase.

X-ray structure refinement and validation (Table 2)

The enzyme crystallizes in space group *P*3$_2$1 with three catalytic (chains A, B, C) and three regulatory monomers (chains D, E, F) in the asymmetric unit. The dodecameric [2c$_2$;3r$_2$] complex typical for class-B ATCases is generated by the crystallographic twofold axis of space group *P*3$_2$1, in accordance with the molecular weight estimated by gel filtration chromatography (18) (Fig. 6). With the exception of L267, all non-glycine residues display main-chain dihedral angles that are localized within allowed or additional allowed regions of the Ramachandran plot, as defined by the program PROCHECK (24). In accordance with all other ATCase structures, the peptide link between L267 and P268 is in a cis conformation (the Ramachandran analysis assumes a trans conformation). Also included in the model are three sulphate ions located at the active sites and 36 solvent molecules.

Structural characterization

The main violations against the 3-fold non-crystallographic symmetry relating the catalytic-regulatory chain heterodimers within the asymmetric unit are situated at the 80s and 240s loop regions of the catalytic chains. Superposition of the catalytic chains leads to rmsds for C$_α$’s of 0.40 Å for A and B, 0.46 Å for A and C, and 0.35 Å for B and C. Superposition of the regulatory chains gives rmsds of 0.39 Å for D and E, 0.48 Å for D and F and 0.51 Å for E and F. Comparison with the unliganded T state *E. coli* catalytic and regulatory chains (rmsds of 1.0 – 1.1 Å) indicates a good overall fit in agreement with strong similarities in secondary and tertiary structure. The (sole) deletion at the position of G120 in *EcATC* only induces a local structural effect. However, closer examination clearly indicates that the two catalytic chain domains are located further from each other in accordance with a domain opening relative to *EcATC*$_T$. Furthermore, the 240s loop region, which typically in *EcATC* undergoes the largest movement upon the domain closure taking place at the T to R transition, has undergone a shift (maximum C$_n$ distance of 6 Å) in the opposite direction. Interestingly, similar shifts were previously reported for the crystal structures of single site mutant Y165F of *EcATC* (catalytic chain) which, hence, has been described as an ‘extreme T state’ model (38). Strikingly, the similarity with this mutant extends beyond a mere superficial resemblance.

Similar as for the Y165F mutant, a collapse (relative to *EcATC*$_T$) is observed of the hydrophobic residues Val 230, Phe 235 and Phe 247 onto P189 and L192 (*M. profunda* numbering) which appears to drive changes in several hydrogen bonds and salt bridges, so that the positions of numerous groups within the loop are altered (Fig. 7). Backbone atoms from R234 to E239 shift, as a rigid body, ~2.0 Å away from the CP binding domain (compared to 2.4 Å for Y165F), making the active site more open to solvent. The interactions among R229, Q231, and E272, observed in *EcATC*$_T$, are eliminated. The region between E237 to F247 is also notably different from that in *EcATC*$_T$. As observed in
Y165F and chain C6 of other known T state structures (39), this segment of the main chain is tilted and the short helix from 237 to 242 now extends to residue 247. However, in contrast to Y165F, the side chain of residue Q246 is no longer capable of forming stabilizing interactions, as it is replaced by a glycine. This replacement, together with P237E, could increase the flexibility of the 240s loop. Residue K244 is the most affected by this rearrangement and its Nε atom has moved by 12.4 Å and is involved in a MpATC specific hydrogen bond with Q241 (alanine in EcATC). In addition, the EcATC T state stabilizing Y240-D271 hydrogen bond of 2.9 Å is weakened (4.2 Å).

In EcATCΔf, R167 from the Asp binding domain is close to E50 from the CP binding domain. R229 is held in its T state location by a charge-charge interaction with E272. When substrates bind, R167 interacts with the α-carboxylate group of bound aspartate and E50, while R229 interacts with the β-carboxylate group and E233. As in the Y165F mutant, R167 of MpATCΔf adopts a totally different conformation (Fig. 8). Instead of pointing toward E50, it moves out of the active site. However, in contrast to the situation in the Y165F mutant, it is not close enough to Y195 to form a hydrogen bond; instead it interacts with the Ser131 carbonyl oxygen. The side chain of R229 points towards the active site, yet is located too far to directly affect binding. These changes in the active site make it more open than the wild-type EcATCΔf and hence would significantly alter interactions with bound substrate. Illustrative for this is the sulphate ion modelled into the electron density at the active site of the (three crystallographically unique) catalytic chains of MpATC. Their position is shifted (1.2-1.7 Å) relative to that of the phosphonate moiety of the phosphonacetamide in complex with the EcATCΔf (pdb code 3AT1), which seems to be caused by an outward shift of the side chain of R55 (R54 in EcATC).

A region showing major differences with EcATCΔf (maximum Ca distances of ~8 Å) is the 80s loop region. Interestingly, the first part (residues 75-78) of this loop shows more resemblance to the EcATCΔr backbone conformation and is characterized by the lowest sequence homology. In contrast, the rest of the 80s loop region shows almost perfect sequence conservation and, indeed, its main-chain conformation, apart from a rigid-body like movement, is quite similar to the unliganded EcATCΔf (Fig. 9). F103 seems particularly important in governing the rigid-body shift, firstly because it is the only drastic substitution in region 79-120, and secondly because its bulky side chain induces a tilt that is amplified by α-helix 3 (residues 89-99) towards the 80s loop region. Furthermore, the presence of G78 (Ala in EcATC) may ensure that S81 is still optimally positioned to interact with the phosphate of CP as observed in the corresponding complex of EcATCΔf. The side chains of residues K84 and K85 (K83 and K84 of E. coli, resp.) point into different directions than in EcATCΔf. The exact conformation of their side chains, however, is less certain due to poor electron density.

The regulatory chains share a good overall fit with the EcATCΔf. Loop region 128-131, which was modelled only for chain D due to poor electron density, does not correspond to this region in the R1 chain of EcATCΔf but has moved towards the C1-R1 interface, as previously described for the R6 chain of EcATCΔf. At the allosteric-domain-zinc domain interface, Y77 (E. coli numbering) has been replaced by a leucine (L78). The substitution of this residue, shown to be critical for the heterotropic effects in EcATCΔf (38), however, appears to be (at least partially) compensated by the substitution of Phe for L105. The substitution of Pro for V107 could furthermore aid in the correct positioning of F106, thus mirroring the role of Y77 which fits as a pole in a hydrophobic pocket (Fig. 10). These substitutions clearly result in a (maximum 1.2 Å) shift of the backbone of region 106-113. More importantly this may explain the slight compression of the regulatory chain domains relative to EcATCΔf. This relative compression or domain closure, however, is not accompanied by a large-scale movement of the catalytic trimers as seen upon binding of CTP to EcATC, which can be due to a small compensatory shift in the position of the C1-R1 interface. Consequently, the allosteric domains of the regulatory dimer fit to those of EcATCΔf. Finally, the effector-binding residues are conserved well in sequence and conformation, which is also reflected in the similar effector binding mode in low-resolution complexes obtained by soaking with ATP (unpublished results).

Quaternary structure

The quaternary organization and the dimensions closely match those of the
unliganded EcATC\(_7\). Due to the compression of the regulatory chain domains, the holoenzyme has a slightly smaller cross-section in the plane perpendicular to the pseudo threefold axis. Only subtle alterations are observed at the interfaces. At the C1-C2 type interfaces the K40-E37 (E. coli numbering) is replaced by an intramolecular salt bridge between the same residues (K41-E38 in MpATC). Furthermore in MpATC, the 80s loops are pairwise connected by a D75-N79 hydrogen bond (D75 is replaced by S74 in EcATC). The CP and Zn domains have shifted compared to EcATC\(_7\), resulting in a slightly different location of the C1-R1 type interfaces without significantly altering the majority of interactions at these interfaces. However, the E204c-R130r salt bridge observed at the C6-R6 interface of EcATC\(_7\) is no longer present in MpATC\(_7\), firstly because the Asp domain is now located further from the C1-R1 type interface (due to the opening of the catalytic chain domains) and secondly by a more local shift observed for the \(\alpha\)-helical region of residues 196-204 to a position that is similar as in the extreme T state mutant Y165F. Although formation of the typical EcATC\(_e\) E200c-R130r interaction is not possible due to the R130T substitution (E. coli numbering), lysine 130 could replace the positive charge in MpATC\(_r\). Furthermore, an extra negative charge (E201) is present that enhances the potential for charge-charge interactions during the allosteric transition.

R1-R6, the third large interface type, is also found to be very similar. One salt link is lacking due to the substitution of K for D39 (E. coli); yet, because of the absence of electron density for some charged side chains it is not clear if this loss is compensated for. Two smaller interfaces shown to be crucial for homotropic and heterotropic effects are the C1-C4 and R1-C4 type interfaces. At the C1-C4 type interface equivalent, shifts in main-chain positions of 240s and 160s loops prevent the loss of the E239-K164 intersubunit salt links. The presence of a bulkier Phe side chain at position 235 (M. profunda) forces the side chain of E239 into an alternative position, resulting in the loss of E239-Y165 at one C1-C4 interface (involving chain A). The most drastically altered by the changes in the 240s loop region is interface type R1-C4, with the rearrangement of 242-247 leading to a loss of both polar and apolar interactions. The important D236-K143 salt bridge (40), however, is still present although its distance is above the cut-off value of 4.0 Å at one of these interfaces (involving chain C). The extra salt bridges between E237 (equivalent to P237 in EcATC) and S111 (of the regulatory chain) may compensate for the weakening of this type of interface.

Thermostability

Composition analysis of the catalytic chain shows that significantly more negatively charged residues are present in MpATC than in EcATC (41 vs. 35), which is mainly due to the increased number of glutamate residues (24 vs. 14). The majority of these extra negative charges are located at the surface and are not directly involved in salt links as can be seen from the more negative surface potential compared to EcATC\(_7\) (Fig. 11). The significantly higher ratio of Ile/Leu residues (20/31 vs. 15/38) for MpATC is noted as well. The number of residues known as thermolabile (Asn, Gln, Cys and Met) is not higher for MpATC: more cysteines (3 vs. 1) and less methionines (5 vs. 9) are present in MpATC compared to EcATC. Moreover, the number of Gly and Pro does not significantly differ. Finally, unlike the mesophilic ATCase from E. coli and the thermophilic enzyme from _Sulfolobus acidocaldarius_, the MpATC\(_7\) has no solvent-accessible tunnel along the (pseudo-) threefold axis (Fig. 11).

Concerning the composition of the regulatory chain, a somewhat smaller number of negatively charged residues is observed, mainly due to the lower Asp content of MpATC (6 vs. 9 in EcATC). However, a remarkable observation is the significantly smaller number of Arg (1 vs. 8) which appears to be compensated for by the higher number of Lys residues (17 vs. 11). More polar residues are found in MpATC regulatory chain, mainly because of the significantly higher number of Thr (14 vs. 7). Finally, the Ile/Leu ratio is also somewhat higher (13/11 vs. 12/15).

The results of our analysis of molecular interactions and surface areas are summarized in Tables 3 and 4. Notable is the reduced number of intramolecular hydrogen bonds for the catalytic chains (the analysis is not presented for the regulatory chains because of missing side chains for the allosteric domains). The number of ion pairs is similar, as is the percentage apolar surface area. We have found, furthermore, that the ion pair networks are mostly conserved and that their number and size are not significantly different. From Table 4 it follows that the surface area buried in the different types of interfaces is
smaller for the C1-C2, R1-C4 and C1-C4 type interfaces. For the latter this has resulted mainly from a reduction in polar buried surface area. The number of salt links is smaller for the C1-C2 type interfaces.

DISCUSSION

Upon investigating the structural features of cold adaptation it is important to minimize the effects of random mutational drift and varying selective pressure by studying enzymes with highly homologous sequences (41). In this study we have characterized the (pure) recombinant ATCase from a strict psychrophile, i.e. *M. profunda* (doubling time ~5.5 h at 2 °C, under atmospheric pressure), which is highly related to its B-class mesophilic counterpart from *E. coli*; the *pyrB* and *pyrI* genes from these proteobacterial backgrounds are 73% and 53% identical at the amino acid level. Sequence comparison indicates a strict conservation of all active site residues that contact CP or L-Asp. With the exception of the Y89F substitution, all 12 residues proposed to be involved in effector binding, and the four cysteine residues involved in binding the Zn$^{2+}$ ion in EcATC are strictly conserved as well. ATCase sequence analysis therefore is consistent with the phylogenetically close relationship between the mesophile *E. coli* and the psychrophile *M. profunda*, rationalizing our choice to use the *M. profunda* ATCase as a model to study the structural basis for cold activity and cold regulation.

Measurements of the enzyme’s temperature dependence of activity indicate typical behaviour for a cold-adapted enzyme. At 4 °C, *M. profunda* ATCase is considerably more active than its *E. coli* counterpart, while both enzymes are comparably active at 30 °C.

The currently accepted hypothesis (16,42) suggests that psychrophilic enzymes have to increase their flexibility in order to perform catalysis at low temperatures, the enhanced flexibility being generated by the generally lower stability of the protein structure. Investigation of time-dependent thermo-inactivation reveals that *MpATC* is notably less stable than EcATC. Interestingly, the class-A ATCase (in dialyzed cell-free extracts) of the Antarctic strain *TAD1* was shown to be as stable as the *E. coli* enzyme (43). For example, its activity in crude *TAD1* extracts did not show any decrease after one hour of preincubation at 60 °C. It was proposed that the high activity of the *TAD1* enzyme has resulted from a discrete modification, localized at the catalytic site, not affecting the global thermostability of the entire protein. Conversely, in the case of *MpATC*, our kinetic experiments indicate that the high specific activities at low temperatures may have been attained at the cost of a lower global stability of the protein. Accordingly, it is expected that a mobile and flexible active site binds substrate weakly, and indeed, most psychrophilic enzymes have higher K_m values than their mesophilic counterparts (16). This also seems to be the case for *MpATC* with a slightly (~2.7 times) higher $S_{0.5}$-concentration for carbamoyl phosphate and a significantly (~13.5 times) higher $S_{0.5}$-concentration for aspartate than EcATC. The *TAD1* ATCase exhibits a higher K_m for carbamoyl phosphate, yet it was demonstrated to potentially result from a higher catalytic constant. Our finding that the concentration range at which the bisubstrate analogue PALA activates the ATCase reaction is about tenfold higher for *MpATC* than for EcATC indicates that the high $S_{0.5}$-value originates from a lower substrate affinity per se, and not from mechanistic differences. It has been suggested (44) that a significant increase in overall rather than local flexibility would lead to enzymes with a weak affinity for substrate. Alternatively, in a two-state allosteric system, a relative stabilization of the low-affinity (low-activity) T state would cause the same effect. However, a higher cooperativity for aspartate binding would be expected, as expressed by the Hill coefficient, which is not observed for *MpATC*. That this cooperativity reflects the existence of T and R states with different affinity and/or catalytic activity is, indeed, clearly demonstrated by the stimulation of activity by PALA at subsaturating aspartate concentrations. Sedimentation velocity experiments furthermore indicate that this T-R transition is accompanied by a global expansion of the molecule similar to that documented for EcATC (unpublished results).

In general, the unliganded *MpATC$_T$* exhibits a good overall fit with the tertiary and quaternary structural features of the unliganded EcATC$_T$. However, a more scrutinized analysis reveals a number of similarities with the structure of the unliganded EcATC mutant Y165F, which has been coined as an extreme T state (39). The relative domain opening of the catalytic chain domains and the conformational changes at the 240s region are the most prominent features of
Y165F mutant and are indeed shared by \textit{M}p\textit{ATC}\textsubscript{T}.

Furthermore, this mutation resulted in a high \(S_{0.5}\) value (90 mM), ∼16 fold higher than the WT \textit{EcATC} value (45), which was attributed to the structural differences of this extreme T state, and more specifically to the opening of the active site. Although Y165 and relevant interaction partners are conserved in \textit{M}p\textit{ATC}, it is possible that the high \([S_{0.5}]\) for aspartate may be caused by this extreme T state rather than by a higher overall degree of flexibility. Indeed, it is possible that the 240s region adopts this conformation because of a local loss of interactions, like in the Y165F mutant, or a local increase in flexibility, thereby causing an opening of the catalytic domains. The P237E and Q246G substitutions are potential mediators of increased flexibility of the 240s loop. The latter substitution also results in a loss of interactions compared to the Y165F T state. It is important to note that the T state currently described for \textit{M}p\textit{ATC} probably represents the true unliganded T state of this enzyme and is considered to be an extreme version only on comparison with the structure of \textit{E}c\textit{ATC} T state. E.g. it is even more sensitive to CTP inhibition than \textit{EcATC}.

It may be tempting to infer a high flexibility from the overall high absolute temperature factors (B-factors), yet their significance is generally blurred by the data quality and refinement procedures followed. The highest relative B factors can be found in loop regions, specifically the 80s and 240s loops for the catalytic chains. The zinc domains are comparable with the catalytic chains, yet the electron density maps (and relative B factors) were significantly worse for the allosteric domains. Although neither of the regulatory chain domains is involved in short-range crystal contacts, this does indicate that the allosteric-zinc interface presents a rather loose association (e.g. in contrast with the stabilized allosteric-zinc interface in the \textit{S. acidocaldarius} T state ATCase structure). The breakdown of the threefold symmetry (as present in the \textit{E}c\textit{ATC} and \textit{S. acidocaldarius} holoenzymes) for \textit{M}p\textit{ATC}, because of conformational heterogeneity, may yet be another indication for a higher flexibility. Indeed, Endrizzi et al. (46) have found that the release of constraints imposed by the holoenzyme resulted in a breakdown of the threefold symmetry in the isolated and unliganded catalytic trimer. Conformational heterogeneity was manifested as varying interdomain hinge angles and a lack of interpretable electron density for the 80s and 240s loop regions, and therefore (on comparing with \textit{M}p\textit{ATC}\textsubscript{T}) can be considered as the extreme and limiting case of the loosening of steric constraints of the holoenzyme. Furthermore, from our analyses of the different subunit interfaces of \textit{M}p\textit{ATC}\textsubscript{T} it follows that the C1-C2, C1-C4 and R1-C4 interfaces have a decreased buried surface area. The C1-C2 interface has less salt links. The E204-R130 salt link typical for the C6-R6 type interface in the unliganded and CTP-ligated \textit{EcATC} is missing from the Cn-Rn type interfaces of \textit{M}p\textit{ATC} because of an arginine to threonine substitution. Interestingly, this is one of the few important violations of the twofold non-crystallographic symmetry in the \textit{E}c\textit{ATC} holoenzyme and may explain why this twofold symmetry is maintained in \textit{M}p\textit{ATC}. A site-directed mutagenesis study by Stebbins and Kantrowitz (47), furthermore, has shown that eliminating this salt link causes the temperature for dissociation of the holoenzyme into catalytic and regulatory subunits to drop by 6 °C.

Ionpair networks, proposed to be major thermostabilizing elements in both hyperthermophilic ATCase crystal structures (13,14), do not seem to be reduced in the cold active enzyme. We did find a potential role for electrostatics in that the higher glutamate content of the catalytic chains results in more (negative) surface charges that are not involved in salt links. An excess of negative surface charges has been reported earlier on psychrophilic enzymes (16,48) and results in this case in an interesting picture of thermo-adaptation across the full physiological temperature range (Fig. 11), i.e. the mesophilic ATCase (middle) is flanked by a psychrophilic ATCase (top) with a more negative surface potential and a hyperthermophilic ATCases (bottom) with more positive surface potential. This may reflect the different role for electrostatics in heat and cold adaptation: in the hyperthermophile the formation of ion pairs and ion pair networks contributes to the integrity of the subunits and their interfaces, whereas in the psychrophile electrostatics may enhance protein solvation (negative charges of carboxylates in proteins are more strongly hydrated) and active site flexibility (49).

When considering the adaptation to cold it has to be noted that \textit{M. profunda} (originally isolated from deep-sea sediments at a depth of 2815 m), has been characterized as a moderately
piezophile (growth optimum 20-24 MPa), meaning its ATCase in principle could have undergone adaptation to high pressure. Pressure denaturation commonly requires pressures above 100 MPa and is not expected to be a significant stress phenomenon (50). Pressure-induced dissociation of oligomeric proteins and inhibition of enzyme activity is observed well within the biologically relevant range of pressures. Decreased k_{cat} values were suggested to be an adaptive trait of enzymes to the high pressure of the deep sea (51), possibly resulting from a higher conformational rigidity, as thermostability and piezostability often seem to be linked (52). In the case of MpATC it is thus quite possible that the adaptation to the cold might have been hampered under the influence of pressure, leading to more modest increases in k_{cat} and explaining the reduced catalytic efficiency. Investigation of steady-state kinetics under high pressure is needed to clarify whether MpATC does exhibit piezophilic properties. Indeed, the T-R equilibrium may well be disturbed by high pressure, as was shown for the $E. coli$ ATCase where it was shifted towards the R state (the maximal effect being observed at 120 MPa) (53).

MpATC is inhibited by CTP and UTP and exhibits a dual response towards ATP: activation below 3 mM and inhibition above this concentration, which is practically complete at 8 mM. Competitive inhibition by all nucleotides for carbamoyl phosphate has been documented for EcATC and predicts a binding strength that is approximately one order of magnitude lower compared to carbamoyl phosphate (54). Therefore, it usually does not manifest itself in nucleotide saturation curves because of the high carbamoyl phosphate concentrations used. Nonetheless, we have observed this effect even in the presence of saturating concentrations of carbamoyl phosphate (and near saturating aspartate). Furthermore, similar UTP concentrations do clearly not yield the same inhibition at similar concentrations: more than 30 mM UTP is needed to reach similar inhibition. It appears then that the ATP inhibitory effect is heterotropic, an observation not previous reported for B-class ATCases. Heterotropic ATP inhibition has been reported for the engineered Y77F mutant of the EcATC regulatory chain by Van Vliet et al. (38). Strikingly, the otherwise well-conserved allosteric-zinc domain interface of MpATC presents a mirror image of this situation, with a leucine as the equivalent of Y77 and a phenylalanine at the opposite (zinc domain-) side replacing a leucine. Analysis of the EcATC mutant suggests that the mutation promotes an increased hydrophobic packing at the allosteric-zinc interface, resulting in a compression of the regulatory chain domains. A compression relative to EcATC$_T$ is indeed observed in MpATC$_T$, yet the enzyme is not devoid of homotropic interactions as is the Y77F mutant. Furthermore, the remarkably low electron density for the allosteric domains is indicative for a rather loose arrangement at the allosteric-zinc interface. The weakening of hydrophobic interactions at cold temperatures may explain this observation. Irrespective of the origin of this apparently higher flexibility, it may well have the important function of more efficiently transmitting effector signals at low temperatures. Indeed, when considering proteins as complex statistical ensembles of conformational states, a redistribution of these states resulting in functional changes (as induced by ligand binding in functional cooperativity) is likely favored for regions with high conformational heterogeneity (or thus flexibility). A similar reasoning has formed the basis for mapping allosteric regions on proteins by statistical thermodynamics computer simulations (55). Interestingly, the effector binding strength (indicated by the MpATC E_{50} values) is not attenuated by cold adaptation (cf. Table 1).

In summary, we have found that the $M. profunda$ ATCase is able to maintain (most of) the catalytic and regulatory properties of its mesophilic counterpart at its physiological temperature, at the cost of a lower thermal stability. Our study confirms the importance of subunit association and of surface electrostatics in determining the stability of ATCases (12, 14, 56, 57). A general weakening of subunit interfaces may also lower the kinetic barrier for the T to R transition, whereas surface electrostatics may play a role in conferring flexibility required for high activity at low temperatures. Our analysis of the MpATC$_T$ crystal structure finally suggests that the concept of flexibility for cold activity can be extended towards cold regulation.
REFERENCES

30. Voronoi, G. F. (1908) J. Reine Angew. Meth. 82, 1-14
FOOTNOTES

* This research has been supported by the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO grants 3G006896 and 3G044899). D. De Vos is a research fellow of the same institution. We gratefully acknowledge access to beamline BW7A at the EMBL/DESY Hamburg Outstation.

1The abbreviations used are: ATCase, Aspartate carbamoyltransferase; EcATC, MpATC and SaATC stand for E. coli, M. profunda and S. acidocaldarius ATCase respectively, and, when present, subscripts “T” and “R” denote their corresponding T and R states; CP, carbamoyl phosphate; E50, effector concentration at which half the maximal effect is observed; nH, Hill coefficient; PALA, N-phosphonacetyl-L-aspartate; rmsd, root-mean-square deviation; SEM, standard error of the mean.
TABLES AND FIGURES

Table 1. Summary of the kinetic parameters and of the nucleotide response of the *M. profunda* psychrophilic ATCase. The counterpart values for the mesophilic enzyme of *E. coli* (58,59) and the thermophilic enzyme of *P. abyssi* (13,60) are given for comparison.

Table 2. Diffraction data processing and refinement statistics for the unliganded *M. profunda* ATCase.

Table 3. Comparative analysis of *E. coli* and *M. profunda* T-state ATCase subunit structures.

Table 4. Comparative analysis of different types of subunit interfaces of the *M. profunda* and *E. coli* T-state ATCases.

Figure 1. Amino acid sequence alignment of *M. profunda* and *E. coli* ATCase. Residues in boxes are conserved, residues shaded in red are strictly conserved. Top secondary structures are based on chain C of *MpATC*, while bottom secondary structures are derived from chain A of *EcATC*; β-strands are shown as arrows, 3_10 helices are represented by thinner coils than α-helices and are labeled separately. (A) Catalytic chains of *MpATC* (*M._profunda_c*) and *EcATC* (*E._coli_c*). (B) Regulatory chains of *MpATC* (*M._profunda_r*) and *EcATC* (*E._coli_r*).

Figure 2. Thermostability of the *M. profunda* ATCase holoenzyme. As a function of time, the residual activity was measured at 4°C under saturating standard assay conditions after incubation at either 50 °C (squares), 55 °C (triangles), 60 °C (inverted triangles), or 65 °C (diamonds). Residual activity defined as \(\frac{A}{A_0} \times 100 \), where \(A \) is the activity of the preincubated sample and \(A_0 \) the activity of untreated sample.

Figure 3. Substrate saturation curves of the *M. profunda* ATCase. The activity was measured in the presence of increasing concentrations of L-Asp (squares) or CP (triangles). The L-Asp saturation curve was determined in the presence of 5 mM CP. The CP saturation curve in the presence of 300 mM L-Asp; the obtained kinetic parameters for CP should thus be considered as apparent values.

Figure 4. Effects of varying the concentration of the bisubstrate analog, PALA, on the relative activity of the *M. profunda* ATCase. PALA titration curves were measured in the presence of half-saturating [L-Asp] (100 mM (triangles)) and under low L-Asp saturation (20 mM (squares)). In all assays, the CP concentration was 0.5 mM. Relative activity defined is as \(\frac{A}{A_0} \times 100 \); where \(A \) is the activity in the presence of PALA and \(A_0 \) the activity in its absence.

Figure 5. Effect of nucleotides on the activity of *M. profunda* ATCase. Reaction mixtures containing low-saturating (20 mM) L-Asp and half-saturating (0.5 mM) CP-concentrations were titrated as a function of [ATP] (squares), [UTP] (diamonds), or [CTP] (triangles). Relative activity defined as \(\frac{A}{A_0} \times 100 \); where \(A \) is the activity in the presence of the nucleotide and \(A_0 \) the activity in its absence.

Figure 6. Overview of *MpATCT* along the pseudo-threefold symmetry axis. Each Cn-Rn dimer is depicted in a separate colour.

Figure 7. Stereoview of the superposed Cα-traces of *MpATCT* (black), *EcATCT* (green) and *E. coli* Y165F mutant (cyan) 240s regions. Side chains are indicated (as sticks) for...
residues 189, 192, 230, 235 and 247 (M. profunda numbering) and are further discussed in the text.

Figure 8. Superposition of the active site residues of MpATC\textsubscript{T} (colour-coded according to atom type) and EcATC\textsubscript{T} (all atoms coloured green) and of residue R167 of the E. coli Y165F mutant (cyan). Lysine residues 84 and 85 were omitted for clarity. The active site sulphate ion of MpATC and the phosphonacetamide of the corresponding complex of EcATC\textsubscript{T} are depicted as sticks and colour-coded according to atom type, with yellow denoting phosphorus and magenta denoting sulfur.

Figure 9. Stereoview of the superposed C\textalpha-traces of MpATC\textsubscript{T} (black), EcATC\textsubscript{T} (green) and EcATC\textsubscript{R} (red) 80s regions. Side chains are indicated (as sticks) for residues 84, 85 and 103 (M. profunda numbering), H3 stands for \alpha-helix 3. These structural elements are further discussed in the text.

Figure 10. Superposition of MpATC\textsubscript{T} (blue) and EcATC\textsubscript{T} (green) regulatory chains. Important residues of the allosteric-zinc interdomain interface are depicted as sticks. (A) Overview. (B) Detailed view.

Figure 11. Electrostatic surface potentials (contoured at +/- 70 kT/e) of ATCases at different temperature levels. Positive potentials are shown in blue, negative potentials are shown in red. At the left: top view (along the crystallographic threefold axis) of the catalytic trimers of MpATC\textsubscript{T} (A), EcATC\textsubscript{T} (B), SaATC\textsubscript{T} (C). At the right (D,E,F): side view (along the crystallographic twofold axis) of the respective holoenzymes.
Table 1

<table>
<thead>
<tr>
<th>Variable Substrate</th>
<th>(M. \text{ profunda}) holoenzyme (pH 7.5; 4°C)(^{ab})</th>
<th>(E. \text{ coli}) holoenzyme (pH 7.0; 30 °C)</th>
<th>(P. \text{ abyssi}) holoenzyme (pH 8.0; 55 °C)(^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{max}}) (U)</td>
<td>(S_{0.5}) (mM)</td>
<td>(V_{\text{max}}/S_{0.5})</td>
<td>(V_{\text{max}}) (U)(^c)</td>
</tr>
<tr>
<td>Asp</td>
<td>5.20 ± 0.17</td>
<td>101 ± 10 (85 ± 5)</td>
<td>0.05</td>
</tr>
<tr>
<td>CP</td>
<td>4.87 ± 0.15</td>
<td>0.53 ± 0.04 (0.35 ± 0.04)</td>
<td>9.19</td>
</tr>
</tbody>
</table>

\(NTP \) effector\(^a\) | Relative activity (%) | \(E_{50} \) (µM) | Relative activity (%)\(^d\) | \(E_{50} \) (µM) | Relative activity (%) | \(E_{50} \) (µM) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>~260 (~300)</td>
<td>145 ± 34 (165 ± 25)</td>
<td>186</td>
<td>800</td>
<td>350</td>
<td>250</td>
</tr>
<tr>
<td>CTP</td>
<td>~20 (~20)</td>
<td>3.39 ± 0.50 (4.01 ± 0.60)</td>
<td>31</td>
<td>~150</td>
<td>50</td>
<td>3.0</td>
</tr>
<tr>
<td>UTP</td>
<td>~60 (~ND)(^g)</td>
<td>1650 ± 430 (ND)</td>
<td>90-95</td>
<td>NR(^h)</td>
<td>65</td>
<td>600</td>
</tr>
</tbody>
</table>

\(^a\) The data are derived from colorimetric assays as described in the Materials section. For the determination of the kinetic parameters, either CP was kept constant at 5 mM, or L-Asp was kept constant at 300 mM, meaning that the kinetic parameters obtained for CP saturation should be considered as apparent values. The parameters were determined by using a nonlinear least squares routine using the Hill equation. For the determination of the nucleotides effector responses, L-Asp and CP were kept constant at low-saturating concentrations (20 mM) and half-saturating concentrations (0.5 mM), respectively. Relative activity is defined as \(A/A_0\) *100; where \(A\) is the activity in the presence of the nucleotide and \(A_0\) the activity in its absence. All the data are the average of two independent determinations.

\(^b\) Values between parentheses are those obtained for the native holoenzyme in cell free crude \(M. \text{ profunda} \) lysate under identical conditions as in \(^a\).

\(^c\) data were taken from ref. (58).

\(^d\) data were taken from ref. (59).

\(^e\) data were taken from ref. (60).

\(^f\) values obtained at 37 °C (59).

\(^g\) ND: not determined.

\(^h\) NR: not reported.
Table 2

<table>
<thead>
<tr>
<th></th>
<th>MpATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffraction data</td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20-2.85</td>
</tr>
<tr>
<td>Space group</td>
<td>P3(_2)21</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a = 129.2)</td>
</tr>
<tr>
<td></td>
<td>(b = 129.2)</td>
</tr>
<tr>
<td></td>
<td>(c = 207.2)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
</tr>
<tr>
<td>(R_{work}/R_{free}) (%)</td>
<td>21.1/25.7</td>
</tr>
<tr>
<td>Rms bond length deviations (Å)</td>
<td>0.011</td>
</tr>
<tr>
<td>Rms bond angle deviations (°)</td>
<td>1.33</td>
</tr>
<tr>
<td>No. atoms</td>
<td></td>
</tr>
<tr>
<td>Protein (catalytic/regulatory chains)</td>
<td>7149/2759</td>
</tr>
<tr>
<td>Solvent</td>
<td>36</td>
</tr>
<tr>
<td>Sulphate</td>
<td>15</td>
</tr>
<tr>
<td>Average B-factor (Å(^2))</td>
<td></td>
</tr>
<tr>
<td>Protein (catalytic/regulatory chains)</td>
<td>53.9/56.2</td>
</tr>
<tr>
<td>Solvent</td>
<td>37.4</td>
</tr>
<tr>
<td>Sulphate</td>
<td>87.8</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td></td>
</tr>
<tr>
<td>% most favoured regions</td>
<td>86.2</td>
</tr>
<tr>
<td>% additional allowed</td>
<td>13.6</td>
</tr>
<tr>
<td>% disallowed</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th>E. coli</th>
<th>M. profunda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalytic subunit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary structure content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-helices (%)</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>β-strands (%)</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>278</td>
<td>268</td>
</tr>
<tr>
<td>Per residue</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>Salt bridges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Per residue</td>
<td>0.058</td>
<td>0.065</td>
</tr>
<tr>
<td>Total ASA (Å²)</td>
<td>13,477</td>
<td>13,039</td>
</tr>
<tr>
<td>Apolar ASA (Å²)</td>
<td>7,437 (55)</td>
<td>7,187 (55)</td>
</tr>
<tr>
<td>VDW-volume (Å³)</td>
<td>31,850</td>
<td>31,400</td>
</tr>
<tr>
<td>Packing density</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Cavities</td>
<td>1</td>
<td>0.33</td>
</tr>
<tr>
<td>Regulatory subunit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary structure content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-helices (%)</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>β-sheets (%)</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Per residue</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Salt bridges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>Per residue</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>Total ASA (Å²)</td>
<td>8,492</td>
<td></td>
</tr>
<tr>
<td>Apolar ASA (Å²)</td>
<td>4,453 (52)</td>
<td></td>
</tr>
<tr>
<td>VDW-volume (Å³)</td>
<td>15,120</td>
<td></td>
</tr>
<tr>
<td>Packing density</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Cavities</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All values are averages of all subunits of that specific type; ASA: accessible surface area; values between parentheses are percentages of total ASA.
Table 4

<table>
<thead>
<tr>
<th>Interface type</th>
<th>E. coli</th>
<th>M. profunda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C2 type interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buried surface area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>2365</td>
<td>2000</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>1420 (60)</td>
<td>1140 (57)</td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Ion pairs</td>
<td>10</td>
<td>7.7</td>
</tr>
<tr>
<td>C1-R4 type interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buried surface area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Å²)</td>
<td>666</td>
<td>576</td>
</tr>
<tr>
<td>Apolar (Å²)</td>
<td>397 (60)</td>
<td>360 (63)</td>
</tr>
<tr>
<td>Hydrogen bonds</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>Ion pairs</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Values between parentheses are percentages of apolar buried surface area compared to total buried surface area.
Figure 1

A

B
Figure 2

![Graph showing residual activity over time at different temperatures (50 °C, 55 °C, 60 °C, 65 °C). The graph plots time (min) on the x-axis and residual activity (%) on the y-axis.](image-url)
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

A

ZN
ALLO

B

L75/L76
L76/Y77
F106/L107
V105/V106
P107/V108
L31/L32
Figure 11
7 Supplementary experiments on the allosteric regulation of *S. acidocaldarius* and *M. profunda* aspartate carbamoyltransferase
Supplementary experiments on the allostERIC regulation of *S. acidocaldarius* and *M. profunda* aspartate carbamoyltransferase

Crystal structures of effector complexes

S. acidocaldarius and *M. profunda* ATCase both exhibit interesting differences in regulatory behaviour compared to the *E. coli* model system. In contrast to *E. coli* ATCase the *S. acidocaldarius* enzymes is activated by CTP (Durbecq *et al.*, 1999). In fact, activation by CTP has previously been reported for other B-class ATCases (e.g. from *Serratia marcescens* and *Proteus vulgaris*), yet in these cases the amplitude of this effect was smaller than the ATP activating effect. Therefore, CTP can still be considered as an inhibitor of ATCase activity in the presence of both effectors (Wild *et al.*, 1988). The stronger activating effect of CTP (compared to ATP) on the *S. acidocaldarius* enzyme seems, however, to violate the metabolic logic. This also appears to be the case for the *M. profunda* enzyme at high ATP concentrations, which are shown to inhibit the enzyme more than CTP. A fairly obvious explanation for the *M. profunda* enzyme is that cellular levels of ATP are lower than 3 mM, i.e. at concentrations where activation has been demonstrated by our experiments (cf. previous chapter). Applying a similar reasoning to *S. acidocaldarius* ATCase, one has to assume that cellular CTP levels are at least 2-fold lower than ATP levels. Moreover, to offset the strong CTP activation, CTP levels below 0.1 mM are required. Whereas the first assumption appears to be valid in *Enterobacteriaceae*, CTP levels were found to be around 1 mM in this bacterial family (Wild *et al.*, 1988). To investigate whether these aberrant nucleotide responses are reflected in structural differences, the respective effector complexes were determined: ATP in complex with *M. profunda* ATCase, and CTP in complex with *S. acidocaldarius* ATCase.

Inspection of the electron density maps of the CTP complex revealed well-defined contours at the expected allosteric binding site (corresponding to a high ligand occupancy) (Figure 7.1), at different pH values (cf. Materials and methods). However, the diffraction data of the crystals obtained at pH 9.0 reached a resolution of maximum 3.5 Å (data statistics not shown), the crystals at pH 4 reached 2.6 Å. Notably, there were no significant structural differences between refined structures at pH 4 and pH 9. A sulphate ion with clear interaction partners was also modelled at the effector binding site. Superpositions were performed of the regulatory chains of the low-pH complex with deposited nucleotide complexes of the *E. coli* ATCase. The best fit for the nucleoside part of the effector molecule was found with that of the R6 regulatory chain of the *E. coli* T state in complex with CTP, the best fit for the triphosphate moiety was found with that of the R6 chain of the *E. coli* R state in complex with CTP (Figure 7.2). A superposition of the complete dodecameric complex of unliganded and CTP-liganded *S. acidocaldarius* ATCase indicates no significant differences in quaternary structure. Despite the high overall tertiary structural similarity of the unliganded and CTP-liganded form (expressed by an rmsd of 0.33 Å for the catalytic-regulatory chain dimer), a number of local differences were observed, some of which were at sites previously implicated in the allosteric behaviour of the *E. coli* enzyme. E.g., CTP binding induces a conformational shift of helix H1’ of the regulatory chain and small changes at the R1-C4 interface are observed. A more detailed structural analysis is in progress.

Due to poor electron density (at a resolution of 3.1 Å) an ATP molecule was modelled only at the effector binding site of chain E of *M. profunda* ATCase soaked with ATP. Unlike the situation in EcATCT, ATP binding does not induce an expansion of the catalytic trimers along the three-fold axis. The electron density is weak for the purine base, but relatively well-defined for the ribose and triphosphate moiety of ATP. This was already noted in low resolution studies of nucleotide binding to the *E. coli* ATCase (Honzatko *et al.*, 1979).
Superpositioning gave the best fit with the ATP bound to the R1 chain of the R state *E. coli* ATCase (Figure 7.3).

Figure 7.1 The $2F_o-F_c$ electron density map for CTP bound at the regulatory chain of *SaATC* (colour-coded according to atom type), contoured at 1.0σ.

Figure 7.2 Stereoview of CTP molecules (atom labels included) bound at the effector-binding sites of *SaATC* (coloured black), of the *EcATC* R6 chain (coloured green) and of the *EcATC* R6 chain (coloured red), obtained after superposing the respective regulatory chains.
Materials and methods

Crystals of the CTP liganded *S. acidocaldarius* ATCase and of the ATP liganded *M. profunda* ATCase were obtained by transferring crystals, grown as described (De Vos et al., 2004; De Vos et al., 2005), into equilibrated droplets of mother liquor with gradually increasing concentrations of CTP and ATP and over periods of 72 and 48 hours, respectively. For the *S. acidocaldarius* enzyme, crystals obtained at a different pH (Bicine buffer at pH 9.0 instead of acetate at pH 4.0) were also used for soaking. For both complexes the final soaking concentration was 10 mM (at higher concentrations the crystals developed cracks). Diffraction data were collected from single crystals on a MARCCD detector (MarResearch) using 0.80 Å synchrotron radiation at the X13 beamline at the EMBL/DESY in Hamburg. All data were collected at 100 K using 25 % glycerol as the cryo-protectant. Intensity data were integrated, scaled and reduced to structure factor amplitudes with the HKL suite of programs (Otwinowski and Minor, 1997). Data collection statistics are shown in Table 7.1.

The structures of both complexes were isomorphous with the respective unliganded structures and were refined, starting from this structure (pdb codes 1PG5 and 2BE7), using rigid body refinement as the first step, followed by the same procedures as for the unliganded *M. profunda* ATCase, except for TLS refinement. The structure of the ATP-liganded MpATC has some additionally missing residues compared to the starting model (residue N79 from chain A and B, residues 13, 14 and 49 from chain D). Atomic coordinates and related structure factors have been deposited in the RCSB Protein Data Bank, Rutgers University, New Jersey.
Brunswick, NJ (http://www.rcsb.org/ with identification codes 2BE9 for the CTP complex and 2BE8 for the ATP complex.

Table 7.1 Diffraction data processing and refinement statistics for the CTP-liganded *S. acidocaldarius* ATCase and the ATP-liganded *M. profunda* ATCase.

<table>
<thead>
<tr>
<th></th>
<th>SaATC:CTP</th>
<th>MpATC:ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffraction data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20-2.6 (2.69-2.60)</td>
<td>20-3.1 (3.21-3.10)</td>
</tr>
<tr>
<td>Space group</td>
<td>P6₃22</td>
<td>P3₂₁</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>131.9</td>
<td>130.0</td>
</tr>
<tr>
<td>b</td>
<td>131.9</td>
<td>130.0</td>
</tr>
<tr>
<td>c</td>
<td>139.1</td>
<td>207.7</td>
</tr>
<tr>
<td>No. Reflections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120,254</td>
<td>119,332</td>
</tr>
<tr>
<td>Unique</td>
<td>22,175</td>
<td>36,850</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>7.9 (51.3)</td>
<td>7.0 (40.9)</td>
</tr>
<tr>
<td>I/σ (l)</td>
<td>17.2 (2.2)</td>
<td>14.3 (2.8)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>98.4 (97.2)</td>
<td>99.3 (98.1)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rwork/Rfree (%)</td>
<td>22.3/27.1</td>
<td>20.8/24.2</td>
</tr>
<tr>
<td>Rms bond length deviations (Å)</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>Rms bond angle deviations (°)</td>
<td>1.44</td>
<td>1.21</td>
</tr>
<tr>
<td>No. atoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein (catalytic/regulatory)</td>
<td>2351/1144</td>
<td>7109/2687</td>
</tr>
<tr>
<td>Solvent</td>
<td>77</td>
<td>31</td>
</tr>
<tr>
<td>Sulphate</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>CTP/ATP</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Average B-factor (Å²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein (catalytic/regulatory)</td>
<td>44.4/50.7</td>
<td>76.1/77.1</td>
</tr>
<tr>
<td>Solvent</td>
<td>43.4</td>
<td>46.6</td>
</tr>
<tr>
<td>Sulphate</td>
<td>52.0</td>
<td>93.3</td>
</tr>
<tr>
<td>CTP/ATP</td>
<td>73.2</td>
<td>80.0</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% most favoured regions</td>
<td>88.4</td>
<td>85.5</td>
</tr>
<tr>
<td>% additional allowed</td>
<td>11.6</td>
<td>14.3</td>
</tr>
<tr>
<td>% disallowed</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Values between parentheses reflect the data in the highest resolution shell.

\[R_{merge} = \frac{\sum_h \sum_i |I(h,i) - \langle I(h) \rangle|}{\sum_h \sum_i |I(h,i)|}, \] where \(I(h,i) \) is the intensity of the ith measurement of reflection h and \(\langle I(h) \rangle \) is the average value from multiple measurements.

b The peptide link between L267 and P268 is in a cis conformation.
Ultracentrifugation studies

As crystal structures of the respective R states of the *S. acidocaldarius* and *M. profunda* ATCases could not be determined, the question remains whether T and R states deduced from kinetic studies correspond to different quaternary states and, furthermore, whether a global quaternary transition with an amplitude comparable with that observed for *E. coli* ATCase does effectively occur.

In order to study the difference in shape between the T and R state of both ATCases, sedimentation velocity experiments were carried out. In this type of ultracentrifugation experiment a high angular speed is used to cause a rapid sedimentation of solute towards the cell bottom. The rate of sedimentation, or sedimentation coefficient s (expressed in svedberg, S) for molecules with the same molecular mass is inversely proportional to the frictional coefficient, which is related to the hydrodynamic volume and shape of the particle. A comparison of the S values in the absence and presence of saturating concentrations of the bisubstrate analogue PALA (*N*-phosphonacetyl-L-aspartate), known to induce the T-R quaternary transition in *E. coli* ATCase, would indicate whether the fractional decrease in sedimentation velocity ($\Delta s/s_0$) is similar to that reported for *E. coli* ATCase.

The results (Table 7.2) reveal similar changes as for *E. coli* ATCase, thus confirming that a swelling, comparable in amplitude, is taking place in both enzymes upon T to R transition at 20 °C. For *S. acidocaldarius* ATCase, the concentration dependence of the PALA effect was not known in advance, and thus it could not be shown that the swelling effect was ‘saturated’ at the highest value. At the 2.5 µM PALA concentration, the swelling of *S. acidocaldarius* ATCase appears to be intermediate. However, PALA, at this concentration, is not able to induce a swelling for the *M. profunda* enzyme in accordance with our kinetics data, which indicate that a PALA concentration of minimum 10 µM is required for activation. The inherent instability of the *M. profunda* ATCase resulted in less accurate data due to the formation of aggregates.

Table 7.2 Effect of PALA on the sedimentation coefficients of *S. acidocaldarius, M. profunda* and *E. coli* ATCase. s_0 is the sedimentation coefficient of the unliganded enzyme. Δs is the difference between the sedimentation coefficients of unliganded and PALA-liganded enzyme.

<table>
<thead>
<tr>
<th>PALA (µM)</th>
<th>s, sedimentation coefficient (S)</th>
<th>$\Delta s/s_0$, fractional change in sedimentation velocity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. acidocaldarius ATCase</td>
<td>10.9</td>
<td>-1.8</td>
</tr>
<tr>
<td>2.5</td>
<td>10.7</td>
<td>-3.7</td>
</tr>
<tr>
<td>1000</td>
<td>10.5</td>
<td>-3.7</td>
</tr>
<tr>
<td>M. profunda ATCase</td>
<td>10.9</td>
<td>0.9</td>
</tr>
<tr>
<td>2.5</td>
<td>11.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>50</td>
<td>10.6</td>
<td>-2.8</td>
</tr>
<tr>
<td>1000</td>
<td>10.6</td>
<td>-2.8</td>
</tr>
<tr>
<td>E. coli ATCase</td>
<td>11.2</td>
<td>-2.7</td>
</tr>
<tr>
<td>300</td>
<td>10.9</td>
<td>-2.7</td>
</tr>
</tbody>
</table>
Materials and methods

Sedimentation velocity experiments were performed in a Beckman Optima XL-A analytical ultracentrifuge, equipped with an AN-60 Ti analytical rotor (Analis, NV, Belgium). The protein was at a concentration of 2 mg.ml\(^{-1}\) in 50 mM Tris-HCl, pH 7.5, 300 mm NaCl for \textit{M. profunda} ATCase and 150 mM for \textit{S. acidocaldarius} ATCase. The concentration along the cell was measured with an optical absorption detection system at 280 nm. The experiments were carried out at an angular speed of 10,000 r.p.m. at 20 °C. Sedimentation coefficients were determined with Beckman software based on a nonlinear least squares fit, using the MixedFit program for Windows (Stafford, 1992). The calculated sedimentation coefficients were not corrected for density, viscosity of the solvent, and the presence of PALA. The experiments were performed in duplicate.
Part III

pXyl
8 Introduction to pXyl

8.1 Xylanases and their substrate

Xylanases (EC 3.2.1.8; endo-1,4-\(\beta\)-xylan xylanohydrolases) are \(O\)-glycoside hydrolases which catalyze the endohydrolysis of \(1,4-\beta\)-D-xylosidic linkages in xylan. They are a widespread group of enzymes involved in the production of xylose, a carbon source for cell metabolism and plant cell infection by plant pathogens, and are produced by a plethora of organisms like bacteria, algae, fungi, protozoa, gastropods, and arthropods. Xylan is a major structural polysaccharide in plant cells and is the second most abundant polysaccharide in nature, accounting for approximately one-third of all renewable organic carbon on earth (Kulkarni et al., 1999). In contrast to cellulose, a homopolymer of D-glucose that has the same structure in all plants, xylan has a more complex structure, varying between different plant species. \(\beta\)-1,4-xylans are heteropolysaccharides, composed of a homopolymeric backbone chain of 1,4-linked \(\beta\)-D-xylopyranose units (with a variable degree of polymerization). The backbone can be substituted with \(O\)-acetyl, \(\alpha\)-L-arabinofuranosyl, \(\alpha\)-1,2-linked glucuronic acid or 4-O-methylglucuronic acids. In marine algae, linear xylans composed of a mixture of \(\beta\)-1,3 and \(\beta\)-1,4 linkages also occur, and in some red algae, \(\beta\)-1,3-xylan has been found (Nunn et al., 1973; McDowell, 1967).

Due to its heterogeneity and complexity, the complete hydrolysis of xylan requires a large variety of cooperatively acting enzymes (Puls et al., 1987; Biely, 1985; Subramaniyan and Prema, 2002) (Figure 8.1). Endo-1,4-\(\beta\)-D-xylanases (E.C. 3.2.1.8) randomly cleave the xylan backbone, \(\beta\)-D-xylosidases (E.C. 3.2.1.37) cleave xylose monomers from the non-reducing end of xylo-oligosaccharides and xylobiose, while removal of the side groups is catalyzed by \(\alpha\)-L-arabinofuranosidases (E.C. 3.2.1.55), \(\alpha\)-glucuronidases (E.C. 3.2.1.139) acetylxyylan esterase (E.C. 3.1.1.72), ferulic acid esterases (E.C. 3.1.1.73) and p-coumaric acid esterases (E.C. 3.1.1.-). Complete xylanolytic enzyme systems, including all of the activities listed, have been found to be quite widespread among fungi and bacteria (Sunna and Antranikian, 1997; Belancic et al., 1994; Elegir et al., 1994). The ecological niches of these organisms are diverse and widespread and typically include environments where plant material accumulates and deteriorates, as well as in the rumen of ruminants (Collins et al., 2004).
Within the standard (primary structure based) classification system of glycoside hydrolases (CAZY, the carbohydrate-active server at http://afmb.cnrs-mrs.fr/~cazy/CAZY; Coutinho and Henrissat, 1999), xylanases are normally reported as being confined to families 10 (formerly F) and 11 (formerly G). However, enzymes with xylanase activity have been reported for families 5, 7, 8 and 43 (Collins et al., 2004). Families 5, 7, 10, 11 contain enzymes which catalyze hydrolysis with retention of anomeric configuration, with two glutamate residues (one as a general acid-base catalyst, one as the nucleophile) being implicated in the catalytic mechanism in all cases (CAZY). This indicates a double-displacement mechanism, in which a covalent glycosyl-enzyme intermediate is formed and subsequently hydrolyzed via oxocarbenium-ion-like transition states (Rye and Withers, 2000; Zechel and Withers, 2000; McCarther and Withers, 1994). In contrast, enzymes in families 8 and 43 typically operate with inversion of the anomeric centre and a glutamate and aspartate are believed to be the catalytic residues (CAZY). Inverting enzymes function by a single displacement reaction in which one carboxylate provides for a general acid-catalyzed leaving group departure and the second functions as the general base, activating a nucleophilic water molecule to attack the anomeric carbon, thereby cleaving the glycosidic bond and leading to an inversion of the configuration at the anomeric carbon (Rye and Withers, 2000; Zechel and Withers, 2000; McCarther and Withers, 1994). Table 8.1 gives an overview of the structural fold and catalytic mechanism of the different xylanase containing glycosidase families.
Table 8.1 Properties of glycosidase hydrolase families containing enzymes with a demonstrated activity on xylan. Adapted from Collins et al. (2004)

<table>
<thead>
<tr>
<th>Glycoside hydrolase family</th>
<th>Fold</th>
<th>Catalytic mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(β/α)₈</td>
<td>Retaining</td>
</tr>
<tr>
<td>7</td>
<td>β-jelly roll</td>
<td>Retaining</td>
</tr>
<tr>
<td>8</td>
<td>(α/α)₆</td>
<td>Inverting</td>
</tr>
<tr>
<td>10</td>
<td>(β/α)₈</td>
<td>Retaining</td>
</tr>
<tr>
<td>11</td>
<td>β-jelly roll</td>
<td>Retaining</td>
</tr>
<tr>
<td>43</td>
<td>5-blade β-propeller</td>
<td>Inverting</td>
</tr>
</tbody>
</table>

The main applications of xylanases are in the paper and pulp industries (Kulkarni et al., 1999). The brown colour in paper can be due to the presence of residual lignin and lignin-carbohydrate molecules which are typically removed with the aid of a chlorine bleaching process. However, environmental regulations have put a restriction on the usage of chlorine in the bleaching process. It has been found that treatment of the pulp with xylanase makes the pulp more permeable for the subsequent chemical extraction of this lignin, thereby decreasing the amounts of chemicals needed for the bleaching. Another application lies in the baking industry, where xylanases act on the gluten fraction of the dough and help in the even redistribution of the water content of the bread. Dietary hemicelluloses have little nutritional significance for non-ruminant organisms because these lack the appropriate digestive enzymes. The use of xylanases along with other hemicellulases can help to decrease the viscosity of the food in the gut, as well as to increase the nutritive value.

8.2 pXyl

A description of the biochemical properties of the recombinant *P. haloplanktis* xylanase (pXyl) has been given by Collins et al. (2002), a description of the crystal structure of the unliganded WT enzyme has been given by Van Petegem et al. (2003). In order to obtain a better understanding of the work presented on the subject, a summary of the main findings is given here.

The mature xylanase gene has a signal sequence coding for 21 amino acids, and a predicted molecular mass of 45,982 Da. After cleavage of the signal sequence, a protein of 405 residues remains. The amino acid sequence shows highest identity to *Cytophaga hutchinsonii* endoglucanase Y (34%), and contains the glycosyl hydrolase family 8 fingerprint. The thermophilic endoglucanase CelA from *Clostridium thermocellum* (23% sequence identity) was chosen as the primary target for comparative structural analyses as this is one of the most thoroughly studied family 8 enzymes, and atomic resolution crystal structures are available for this enzyme both in the unliganded and substrate/product bound forms (Beguin et al., 1985; Souchon et al., 1996; Alzari et al., 1996; Guerin et al., 2002). A number of residues are strictly conserved in the family 8 enzymes: Glu 78, Trp 124, Ala 142, Asp 144, Ala 156 and Arg 284 (pXyl numbering). Two further residues are strictly conserved in all enzymes except for the xylanases: Glu 146 (Asp in other family 8 enzymes), and Val 121 or Tyr 121 in xylanases (Leu in other family 8 enzymes).

pXyl has a pI of approximately 9.5 and a pH optimum of 6.5. The high pI is typical for family 11 enzymes, while the relatively high molecular mass is commonly found in family 10 members. The apparent K_m of the enzyme for birchwood xylan is relatively high (~28 mg/ml), compared to typical K_m values between 0.5 and 5 mg/ml (Beg et al., 2001). The enzyme is specific for xylan, is most active on long-chain xylo-oligosaccharides and, in contrast to most
other xylanases studied to date, is not active on aryl-β-glycosides of xylobiose or xylotriose. In order to check for parameters associated with adaptation to cold, the xylanase was compared with a family 11 xylanase from *Streptomyces sp.* S38. The cold-adapted enzyme shows a shift in apparent optimal activity of approximately 25 °C towards low temperatures. At 5 °C, the activity is 60% of the maximum, compared to the mesophilic xylanase for which activity is less than 5% of the maximum. The mesophilic xylanase has a 10 °C lower melting temperature (53 °C compared to 63 °C), and a reduced half life at 55 °C (1.9 minutes versus 23 minutes).

The crystal structure (at a resolution of 1.3 Å) of the unliganded WT enzymes has shown pXyl to exhibit an (α/α)6-barrel fold (Figure 8.2). An examination of various parameters revealed a reduced number of salt bridges and an increased exposure of hydrophobic residues as potential factors determining the cold-adaptive character of the enzyme. Furthermore, it was suggested that a decreased acidity of the substrate binding cleft and an increased flexibility of aromatic residues lining the subsites may enhance the rate at which substrate is bound. A subsequent biophysical investigation (using differential scanning calorimetry, guanidine unfolding and fluorescence quenching) further demonstrated pXyl to have a reduced stability and increased flexibility in comparison with its thermophilic homologue CelA (Collins *et al.*, 2003).

Figure 8.2 Overview of the structures of the cold-adapted xylanase. α-Helices are in red and β-strands in blue (an extra α-helix in the psychrophilic xylanase, compared to CelA, is shown in green). (A) Side view of the (α/α)6 barrel of the native psychrophilic xylanase. (B) Top view of the barrel in A. Adapted from Van Petegem *et al.* (2003).
9 Study of the active site residues of a glycoside hydrolase family 8 xylanase
Study of the Active Site Residues of a Glycoside Hydrolase Family 8 Xylanase

T. Collins1*,†, D. De Vos2†, A. Hoyoux1, S. N. Savvides2, C. Gerday1
J. Van Beeumen2 and G. Feller1

1Laboratory of Biochemistry
Institute of Chemistry B6
University of Liège, B-4000
Liège, Belgium
2Laboratorium voor
Eiwitbiochemie en
Eiwitengineering, Ghent
University, Ledeganckstraat 35
B-9000 Gent, Belgium

Site-directed mutagenesis and a comparative characterisation of the kinetic parameters, pH dependency of activity and thermal stability of mutant and wild-type enzymes have been used in association with crystallographic analysis to delineate the functions of several active site residues in a novel glycoside hydrolase family 8 xylanase. Each of the residues investigated plays an essential role in this enzyme: E78 as the general acid, D281 as the general base and in orientating the nucleophilic water molecule, Y203 in maintaining the position of the nucleophilic water molecule and in structural integrity and D144 in sugar ring distortion and transition state stabilization. Interestingly, although crystal structure analyses and the pH-activity profiles clearly identify the functions of E78 and D281, substitution of these residues with their amide derivatives results in only a 250-fold and 700-fold reduction in their apparent k_{cat} values, respectively. This, in addition to the observation that the proposed general base is not conserved in all glycoside hydrolase family 8 enzymes, indicates that the mechanistic architecture in this family of inverting enzymes is more complex than is conventionally believed and points to a diversity in the identity of the mechanistically important residues as well as in the arrangement of the intricate microenvironment of the active site among members of this family.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: catalytic site residues; glycoside hydrolase family 8; xylanase

Introduction

Glycoside hydrolases (EC 3.2.1.x) catalyse the hydrolysis of the glycosidic bond between two or more carbohydrates or between a carbohydrate and a non-carbohydrate moiety. They are a very diverse group of enzymes and have been classified into 100 different glycoside hydrolase families on the basis of amino acid sequence homology (carbohydrate-active enzyme server (CAZY)‡).1 Within this classification scheme, members of a particular family have been found to display a similar three-dimensional fold and to catalyse hydrolysis with a similar stereochemical outcome.2,3

The cold-adapted xylanase (pXyl) from the Antarctic bacterium Pseudoalteromonas haloplanktis TAH3a4–7 belongs to glycoside hydrolase family 8, a family that displays an (α/α)$_x$ fold (clan GH-M) and that presently groups cellulases, lichenases, chitosanases and a number of other xylanases.8 This anti-β-inverting enzyme catalyses the random hydrolysis of β-1,4-α-xylosidic linkages in xylan via a single displacement mechanism, giving rise to products of α configuration.4,9 In such inverting glycoside hydrolases, two functional groups are believed to play key roles in the process: typically a carboxyl group (acting as the general acid) and a carboxylate group (acting as the general base), which are usually conserved within a particular family. It is believed that leaving group departure, assisted by partial proton donation from the general acid, is concomitant with nucleophilic attack by water at the anomeric centre, assisted by partial proton abstraction by the general base (Figure 1). This reaction proceeds via a high-energy oxocarbenium ion-like transition state that is stabilised by non-covalent interactions with specific, often highly conserved, residues in the enzyme.10–12

†T.C. & D.D.V. contributed equally to this work.
Abbreviations used: DSC, differential scanning calorimetry; WT, wild-type.
E-mail address of the corresponding author:
tcollins@ulg.ac.be
‡http://afmb.cnrs-mrs.fr/~cazy/CAZY/
Previous studies of the catalytic mechanism and catalytic residues of a number of glycoside hydrolase family 8 enzymes have indicated that the general base residue may vary among members of this family. An early study based on site-directed mutagenesis of conserved family 8 residues in endoglucanase K from Bacillus sp. KSM-330 identified a glutamic acid residue (E78 in pXyl) and an aspartic acid residue (D144 in pXyl) as the catalytic residues. Subsequent structural analysis of endoglucanase CelA from Clostridium thermocellum, Rex from Bacillus halodurans C-125, pXyl, and the chitosanase ChoK from Bacillus sp. K17 indicated, however, that while E78 (pXyl numbering) is indeed the general acid in all cases, the general base is either D281 (pXyl numbering), Y203 (pXyl numbering) or, in the case of ChoK, a glutamic acid residue located in an additional long inserted loop. Structural analysis indicates that this inserted loop found in ChoK is absent from pXyl, while residues D281 and Y203 are located within hydrogen bonding distance from the putative nucleophilic water molecule and hence either of these two latter residues could function as the general base. On alignment of all 79 family 8 members, however, it is found that, of the proposed general base residues, only D144 is strictly conserved; D281 is substituted by asparagine in 34 of the sequences and by serine in two others, while Y203 is replaced by aspartic acid in 22 sequences.

In the present study, we have used site-directed mutagenesis of the proposed catalytic residues (E78, D281, Y203 and D144) combined with mutant characterisation and crystallographic studies to further unravel the catalytic mechanism and to understand the contributions made by specific residues in determining the activity of pXyl, and hence of family 8 enzymes in general.

Results

Production and purification

Mutants E78Q, D281N, Y203F, Y203A and D144A were produced and purified using the protocol developed for the wild-type (WT) enzyme, and SDS-PAGE indicated these to be pure and of a molecular mass similar to that of the WT pXyl.

Kinetic parameters

All mutations resulted in large decreases in activity and catalytic efficiency (Table 1) thereby confirming the crucial roles of the mutated amino acids in catalysis. Substitutions D144A (0.0008% residual activity), Y203F (0.03%) and Y203A (0.03%) showed the largest losses, while residual activities of 0.4%, 0.14% and 0.64% were found for the isosteric substitutions E78Q, D281N and D144N, respectively.

Despite the large errors in K_m (Table 1) inherent to the macromolecular nature of the substrate (see Materials and Methods), the results obtained indicate that only the apparent K_m of mutant D144N remains unchanged, or very slightly increased, while all other mutants, in particular Y203F and Y203A, appear to have a slightly reduced K_m.

Table 1. Kinetic parameters (apparent k_{cat}, apparent K_m and k_{cat}/K_m) and thermal stabilities (T_m) of wild type pXyl and mutant enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Apparent k_{cat} (s$^{-1}$)</th>
<th>Apparent K_m (mg ml$^{-1}$)</th>
<th>k_{cat}/K_m (s$^{-1}$ mg$^{-1}$ ml)</th>
<th>Apparent T_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pXyl</td>
<td>1247</td>
<td>28</td>
<td>44.5</td>
<td>53.5</td>
</tr>
<tr>
<td>E78Q</td>
<td>5.0</td>
<td>19</td>
<td>0.3</td>
<td>55.6</td>
</tr>
<tr>
<td>D281N</td>
<td>1.8</td>
<td>19</td>
<td>0.09</td>
<td>52.9</td>
</tr>
<tr>
<td>Y203F</td>
<td>0.32</td>
<td>17</td>
<td>0.02</td>
<td>46.7</td>
</tr>
<tr>
<td>Y203A</td>
<td>0.4</td>
<td>15</td>
<td>0.03</td>
<td>46.7</td>
</tr>
<tr>
<td>D144N</td>
<td>8.0</td>
<td>36</td>
<td>0.2</td>
<td>52.7</td>
</tr>
<tr>
<td>D144A</td>
<td>0.01</td>
<td>20</td>
<td>0.0005</td>
<td>52.7</td>
</tr>
</tbody>
</table>

Average errors in apparent k_{cat} are ±5–20% and in apparent K_m are ±15–20%. Errors of ±0.1 K for T_m have been reported for DSC measurements.

The Catalytic Site Residues of a Family 8 Xylanase

Thermal stability

Thermal denaturation of all mutants was monitored by differential scanning calorimetry (DSC) and an absence of heat absorption effects on rescanning of denatured samples indicates that thermal unfolding is irreversible in all cases. As can be seen from Table 1, the apparent melting temperature \((T_m)\) values of mutants Y203A and Y203F are reduced by 6.8 deg. C as compared to WT pXyl, indicative of a reduced stability and hence suggesting structural modifications upon substitution of Y203. Very slight reductions in the apparent \(T_m\) of both D144 mutants (−0.8 deg. C) and of the D281N mutant (−0.6 deg. C) were observed, whereas the apparent \(T_m\) of E78Q is increased (+2.1 deg. C). Such modifications probably reflect the alterations and reorganization of residues and interactions within the active site of these mutants, as discussed below.

pH-dependence of activity

The pH-activity profiles of mutants E78Q and D281N, Y203F and Y203A, and D144N and D144A, are compared with that of WT pXyl in Figure 2(a)–(c), respectively. It can be seen that both the acidic and basic limbs of the pH profiles of Y203F and Y203A closely resemble those of WT pXyl, while slight modifications of the acidic limb, indicative of a slight increase of the p\(K_a\) of the general base, occur for both D144N and D144A. In contrast, both E78Q and D281N show major changes in the basic and acidic limbs, respectively, their pH profiles approximating more closely that for a single ionisation.

Structural analysis of mutants

Crystal structures were obtained for E78Q, D281N and D144N at 1.76 Å, 1.3 Å and 3.2 Å resolution, respectively (Table 2). The crystal structure of D144N at 1.5 Å has been described, and is included here for comparative purposes. Efforts to crystallize D144A in the same space group \((P2_1_2_1_2_1)\) as the other mutants failed, hence alternative crystallisation conditions were used, resulting in data to lower resolution (space group \(P3_121\)). Despite this, the electron density maps for this mutant were of good quality and all important active site residues were clearly defined (Figure 3). Crystallisation trials were performed under a variety of conditions for Y203F and Y203A but these have not been successful.

The three-dimensional structures of E78Q, D281N, D144N and D144A are very similar to that of WT pXyl, as is evident from overall rmsds for main-chain atoms of 0.14 Å, 0.22 Å, 0.19 Å and 0.41 Å, respectively. Some small conformational differences are indeed observed in the surface loop region comprising residues 69–71 (maximum C\(^\alpha\)-C\(^\alpha\) distances from the WT of 0.57 Å, 0.64 Å, 1.22 Å and 1.18 Å, respectively). However, these minor modifications do not affect the overall structural integrity of these mutants as compared to the WT enzyme.

Substitution of E78 with Gln results in minor alterations within the active site (Figure 4(a); Table 3), while more important changes are observed for D281N (Figure 4(b); Table 3), D144A (Figure 4(d); Table 3) and, in particular, for D144N (Figure 4(c); Table 3). In WT pXyl, E78 interacts with D144 (2.41 Å), with the proposed nucleophilic water molecule 258 (2.87 Å), as well as with water molecules 122, 330 and 412, and these interactions are retained in mutant E78Q (Figure 4(a)). However, a slight movement of the nucleophilic water towards residue 78 (0.25 Å) and away from residue 281 (0.26 Å), as well as a slight reorientation of this latter around its \(\gamma\)-1 torsion angle are observed in this latter mutant. Furthermore, the fact that residue 78 retains its hydrogen bond (2.50 Å) with D144 and in light of the reorientation of the side-chains of E78 and N144 observed in the D144N substitution (Figure 4(c)), it may be proposed that E78 is the proton donor in the interaction between these two residues. Its side-chain is protonated, in accordance with its proposed function as the general acid in this enzyme.

Mutation of D281 to Asn (Figure 4(b)) appears to result in an increased flexibility in the side-chain of this residue and alternative conformations are indeed required to explain the observed electron density, no other residues were refined with alternative conformations in the active site of this mutant. The mutation results in a movement of the side-chain of residue N281 away from D200, from 2.5 Å to, depending on the alternative conformation, between 2.74 Å and 4.11 Å. This suggests that D281 is non-protonated in the WT enzyme and that it possibly interacts as the H bond acceptor for D200 (donor). A distance of 2.5 Å is not to be expected if D281 and D200 are both negatively charged and the neutral form of D200 is favoured by its location in a highly hydrophilic pocket formed by residues F191, Y203 and F254. Furthermore, if D281 was the H bond donor, one would expect little structural changes upon mutating it to asparagine. In addition, this substitution results in a reorientation of residue 281 such that the hydrogen bonding distance to the nucleophilic water is increased (from 2.8 Å to, depending on the alternative conformation, 3.11 Å and 3.22 Å, respectively) and the distance to R284 is changed (from 3.46 Å to 3.97 Å and 3.29 Å, respectively). Interestingly, while residue 281 is repositioned and displays alternative conformations upon mutation to Asn, the nucleophilic water molecule remains relatively invariant, as only a 0.5 Å displacement from its position in the WT is detected. Indeed this suggests that the positioning of this water molecule is governed by some other residue i.e. Y203 or/and E78.

As described, replacement of D144 with Asn results in a large number of modifications in the active site (Figure 4(c)). In addition to the new interactions of E78 with R284 and Y380, residue R284 now also forms a hydrogen bond with S202 as...
the interaction with Y381 is lost. Furthermore, the nucleophilic water molecule shifts by 1.48 Å towards D281 which, along with Y203, also undergoes a slight displacement. In contrast, mutation of D144 to alanine (Figure 4(d)) results in only minor modifications. In particular, E78 occupies a position similar to that of the WT enzyme, with only a slight reorientation of its side-chain away from D144.
being observed. This suggests that the repositioning of E78 observed in mutant D144N is due to the loss of its hydrogen bonding interaction with D144 and to repulsion by the introduced asparagine residue. In common with mutant D144N, mutant D144A displays a slight displacement in the side-chains of Y203 and Y381.

Superposing the principal active site residues of pXyl upon those of the CelA–cellopentaose complex (Figure 5) reveals a number of important points: residue 144 in pXyl may form a bifurcated hydrogen bond with the OH-2 and OH-3 groups of a sugar molecule in the \(K_1 \) subsite; both D281 (2.8 Å) and E78 (2.87 Å) are with hydrogen bonding distance from the proposed nucleophilic water molecule; R76 (conserved strongly in family 8 xylanases) is found to be positioned axially above the sugar ring oxygen atom (O5) and is located near (2.39 Å) the C6 OH of the glucose unit in subsite \(-1\); finally, a conserved Trp (W124) positioned at the \(K_2 \) subsite stretches into the \(K_1 \) subsite at the B-face of the sugar unit in this subsite and close to the ring C5 methylene function. Interestingly, the

<table>
<thead>
<tr>
<th>Table 2. Diffraction data processing and refinement statistics for mutants E78Q, D281N and D144A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Diffraction data</td>
</tr>
<tr>
<td>Resolution (Å)</td>
</tr>
<tr>
<td>50–1.76 (1.79–1.76)</td>
</tr>
<tr>
<td>50–1.30 (1.34–1.30)</td>
</tr>
<tr>
<td>12–3.2 (3.27–3.20)</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>(P_{2_1}2_12_1)</td>
</tr>
<tr>
<td>(P_{2_1}2_1)</td>
</tr>
<tr>
<td>(P_{3_1}2_1)</td>
</tr>
<tr>
<td>Unit cell parameters</td>
</tr>
<tr>
<td>(a) (Å)</td>
</tr>
<tr>
<td>51.2</td>
</tr>
<tr>
<td>51.6</td>
</tr>
<tr>
<td>77.8</td>
</tr>
<tr>
<td>(b) (Å)</td>
</tr>
<tr>
<td>91.1</td>
</tr>
<tr>
<td>91.6</td>
</tr>
<tr>
<td>77.8</td>
</tr>
<tr>
<td>(c) (Å)</td>
</tr>
<tr>
<td>97.8</td>
</tr>
<tr>
<td>98.0</td>
</tr>
<tr>
<td>149.6</td>
</tr>
<tr>
<td>No. reflections</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>178,916</td>
</tr>
<tr>
<td>396,814</td>
</tr>
<tr>
<td>33,218</td>
</tr>
<tr>
<td>Unique</td>
</tr>
<tr>
<td>46,033</td>
</tr>
<tr>
<td>104,895</td>
</tr>
<tr>
<td>8337</td>
</tr>
<tr>
<td>(R_{merge}) (%)</td>
</tr>
<tr>
<td>3.3 (13.7)</td>
</tr>
<tr>
<td>7.2 (38.3)</td>
</tr>
<tr>
<td>11.9 (43.8)</td>
</tr>
<tr>
<td>(I/ \sigma (I))</td>
</tr>
<tr>
<td>35.5 (5.7)</td>
</tr>
<tr>
<td>18.4 (2.5)</td>
</tr>
<tr>
<td>11.1 (5.3)</td>
</tr>
<tr>
<td>Completeness (%)</td>
</tr>
<tr>
<td>99.4 (95.1)</td>
</tr>
<tr>
<td>91.3 (84.3)</td>
</tr>
<tr>
<td>93.3 (94.9)</td>
</tr>
<tr>
<td>B. Refinement</td>
</tr>
<tr>
<td>(R_{work}/R_{free}) (%)</td>
</tr>
<tr>
<td>16.0/17.8</td>
</tr>
<tr>
<td>12.3/14.3</td>
</tr>
<tr>
<td>21.6/27.6</td>
</tr>
<tr>
<td>rms deviations</td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
</tr>
<tr>
<td>0.007</td>
</tr>
<tr>
<td>0.012</td>
</tr>
<tr>
<td>0.008</td>
</tr>
<tr>
<td>Bond angles (deg.)</td>
</tr>
<tr>
<td>0.96</td>
</tr>
<tr>
<td>1.36</td>
</tr>
<tr>
<td>1.08</td>
</tr>
<tr>
<td>No. atoms</td>
</tr>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>3258</td>
</tr>
<tr>
<td>3313</td>
</tr>
<tr>
<td>3203</td>
</tr>
<tr>
<td>Solvent</td>
</tr>
<tr>
<td>514</td>
</tr>
<tr>
<td>616</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>Average B-factor</td>
</tr>
<tr>
<td>Main-chain (Å(^2))</td>
</tr>
<tr>
<td>11.2</td>
</tr>
<tr>
<td>11.3</td>
</tr>
<tr>
<td>26.8</td>
</tr>
<tr>
<td>Side-chain (Å(^2))</td>
</tr>
<tr>
<td>12.1</td>
</tr>
<tr>
<td>12.9</td>
</tr>
<tr>
<td>27.0</td>
</tr>
<tr>
<td>Solvent (Å(^2))</td>
</tr>
<tr>
<td>26.4</td>
</tr>
<tr>
<td>29.5</td>
</tr>
<tr>
<td>30.7</td>
</tr>
<tr>
<td>Ramachandran plot</td>
</tr>
<tr>
<td>Most favoured (%)</td>
</tr>
<tr>
<td>91.3</td>
</tr>
<tr>
<td>92.1</td>
</tr>
<tr>
<td>88.2</td>
</tr>
<tr>
<td>Additionally allowed (%)</td>
</tr>
<tr>
<td>8.7</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>11.8</td>
</tr>
</tbody>
</table>

Values between parentheses reflect the data in the highest resolution shell.

\[R_{merge} = \frac{\sum \sum |I(h,i) - \langle I(h) \rangle|}{\sum \sum I(h,i)} \], where \(I(h,i) \) is the intensity of the \(i \)th measurement of reflection \(h \) and \(\langle I(h) \rangle \) is the average value from multiple measurements.

Table 3. Comparison of mutated residue displacements with coordinate errors for each of the crystallised mutants

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Mutated residue displacement(^a) (Å)</th>
<th>Estimated overall coordinate error(^b) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E78Q</td>
<td>0.20</td>
<td>0.078</td>
</tr>
<tr>
<td>D281N</td>
<td>1.88</td>
<td>0.022</td>
</tr>
<tr>
<td>D144N</td>
<td>2.05</td>
<td>0.054</td>
</tr>
<tr>
<td>D144A</td>
<td>1.05</td>
<td>0.41</td>
</tr>
</tbody>
</table>

\(^a\) Maximum atomic displacement.

\(^b\) Based on maximum likelihood, calculated with REFMAC.
side-chains of E78 and D144 adopt an orientation different from that of their equivalent residues in CelA, ChoK and Rex and indeed, according to the superposition, such a positioning of E78 would lead to a steric clash with the sugar residue at subsite −1. This suggests that some structural modifications, either of the substrate or/and of the protein itself, occur upon substrate binding and thus the structure of a pXyl–substrate complex is required to clarify this point.

Discussion

A combination of kinetic, biophysical and structural studies has allowed us to more clearly define the roles of several active-site residues in the psychrophilic family 8 enzyme pXyl. In agreement with previous studies, the function of E78 as the proton donor is confirmed in this work: its side-chain is protonated and the pH-activity profile for the substitution of this residue with Glu is altered drastically in the basic limb as compared to the WT enzyme, this being in accordance with the absence of a catalytic group with high pKₐ in this mutant, i.e. lack of the general acid. The decrease in activity observed is similar to that reported for the mutation of the proposed general acid to Gln in the homologous family 8 endoglucanase K from Bacillus sp. KSM-330 (460-fold reduction in kₗ on CM-cellulose), but is much lower than that observed in ChoK (Glu to Gln mutation) and Rex (Glu to Ala mutation), where approximately 10⁴-fold reductions in the specific activity have been reported.

The interaction of D281 with the nucleophilic water molecule, the 700-fold reduction in kₗ and the substantial alteration of the acidic limb observed in the D281N mutant are consistent with this residue acting as the general base. However, Y203 is also within hydrogen bonding distance from the nucleophilic water molecule and mutation of this residue to Phe or Ala results in a larger drop in activity than for the D281N mutation. On the other hand, the pH-dependences of the Y203 mutants are very similar to that of WT pXyl and only a very slight increase in the pKₐ of tyrosine, argues against this residue acting as the general base in pXyl. Y203 probably functions with D281 in positioning the nucleophilic water molecule in a catalytically productive orientation and thus its mutation could lead to the observed reduction in activity. Indeed, Y80 in the family 11 xylanase from Bacillus circulans has been proposed to carry out a similar function and substitution of this residue by Phe has resulted in a comparable decrease in activity. Furthermore, structural analysis indicates that, in addition to its interaction with the nucleophilic water molecule, this residue is involved in a water-mediated interaction with the main-chain of F191, a residue conserved strongly in family 8 xylanases, and hence disruption of these interactions would be expected to result in a decrease in activity.

Figure 4. Superposition of the principal active site residues (sticks) and the proposed nucleophilic water (spheres) of wild-type pXyl (grey) with those of mutants (color-coded according to atom type): (a) E78Q; (b) D281N; (c) D144N; and (d) D144A. The hydrogen bonds and nucleophilic water in the mutants are indicated by broken lines and a red sphere, respectively, while the nucleophilic water in the wild-type pXyl is indicated by a grey sphere.
interactions could lead to the observed destabilization of the protein.

Similar to that observed for the proposed general acid residue, mutation of the proposed general base leads to a smaller decrease in activity than might be expected. However, large variations in the activity decreases are observed upon mutation of the proton acceptor residue in inverting enzymes, pointing to a disparity in the importance of the mechanistic functions in these enzymes, and suggesting that the mechanism of inverting enzymes may be more complex than is currently believed. Mutation of the general base in ChoK (Glu to Gln mutation) and Rex (Asp to Ala mutation) leads to reductions in the specific activity of approximately 10^4-fold and 4500-fold, respectively, while 10^5-fold to 10^6-fold reductions have been observed with a number of other inverting enzymes.\(^{20-22}\) In contrast, mutation of the proposed general base residue in a family 15 glucoamylase resulted in only a 35-fold to 60-fold loss of activity,\(^{23}\) while the absence of a general base residue has been reported for the related (clan GH-M) family 48 cellobiohydrolase CelS,\(^{24}\) as well as for a number of family 6 enzymes.\(^{25,26}\)

Figure 5. Structural comparison of endoglucanase CelA and endoxylanase pXyl. (a) Detailed view of the catalytic centre of CelA mutant E95Q with glucose residues at subsites -1 and +1 and the most important catalytic residues superimposed on the equivalent residues of WT pXyl. Carbon atoms of CelA and pXyl are coloured yellow and grey, respectively. The proposed nucleophilic water molecules of CelA and pXyl are indicated by spheres. The distance between the nucleophilic water of CelA and the anomeric carbon C1 at subsite -1 is indicated by a dotted line. Hydrogen bonds are indicated by broken lines and distances are in Å. (b) Stereo-drawing of the catalytic site of CelA (E95Q) in complex with cellopentaose (subsites -3 to +2) and cellotriose (subsites +1 to +3), and superposition on the equivalent residues of WT pXyl. Oxygen atoms are coloured red, nitrogen atoms are coloured blue and carbon atoms are coloured yellow (CelA) or green (pXyl).
Nevertheless, the small decreases in activity observed in the present study indicate that general acid and general base catalytic assistance may not be the principal factors leading to the hydrolytic rate enhancement in pXyl. In fact, it has been suggested that, although the general acid and base residues are essential for hydrolysis by inverting enzymes, much of the rate improvement is probably due to protein–substrate interactions further removed from the glycosidic scissile bond which stabilise the transition state and improve the “effective leaving group ability”. Indeed, an interesting feature of family 8 enzymes is their poor activity on small substrates, as at least five sugar units appear to be required for efficient activity. Here, it has been suggested that part of the energy obtained on substrate binding is utilized for creating a local microenvironment that allows the sugar unit in the −1 subsite to distort into an ALPH-compliant skew-boat conformation in which the scissile glycosidic bond is orientated axially and, as such, is ready for in-line axial attack by the water nucleophile. Furthermore, it has been shown that a high degree of charge accumulates on the leaving phenolate oxygen atom at the transition state in some inverting enzymes, hence indicating a high degree of bond cleavage and little proton donation. Nevertheless, the high pHk of the leaving group in xylan purports to protonation being absolutely required during departure of the leaving group in this substrate. Another possibility is that family 8 enzymes are highly effective in recruiting other amino acids to act as the catalytic residues in the absence of E78 or D281. Indeed, the proposed general base residue (D281) is not conserved in family 8 enzymes and Adachi et al. have even suggested the subdivision of family 8 enzymes into at least three subfamilies, based on the identity of the general base. A further possibility for the small decreases in activity observed is that, as has been seen for the inverting family 15 glucoamylase from Aspergillus awamori, the ratelimiting step for xylan degradation by pXyl is something other than hydrolysis, but upon mutation of the general acid or base residue the hydrolysis step is slowed sufficiently for it to become rate limiting, leading to the decrease in activity and pH profiles observed. Thus, while our study confirms that E78 and D281 are indeed the general acid and general base residues, further studies are required to investigate the actual importance of these residues in this family of enzymes.

Investigation of the D144 mutants indicates that this residue is extremely important for enzyme activity as a 1.6 × 10^2-fold and 1.2 × 10^5-fold reduction is obtained upon mutation to Asn and Ala, respectively. Analysis of the CelA cellopentaose complex, as well as of the superposition of pXyl on CelA-cellopentaose (Figure 5), indicates that this residue (D152 in CelA) is involved in a bidentate hydrogen bonding interaction with the OH-2 and OH-3 hydroxyl groups of the substrate unit in the −1 site. Indeed, interactions with these groups have been shown to be critical in sugar ring distortion and in enhancing the electrophilicity of the anomeric carbon atom. Therefore, whereas introduction of Asn in place of D144 may maintain the hydrogen bonding interactions, the relatively weaker interaction between the neutral partners (N144 to sugar hydroxyl groups) will result in a reduced activity. Similarly, substitution with Ala will lead to a complete loss of all interactions with the substrate and hence to the large reduction in activity discerned in this study.

From Figure 5 it can be seen that in addition to D144, R76 and W124 may also be proposed as being important for transition state stabilisation in this enzyme. R76 is strongly conserved in family 8 xylanases (replaced by a lysine in xylanase Y from Bacillus sp. KK-1) and the free electron pair of its NH2 atom, which is probably in its basic form due to the presence of Asp74 (also highly conserved in family 8 xylanases) adjacent to NH2, may stabilize the carbohydrate ring oxygen atom at the transition state in a manner similar to that of the C6 hydroxyl oxygen atom of the substrate itself in family 8 endoglucanases. The introduction of this strategically located arginine residue in family 8 xylanases may allow for the electrostatic stabilization of the transition state, even in the absence of the C6 hydroxyl oxygen atom in the natural substrate of the xylanases. In relation to W124, this is found to be strictly conserved in family 8 enzymes and is believed to function as a subsite −2 stacking residue, however, as described by Nerinckx et al. for CelA, this residue may also function in stabilising the carbohydrate out-of-plane hydrophobic patch created in the transition state.

Materials and Methods

Site-directed mutagenesis

The gene for pXyl was cloned into the NdeI and Xhol sites of the cloning vector pSP73 (Novagen) and the desired mutations were introduced by PCR with Vent DNA polymerase. The D281N and D281A mutations were introduced using the sense primers 5'-GAATTTAACGATGGCGCGGTAAATGATG-3' or 5'-GAAATTTGGCTGCACGCTCGCCG-3', containing the Asp to Asn or Ala mutation (underlined), respectively, and the antisense primer 5'-ATACATTGACCTGGTTTGG-3'. The Y203F and Y203A mutations were introduced using the sense primer 5'-CTTGACCTGGTTTGG-3', containing the Tyr to Phe or Ala mutation (underlined), respectively, and the antisense primer 5'-ATACATTGACCTGGTTTGG-3'. The Y203F and Y203A mutations were introduced using the sense primer 5'-CTTGACCTGGTTTGG-3', containing the Tyr to Phe or Ala mutation (underlined), respectively, and the antisense primer 5'-ATACATTGACCTGGTTTGG-3'. The E78Q and E78A mutations were introduced using the sense primer 5'-GAAATTTAACGATGGCGCGGTAAATGATG-3', containing the Glu to Gln or Ala mutation (underlined), respectively, and the antisense primer 5'-ATACATTGACCTGGTTTGG-3'. The E78Q and E78A mutations were introduced using the sense primer 5'-GAAATTTAACGATGGCGCGGTAAATGATG-3', containing the Glu to Gln or Ala mutation (underlined), respectively, and the antisense primer 5'-ATACATTGACCTGGTTTGG-3'.
to Ala mutation (underlined) and the antisense primer 5'-CCTCATTCCACTTTATATAACAAAGCGTITTTG-3'.

The PCR products were purified and circularised, transformed to *Escherichia coli* DINO RR1 and double-strand sequenced with an ALF DNA sequencer (Amersham Biosciences). The mutated genes were then excised from the cloning vector by restriction digestion with NdeI and Xhol, and ligated into the expression vector pET22b (+) (Novagen). The resulting recombinant plasmid was transformed to the expression host *E. coli* BL21 (DE3) (Stratagene).

Production and purification

Production and purification of all mutants was carried out as described for the WT recombinant enzyme. Briefly, cultures were produced in Terrific broth (12 g/l of Bacto tryptone (Difco), 24 g/l of yeast extract (Difco), 4 ml/l of glycerol, 12.54 g/l of K2HPO4, 2.31 g/l of KH2PO4, 200 μg/ml of ampicillin) at 18°C, enzyme expression was induced with 1 mM isopropyl-1-thio-D-galactopyranoside and purification was carried out by a combination of anion-exchange chromatography (QFF-Sepharose, Amersham Biosciences), cation-exchange chromatography (SFF-Sepharose, Amersham Biosciences) and gel-filtration chromatography (Sephacryl S-100, Amersham Biosciences).

Characterisation of mutants

Protein purity and molecular size was determined by SDS-PAGE run essentially as described by the instrument supplier (Hoefer-Scientific). Xylanase activity was measured by a modification of the dinitrosalicylic acid method,36 at pH 6.5 in 100 mM sodium phosphate buffer at pH7 was used. Crystals of mutant enzymes E78Q and D281N were obtained by using the hanging-drop, vapour-diffusion technique at 277 K. A portion (1 μl) of protein solution (10 mg/ml in 20 mM Mops (pH 7.5), 50 mM NaCl, 2% (w/v) trehalose) was mixed with 1 μl of reservoir solution (0.1 M sodium cacodylate (pH 5.6), 27% (w/v) PEG8000, 0.2 M ammonium acetate). Diffraction data were collected from single E78Q crystals on a DIP2030 imaging plate detector with Cu Kα radiation from a Nonius FR591 rotating anode generator with Montel multilayer optics. Diffraction data were collected from a single D281N crystal on a MarResearch Imaging Plate scanner using 0.81 A synchrotron radiation at the X11 beamline of EMBL/DESY in Hamburg. Diffraction data were collected from a single D144A crystal on a MAR CCD (MarResearch) detector system using 0.80 A radiation at the X13 beamline of EMBL/DESY in Hamburg. All data were collected at 100 K using paratone as the cryo-protectant. Intensity data were integrated, scaled and reduced to structure factor amplitudes with the HKL suite of programs38 and data collection statistics are shown in Table 2. Molecular replacement was carried out with AmoRe39 using the native xylanase structure (PDB code 1H13) as a search model. Prior to refinement, 5% of the data were randomly flagged for cross-validation (Rfree) and restrained refinement was performed using the program REFMAC,40 by monitoring the convergence of Rwork and Rfree (Table 2). For the D281N mutant, the final cycles of refinement were carried out assuming anisotropic temperature factors. Fourier maps with coefficients of 2mFobs−DFcalc and mFobs−DFcalc were calculated, where m is the figure of merit and D is the error distribution derived from the σA function.41 Inspection of electron density maps and model refinement were carried out with TURBO-FRODO42 and side-chains with missing electron density were not modelled. Simulated annealing omit maps were calculated using CNS to confirm the positioning of the major active site residues.43 The stereochemistry of the model was analysed using PROCHECK,44 while hydrogen bonds were calculated with the program HBPLUS.45 Structural superpositions were performed using LSQKAB and Figures were drawn with the program Pymol†.

Protein Data Bank accession codes

Atomic coordinates and related structure factors have been deposited in the RCSB Protein Data Bank, Rutgers University, New Brunswick, NJ‡ with identification codes 1XW2 for E78Q, 1XWT for D281N and 2ABZ for D144A.

Acknowledgements

The authors thank N. Gerardin and R. Marchand for their skilful technical assistance and the French Institute for Polar Research for generously accommodating our research fellows at the French Antarctic station in J.S. Dumont d’Urville, Terre Adelie. This work was supported by the Region Wallonne (contract BIOVAL 981/3860 and FIRST EUROPE R0202/215266), the European Union (network contract CT97031), the Fonds National de la Recherche Scientifique (contracts 2.4515.00 and 2.4536.04) and the Fonds voor Wetenschappelijk

† http://www.pymol.org
‡ http://www.rcsb.org/
Onderzoek-Vlaanderen (contract G.0330.03). We are grateful for access to beamline X11 at the EMBL/DESY, Hamburg Outstation and to Wim Nerincx for helpful discussions. D.D.V. is a Research Fellow of the Fund for Scientific Research-Flanders.

References

Edited by M. Guss

(Received 19 July 2005; received in revised form 19 September 2005; accepted 19 September 2005) Available online 10 October 2005
10 Oligosaccharide binding in family 8 glycosidases: crystal structures of active site mutants of the β-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis in complex with substrate and product
Oligosaccharide binding in family 8 glycosidases: crystal structures of active site mutants of the β-1,4-xylanase pXyl from *Pseudoalteromonas haloplanktis* in complex with substrate and product

† This work was supported by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO contract G.0330.03) and the ‘Region Wallonne’ (FIRST EUROPE R0202/215266). D.D.V. is a Research Fellow of the FWO.

‡ Laboratorium voor Eiwitbiochemie en Eiwitengineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.
§ Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium.
‖ Laboratory for Glycobiology, Department of Biochemistry, Physiology and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.

* To whom correspondence should be addressed: Jozef Van Beeumen, Laboratorium voor Eiwitbiochemie en Eiwitengineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium. Tel. +32 (0)9 264 51 09; Fax. +32 9 264 53 37; Email: jozef.vanbeeumen@ugent.be

‡ Both authors contributed equally to this work.

Running Title: Substrate and product complexes of pXyl

Atomic coordinates and related structure factors have been deposited in the RCSB Protein Data Bank, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/) with identification codes 1XWQ for E78Q-X3 and 2B4F for D144A-X5.

Abbreviations: MOPS, 3-(N-morpholino)propanesulphonic acid; rmsd: root-mean-square-deviation.

ABSTRACT: The structures of inactive mutants (D144A and E78Q) of the glycoside hydrolase family 8 (GH-8) endo-β-1,4-D-xylanase (pXyl) from the Antarctic bacterium *Pseudoalteromonas haloplanktis* in complex with its substrate xylopentaose (at 1.95 Å resolution) and product xylotriose (at 1.9 Å resolution) have been determined by X-ray crystallography. A detailed comparative analysis of these with the apo-enzyme and with other GH-8 structures indicates an induced fit mechanism upon ligand binding, whereby a number of conformational changes and in particular a repositioning of the proton donor into a more catalytically competent position occur. This has also allowed for the description of protein-ligand interactions in this enzyme and for the demarcation of subsites –3 to +3. An in-depth analysis of each of these subsites gives an insight into the structure – function relationship of this enzyme and the basis of xylose/glucose discrimination in family 8 glycoside hydrolases. Furthermore, the structure of the –1/+1 subsite spanning complex reveals that the substrate is distorted from its ground state conformation. Indeed, structural analysis and *in silico* docking studies indicate that substrate hydrolysis in GH-8 members is preceded by a conformational change, away from the substrate ground state chair conformation, to a pre-transition state local minimum \(^2\text{SO}\) conformation.
Xylans are the most abundant hemicelluloses in plants, accounting for as much as 35% of the dry weight of higher plants. They are heteropolysaccharides, being typically composed of a backbone of ~150-200 β-1,4-linked xylopyranose units substituted, in particular at the OH2 and OH3 positions, to varying degrees with diverse side-groups. Depending on the botanical origin, substituents including arabinose, D-glucuronic acid, 4-O-methyl-D-glucuronic acid and acetic acid may be found covalently bound to the xylopyranose units. Indeed, this heterogeneity results in the need for several hemicellulolytic enzymes for complete degradation of xylan. The enzymatic hydrolysis of xylan has raised significant interest because of its biotechnological applications, for example, in biobleaching and in the food and feed industries (1–4).

Endo-xylanases (EC 3.2.1.8) are glycoside hydrolases that catalyze the hydrolysis of the internal 1,4-β-D-bonds of the xylan backbone. The majority of xylanases cluster into families 10 and 11 in the sequence-based classification system of glycoside hydrolases (afmb.cnrs-mrs.fr/CAZY) (5). Within this classification scheme, members of a particular family have been found to display a similar three dimensional fold and to catalyse hydrolysis with a similar stereospecific outcome (6, 7). The cold-adapted xylanase (pXyl) from the Antarctic bacterium Pseudoalteromonas haloplanktis TAH3a (8–11) belongs to GH-8, a family which exhibits an (α/α)6 fold (clan GH-M) and which presently groups cellulases, lichenases, chitosanases and a number of other xylanases (12). Family 8 members investigated, including pXyl, have been shown to be inverting enzymes. Such a reaction is believed to involve a direct displacement of the leaving group by water, via an oxocarbenium-ion-like transition state, which is aided by both general acid and general base catalysis (13, 14). Typically, one carboxylate group provides for a general acid-catalyzed leaving group departure and a second functions as a general base, activating a nucleophilic water molecule to attack the anomeric carbon. This leads to cleavage of the glycosidic bond and to an inversion of the configuration at the anomeric carbon. In a recent study it has been shown that E78 and D281 in pXyl correspond to the catalytic proton donor and acceptor respectively (15). A third catalytically crucial residue is D144, which has been implicated in stabilizing the transition state by a bidentate interaction with the OH2 and OH3 groups of the sugar at subsite −1 (the subsites that bind the glycon and aglycon regions of the substrate are prefixed by − and +, respectively, and their number is related to the site of bond cleavage) (16).

Known crystal structures of GH-8 members include pXyl, the β-1,4-endoglucanase CelA, the reducing end exo-oligoxylanase Rex and the chitosanase ChoK (17–20). CelA is structurally the best characterized GH-8 member, crystal structures being available of its unliganded, substrate- and product-bound forms. Furthermore, crystal structures are available for the unliganded and product-bound forms of Rex. Here we report the high resolution crystal structures of the substrate and product complexes of pXyl which, in combination with in silico docking studies, provide insight into the substrate specificity and catalytic mechanism of this enzyme, as well as into the catalytic mechanism of family 8 glycoside hydrolases in general. Furthermore, we clarify aberrant observations previously reported on the structure of the unliganded pXyl, i.e. the unfavourably positioned catalytic proton donor E78 and the presence of an extra +4 subsite (10).

Materials and Methods
Crystallization and data collection
To obtain the structure of pXyl in complex with substrate and product, we have made use of active site mutants D144A and E78Q obtained by site-directed mutagenesis as previously described (15). Purified protein was prepared as described by Collins et al. (8). Crystallization was performed using the hanging-drop vapour-diffusion technique, mixing 1 µl of protein solution (10 mg/ml, 20 mM MOPS pH 7.5, 50 mM NaCl, 2% trehalose) with 1 µl of reservoir solution as described by Van Petegem et al. (9) but using sodium phosphate buffer at pH 7.0.
instead of sodium acetate buffer at pH 5.0. Since direct soaking of the resulting crystals with xylo-oligosaccharides of varying lengths was unsuccessful, the ligand was included into the crystallization droplet (at 2 mM). Co-crystallization of E78Q with xylotetraose took 2-3 months and resulted in a complex with xylotriose (X3). To obtain the structure of pXyl in complex with substrate, the more highly inactivated mutant D144A (15) was used. Here, crystallization was carried out with 1 µl of protein solution (identical to above, but with 10 mM xylohexaose included) mixed with 1 µl of well solution containing 21 % PEG8000, 0.1 M sodium cacodylate and 0.2 M ammonium acetate, pH 5.6. The resulting crystals grew in the same space group as for the E78Q-X3 complex but were smaller and appeared within 2-3 days. Crystals grown in the presence of xylohexaose (X6) led to a fully occupied binding cleft. However, the electron density for the most distal D-xylosyl moiety at the reducing end was not defined clearly enough to allow modelling of the complete xylohexaose molecule.

Diffraction data were collected from a single E78Q-X3 crystal on a DIP2030 imaging plate detector using CuKα radiation from a Nonius FR591 rotating anode generator with Montel multilayer optics. Diffraction data were collected from a single D144A-X6 crystal on a MARCCD detector (MarResearch) using 0.94 Å synchrotron radiation at the BW7A beamline at the EMBL/DESY in Hamburg. All data were collected at 100 K using 25 % glycerol as the cryo-protectant. Intensity data were integrated, scaled and reduced to structure factor amplitudes with the HKL suite of programs (21). Data collection statistics are shown in Table 1.

Structure refinement and analysis

The structures were isomorphous with the native structure described previously (pdb code 1H13) and were refined, starting from this structure, using the program REFMAC (22) of the CCP4 suite (23) by monitoring the convergence of R_{work} and R_{free} (Table 1). Inspection of electron density maps and model refinement were carried out with TURBO-FRODO (24) and side chains with missing electron density were not modelled. After refinement of the protein, ligand and water molecules were added to the model based on residual difference density in $F_o - F_c$ and $2F_o - F_c$ electron density maps, followed by further refinement and editing of the water molecules. The stereochemistry of the protein model was analyzed using PROCHECK (25), while the program PLATON (26) was used for evaluation of the carbohydrate conformations. Hydrogen bonds were calculated with the programs HBPLUS (27) and LIGPLOT (28). Structural superpositions were performed using LSQKAB (23) and figures were drawn with the program PYMOL (29).

Atomic coordinates and related structure factors have been deposited in the RCSB Protein Data Bank, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/) with identification codes 1XWQ for E78Q-X3 and 2B4F for D144A-X5.

Docking studies

The program AUTODOCK version 3.0.5 (30) was used for the automated docking of ligands to the active site of the E78Q-X3 structure (pdb entry 1XWQ). Xylotriose ligands, with the central D-xylosyl moiety in a 1_{S_1}, 1_{S_2}, 2_{S_0} and 4_{C_1} conformation, were drawn using the program HYPERCHEM® 7.5 (Hypercube Inc., Gainesville, USA). The same program was subsequently used for energy minimisation with the MM+ molecular mechanics force field (31, 32). The protein was prepared for docking by removing ligand and water molecules as well as side chains corresponding to alternative conformations (none being implicated in the binding of sugars at subsites –2, –1 or +1). Following this, missing side chains (none being implicated in sugar binding) were added with the program DEEPVIEW/SWISS-PDBVIEWER 3.7 (33) and polar hydrogens were added with the AUTODOCK TOOLS graphical user interface (ADT). ADT was then used to add atomic partial charges to the ligand and protein using the respective Gasteiger and Kollman methods (34, 35) and atomic solvation parameters
were added to the protein file (36). AUTODOCK uses a grid-based method for energy-evaluations in which the grid points contain precalculated affinities for the different atom types of the ligand. The number of grid points was set at 40×44×44, with a point spacing of 0.297 Å, yielding a grid box that spans in excess of the –2 to +1 subsites. For each ligand, 50 docking runs were performed using a Lamarckian Genetic Algorithm (using the pseudo-Solis and Wets local search method) (37) with a run-termination of 2,500 generations (at a maximum of 25×10⁶ energy evaluations), thereby allowing free rotation around the 12 exocyclic bonds between the heavy atoms (C/O) of the ligands. After docking, all structures generated for a single compound were assigned to clusters based on a tolerance of 2 Å for all-atom rmsds from the lowest-energy structure.

Results and Discussion
Crystallographic data and model quality
Inactive pXyl-D144A was crystallized in complex with the substrate xylohexaose (X6) and the structure was determined to 1.95 Å resolution using synchrotron radiation (Table 1). The final model includes 404 amino acid residues, 448 solvent sites, five enzyme-bound D-xyloside residues at the active site cleft and five enzyme-bound D-xyloside residues at a remote binding site. pXyl-mutant E78Q was crystallized in complex with the product xylotriose and led to the structure of the complex at 1.9 Å resolution based on data from an in-house source (Table 1). The final model includes 404 amino acid residues, 431 solvent sites and three enzyme-bound D-xyloside residues at the active site cleft. The stereochemical quality of both models is comparable to that of other crystal structures refined at a similar resolution. All non-glycine residues display main-chain dihedral angles that are localised within allowed or additional allowed regions of the Ramachandran plot, as defined by the program PROCHECK (25).

Representative electron density for the ligands is depicted in Figure 1A.

Structure of the pXyl substrate and product complexes
The overall structure of pXyl in the substrate and product complexes is very similar to that of the unliganded wild type enzyme (rmsds for Cα atoms of resp. 0.27 Å and 0.2 Å). Superimpositions reveal, however, that small concerted backbone movements (maximal Cα distances of 1.0 Å) leading to an opening of the binding cleft take place upon binding of substrate or product. The regions showing the largest shifts are the elongated loops lining the binding cleft, as well as a segment of the (α/α)6 barrel comprising helices H3, H4 and H5 (residues 77-160) which interestingly leads to a repositioning of residues E78 and D144. In particular, and as a result of this, the side-chain of D144 is repositioned to be closer to the OH2 and OH3 groups of the –1 subsite sugar.

At first sight, the crystal contacts do not appear to impede active site cleft accessibility. However, crystal soaking in relatively high concentrations of xylohexaose results in the occupation of the remote +2 and +3 subsites only (unpublished results). A possible explanation is that the crystal packing precludes a more pronounced hinge type movement needed to accommodate the substrate. In this respect, it is worth noting that the omega loop region 263-275, which lines the narrowest part of the binding cleft (at subsite –2) is involved in lattice contacts (via Y266, F268 and N269).

In contrast to pXyl, no significant large scale movements are observed upon binding of cellopentaose/cellotriose to CelA. While this may arise from differences in crystal packing, the higher thermostability (pXyl is cold-adapted), and hence possibly also rigidity, of this thermophilic enzyme is also a possible explanation. On the other hand, in Rex (a mesophilic enzyme) large-scale movements (Cα shifts up to 1.8 Å) of loops and helices are also observed upon binding of D-xylose and xylobiose (in particular residues 232-358). Contrary to pXyl, however, these movements result in a closing of the binding cleft. Indeed, since Rex displays
an exo-mode of substrate-cleavage and contains fewer binding sites, comparison to pXyl with respect to ligand-induced conformational changes is not straight-forward.

In addition to the structural changes described above, a number of local changes within the binding cleft of the enzyme are also observed. Firstly, substrate stacking interactions at subsites +3 and +1 are optimized. At subsite +3, a small movement of the Y378 side-chain around its χ_2 dihedral angle is observed, while at subsite +1 the side chain of Y381 moves towards the ligand by 0.7 Å and 1.1 Å in the product and substrate complexes, respectively (Figure 2). Remarkably, this movement of Y381 is counterbalanced by W82 which has its indole ring lying approximately in the same plane at a minimal distance of 3.5 Å (the corresponding movement is resp. 0.6 Å and 1.1 Å in the opposite direction). The importance of these movements may reside in the fact that residues Y381 and W82 interact directly with the strictly conserved residues R284 and E78 that undergo the largest conformational shifts of all the active site residues upon ligand binding.

R284 moves considerably only in the substrate-complex, losing its H bond interactions with D144 and Y381 in favour of H bonds with E78 and S202 (Figure 2A). As no similar movement is observed in the unliganded D144A mutant (15) it can be concluded that substrate binding, and not the mutation itself, causes this rearrangement. It can also be seen in this complex that the proton donor side chain is fixed in a similar position to that in the unliganded wild-type enzyme, mainly by H bonding to the OH3 group of the D-xylose at subsite −1. Interestingly however, modelling of D144 into this structure (results not shown) indicates that it would make a steric clash with the side chain of E78 and, hence, the position observed for this latter would probably not occur in the wild-type enzyme. It is possible that the D144A mutation allows for an enhanced conformational freedom of the E78 side-chain which can now adapt a position other than that which can occur upon ligand binding in the wild-type enzyme.

In the product complex (Figure 2B), it can be seen that the side chain of Q78 moves considerably upon ligand binding, losing its H bond interaction with D144 in favour of a H bond with Y380. This repositioning is not observed in the structure of the same E78Q mutant in the absence of ligand (15), and hence confirms that the rearrangement is induced by ligand binding. Indeed, this conformational displacement clearly results in a considerably more catalytically competent position for E78 which can now form a 2.8 Å H bond with the oxygen of the scissile glycosidic bond. Interestingly, assuming R284 takes on the position observed in the D144A-X5 complex, the proton donor may now also interact with R284, thus allowing for stabilization of a negative charge on E78 at the transition state. Moreover, a similar position for the side chains of E78 and R284 is observed in all complexes of family 8 enzymes studied to date (18, 20) as well as in the unliganded pXyl mutant D144N (10, 15) which is the only apo-enzyme for which an opening of the substrate binding cleft has been noted. Thus, it is possible that substrate binding induces this repositioning of side-chains within the active-site into more catalytically competent positions, with residue D144 playing a critical role in the process. In the case of the D144A-X5 complex (Figure 2A) it is possible that mutation of D144 to alanine affects this ‘induced-fit’ mechanism, resulting in a mispositioning of the proton donor and leading to the observed large activity decrease (105-fold decrease in its apparent k_{cat} as compared to the wild-type enzyme) (15). Also noteworthy is that the observed repositioning of E78, together with the small readjustments of the region containing the catalytic proton acceptor D281, results in an increase of the donor-acceptor distance from 4.5 to 5.1 Å in the product complex, though this is still considerably shorter than the archetypical distance of ~9.5 Å for inverters (38).

Analysis of the available family 8 structures (17-20) indicates that in all cases the proton donor residue is located in a solvent-accessible cavity containing one or more water molecules (Figure 3) and this conserved cavity is probably necessary to allow for the ‘induced fit’ movements described above. Moreover, primary sequence alignments indicate that the critical
residues lining this pocket are either strictly conserved (A142, pXyl numbering) or are replaced by residues with short side-chains (G145 in pXyl is replaced by A or S only). However, it is important to note that A142 may also have a role in substrate binding at subsites –1 and –2. Although the conserved hydrophilic cavity may lower the pKa value of the catalytic proton donor, this effect is likely to be negligible considering the close proximity of D144 (expected to be negatively charged around the optimum pH (10)) to E78 in the ‘inactive’ conformation. Indeed, increasing the pKa of the catalytic proton donor may be one of the potential roles of the ‘inactive’ conformation. Additionally, in this ‘inactive’ position, E78 is bridged to the proposed catalytic base D281 via the nucleophilic water molecule. Hence, one can even envisage this conformation being important for proton exchange (via the water bridge) after product release, and thus allowing for completion of the catalytic cycle. Interestingly, the ‘inactive’ conformation of the proton donor has been observed in one other GH-8 (atomic resolution) structure, that of unliganded CelA (39), while all other structures to date display the ‘active’ conformation of the proton donor in the absence of substrate.

Carbohydrate conformation

Analysis of the puckering parameters of the bound sugar (Table 2) as defined by Cremer and Pople (40) reveals significant distortion from the most stable ground state \(^4C_1\) conformation for the D-xylosyl moieties at subsites –1 and –2. The \(\Theta\) angle deviations are indeed not extremely large at these subsites but they are significant as they occur at two consecutive subsites. Although the distortion is modest compared to the \(^2,5B\) like conformation observed at subsite –1 in the CelA-cellopentaose complex (18), it indicates that pXyl is not optimized for stabilizing the ground state conformation of its substrate. Examination of the puckering parameters of X3 in the product complex and of X5 at the non-catalytic binding site reveals no significant deviations from the \(^4C_1\) form, except for the D-xylosyl moiety at the reducing end (subsite 5) of the latter. However, the aberrant puckering colatitude (\(\Theta\)), in this case, is unreliable due to a weak electron density.

With the exception of the –3/–2 linkage, the \(\phi\) and \(\psi\) torsion angles of the glycosidic linkages deviate significantly from the values reported for the CelA complexes. In CelA, the V-shaped form of the binding cleft results in deviations from the normal torsion angles mainly at the –1/+1 linkage (18). In contrast, these torsion angles (Table 2) are anomalous at the –2/–1 linkage in pXyl, whereas the subsequent linkages –1/+1 and +1/+2 approach the values reported for the approximate left-handed 3-fold helical structure of crystalline xylan (41) (maximum deviation is 22°). Finally, surprisingly, the +2/+3 linkage is more in accordance with the flat, extended, ribbon-like structure of crystalline cellulose than that of xylan and an intramolecular (O\(5_i\)-O\(3_{i+1}\)) hydrogen bond (2.7 Å) characteristic of cellulose is even found between these sugars. Interestingly, CelA exhibits the reverse situation: the +1/+2 linkage approximates the cellulose conformation (including a 2.8 Å O\(5_i\)-O\(3_{i+1}\) H bond) (42) while the +2/+3 linkage approaches the xylan conformation. A further important observation is the 2.6 Å hydrogen bond between the OH6 of D-glucose at subsite –1 and of OH3 at subsite +1 of CelA, a linkage that evidently is absent in pXyl.

Finally, the linkages between the D-xylosyl moieties at the aspecific binding site presents smaller deviations from the extended forms of cellulose and xylan, yet do not clearly conform to the 3n-helical structure of xylan. Illustrative is the relative orientation of the second and third D-xylosyl moieties which is more cellulose-like (a 2.7 Å intramolecular hydrogen bond is observed between O\(5_i\) and O\(H3_{i+1}\)).

Substrate binding sites

In accordance with the kinetic characterization of pXyl (8), we have found that the substrate binding cleft contains six subsites, three on each side of the cleavage site. Their location and binding mode (Figures 1B and 4) are quite similar to those of CelA, with aromatic side chains
lining the different subsites and water-mediated and direct hydrogen bonds being involved. Furthermore, the subsites previously described as possible +3 and +4 binding sites on the basis of wild type pXyl in complex with xylobiose (10) are more likely alternative +2 and +3 sites. The aberrant location of the D-xylosides at these alternative subsites (about 3 Å more distal from the active site) can be attributed to the fact that the xylobiose complex was obtained by direct soaking of crystals which, as discussed above, prevents full access to the binding cleft. At the same time, it illustrates that the enzyme presents a rather smooth binding profile (gliding surface) (43–45) around subsites +2 and +3. This could enable directing of the leaving product as previously suggested (10).

Inspection of $F_o - F_c$ maps of the substrate complex reveals the presence of an extra xylo-oligosaccharide binding site in a low-homology region remote from the catalytic site, as evidenced by clear electron density for a linear chain of five D-xylosyl moieties (Figure 1). Although hydrogen bonds are formed with the D-xylosyl moieties at positions 1, 3 and 5 (starting from the non-reducing end of the chain), binding appears to be dominated by the stacking of two aromatic residues (W249 and Y315) with the first two sugars. This sandwich-type of hydrophobic platform (46, 47) forms a short cleft having the potential to accommodate a range of small xylo- or gluco-configured ligands. Nevertheless, as the D-xylose at position 5 is involved in a lattice contact with Q119 and as non-catalytic binding sites are traditionally found in separate carbohydrate-binding domains (47), further investigation is needed to assess the significance of this carbohydrate-binding site in pXyl.

Even though the catalytic site of pXyl is found to be highly similar to that of CelA, a more detailed analysis of each of the individual subsites, as well as a comparison with those of Rex, ChoK and CelA as described below allows for a better understanding of the substrate binding and specificity of pXyl.

The plus subsites

Of subsites +1, +2 and +3, the latter appears to be of least importance, both in terms of strength of binding and substrate specificity. In effect, the D-xylosyl moiety at this subsite could not be determined in the D144A-X5 complex because of poor electron density. Furthermore, even though a ~3 Å shift in the relative position is observed, the D-xylosyl moiety in pXyl (E78Q-X3) and D-glucosyl in CelA have a similar orientation (Figure 1B) and, in both cases, a conserved tyrosine residue is involved whereas the polar interactions differ. A further interesting observation at this subsite is that the α-configuration of the D-xylosyl moiety is stabilized by a hydrogen bonding interaction with glutamine 327 (Figure 4B), this being in contrast to xylotriose in solution where the β-configuration dominates (48). In fact, Q327 was also refined with two alternate conformations, in both unliganded and liganded pXyl, and both of these give rise to hydrogen bonds (3.0 and 2.7 Å) with the α-anomeric form of the xylopyranosyl residue. Presently, the reason for the stabilization of the α-configuration in this subsite is unknown.

The presence of well-defined electron density at subsite +2 in the substrate complex indicates stronger substrate binding at this subsite as compared to that at subsite +3. Furthermore, while the relative positions of the D-xylosyl and D-glucosyl moieties of pXyl and CelA are closer (~1 Å), their orientation differs by ~35° (Figure 1B). No direct hydrogen bonds are observed (neither in pXyl nor CelA) and, hence, this position of the sugar unit is governed by aromatic stacking interactions with F280 in pXyl and Y277 in CelA (Figures 4 and 5A). In addition, the positions of these aromatic side chains themselves are governed, via steric effects, by residues W283 and F336, respectively (Figure 5A). In fact, the tryptophan residue (W283 in pXyl) is found to be conserved in GH-8 xylanases, whereas more compact residues are found in all GH-8 cellulases, chitosanases and lichenases. Interestingly, a serine is present at this position in the GH-8 enzyme BglBC2 from *Bacillus circulans* ATCC 21367, annotated as a cellulolytic xylanase (49) while Rex, which has been shown to have an obstructed +2 site, does not have a
conserved stacking aromatic residue. In addition, ChoK, whose substrate glucosamine is structurally similar to glucose, has an aromatic stacking system similar to that of CelA.

The altered orientation of the aromatic stacking system observed in pXyl and in GH-8 xylanases may play a role in substrate specificity (50, 51), firstly, via an optimized topography for xylan binding, as it imposes a helical turn upon the +1/+2 glycosidic link similar to that observed in crystalline xylan, and secondly, via the narrowing effect on the binding cleft which may cause steric repulsion against the extra hydroxymethyl group of D-glucose (by means of Y381). Finally, the orientation of the D-xyloside observed at subsite +2 may be important for the binding of decorated xylan substrates due to the absence of steric hindrance to substituents at OH2 and OH3 and the presence of R337 which is favorably located to interact with negatively charged (4-O-methyl-) D-glucuronic acid substituents.

In contrast to subsite +2, subsite +1 is characterized by a combination of aromatic stacking (Y381) and conserved polar interactions (Figure 4) and, not surprisingly, the positions of the D-xylosyl and D-glucosyl moieties at this subsite are very similar in pXyl and CelA (Figure 1B). The dominant interaction at this subsite appears to be that with Y381 which, with one exception (the endo–1,4-glucanase fragment from Cellulomonas uda) (49) is found to be highly conserved, or replaced by a phenylalanine, in GH-8 enzymes. Nevertheless, a slight rotation of the D-xylosyl moiety in the pXyl-substrate complex as compared to D-glucose in CelA is observed due to the presence of a H bond between the OH6-group and the proton acceptor in the CelA complex. Interestingly, this rotation becomes even more pronounced in the pXyl product complex, due to the formation of a H bond between the D-xylosyl OH4 group and the proton acceptor residue. Furthermore, and as a result of this, the product is shifted towards subsite −1 compared to the substrate. This observation contrasts with the situation observed in CelA where the product moves in the opposite direction, resulting in the disruption of the OH6-D278 interaction. This phenomenon, which was suggested to play a role in product release in CelA (18), is thus not operative in pXyl. Finally, because the OH2 and OH3 groups of the D-xylosyl in this subsite point towards the protein, a decorated sugar unit (52) is unlikely to bind here in pXyl.

Subsites –3, –2

Subsite −3 of pXyl shows only superficial resemblance to that of CelA because of local differences in backbone conformation and consequently, the amino acids involved in carbohydrate recognition differ. Furthermore, the number and strength of these interactions is decreased as compared to CelA (Figures 1B and 4A). The aromatic stacking interaction (with W205) and hydrogen bonds (three) with the D-glucose OH2- and OH3-groups in CelA are replaced by weaker hydrophobic interactions (with F191, I195 and F268) and only one direct hydrogen bond (D138 - OH2). Furthermore, despite the extended loop region (residues 270-274) which narrows the binding cleft at this subsite, D-glucose binding and decorations at OH3 still appears possible. On, the other hand, substituents at OH2 or a 1,3-glycosidic linkage at the −3/–2 junction would cause severe steric hindrance.

The well-defined electron density obtained at subsite −2 (Figure 1A) indicates that this is a strong binding site. Together with subsite +1, it is essential in bringing the scissile glycosidic bond at subsite −1 into a catalytically competent position. Indeed, our observation of residual electron density at these subsites in maps from crystals without added ligand further indicates that subsites −2 and +1 are high affinity sites. W124, which seems to be the dominant aromatic stacking partner at subsite −2, is strictly conserved among family 8 members, whereas the direct hydrogen bonds observed in CelA (between the D-glucose-specific OH6-group and W205-N ε and A149-O) are lost in pXyl (Figure 4A) due to variations in the backbone conformation in the 140s region and the replacement of W205 by S191. The former observation is especially important as the ~1.7 Å shift of the P141 (equivalent to A149 of CelA) backbone carbonyl into the cleft would cause a steric clash with a D-glucose-
hydroxymethyl group, both in pXyl and Rex, and thus appears to be a determining factor for D-xylose specificity (Figure 5B). Importantly, this relatively small difference will only have its full effect in combination with the strong stacking interaction with W124 (or W112 in Rex) and the close-fitting binding cleft at subsite –2. In addition, the presence of F191 and F187 in pXyl and Rex, respectively, seems to restrain the ligand at subsite –2 even more compared to that in CelA and ChoK. Primary sequence comparisons indicate, however, that the presence of a bulky aromatic residue at this position is not limited to xylanases. As a final remark on the substrate specificity of subsite –2, the extended 270s loop region does not appear to confer specificity towards D-xylose, but rather may play a role in binding cleft accessibility. Moreover, it seems to prevent subsite –2 from binding substituted xylan due to steric constraints.

Because of the pseudo-symmetry of xylan, it may be able to bind to the cleft in the wrong direction and thereby lead to the formation of a dead-end complex. The question thus arises as to how family 8 xylanases differentiate between the glycon and aglycon regions of their substrate. Strikingly, there are no direct hydrogen bonds with the endocyclic O5 in pXyl and Rex (nor in CelA), but one indirect interaction that may allow for correct orientation of the substrate is observed in all GH-8 complexes: a water bridge between Y203 (pXyl numbering) and O5 at subsite –2 (Figure 4A). Interestingly, this water molecule corresponds to a strong electron density peak and it is one of only four conserved water molecules found in the binding cleft of all GH-8 structures known to date.

Subsite –1

Subsite –1 of pXyl exhibits some notable differences with that of CelA. Firstly, the average D-xylose ring plane is tilted relative to the average D-glucose ring plane and the OH2 and OH3 groups engage in H bonds with residues D281 and Y203 (Figure 5C) probably as a result of the loss of the bidentate interaction with residue 144 as well as steric repulsion by the ‘mispositioned’ proton donor in the D144A mutant. Secondly, the xylopyranose ring in subsite –1 reveals a distorted 4C_1 conformation instead of a distorted boat ($^{2,5}B$) form as occurs in CelA. Although it cannot be excluded to result from the absence of the D144 side chain in the mutant, a number of arguments can be put forward to support the proposition that the presence of a $^{2,5}B$ conformation is unlikely to occur in the [ES] complex of family 8 xylanases. Given that the stabilizing influence of D144 on the transition state (TS) can primarily be ascribed to electrostatic interactions with the transient redistribution of charges during the transition state (53, 54), it does not follow that D144 preferentially stabilizes the neutral $^{2,5}B$ form, as present in the CelA complex. Moreover, the influence of a $^4C_1 \rightarrow ^{2,5}B$ conformational change on the relative positions of the OH2 and OH3 groups is negligible, atoms C5 and O5 being involved in the major rearrangements. Closer investigation of the complexes of pXyl and CelA at subsite –1 shows that the preference for a $^{2,5}B$ like conformation in the ground-state rather results from other factors. Guérin et al. (18) have proposed that binding of substrate in the V-shaped binding cleft, with a sufficient number of binding sites being occupied, induces a chain bending (‘kink’) at the scissile glycosidic linkage, thus imposing a $^{2,5}B$ conformation on the sugar ring at the –1 subsite. Indeed, while we have indications of ‘strain’ at subsite –1 in the pXyl substrate complex, as discussed above, it appears that chain bending is insufficient to induce a boat conformation. In fact, a number of interactions that specifically stabilize the observed boat conformation appear to be present in CelA. Firstly, the sugars at subsites –1 and at +1 are optimally positioned to allow for the formation of a 2.6 Å hydrogen bond between OH6 at –1 and OH3 at +1, secondly, a H bond, which can not occur with a 4C_1 conformation, is found between OH6 at –1 and R84, and finally, a $^{2,5}B \rightarrow ^4C_1$ transition would lead to steric repulsion between the C6OH group and W132. Since these interactions are D-glucose-specific, these forms of ‘local strain’ are inexistent in pXyl, and this is further supported by the presence of a regular 4C_1 chair form at subsite –1 in the non-(cleavage-site)-spanning
xylobiose complex of Rex (20). Importantly, R84 is substituted by A66 and D61 in pXyl and Rex, respectively. However, at a similar position, but ~1.5 Å closer to the potential position of a D-glucose-hydroxymethyl group, residues R76 and R68 are found in pXyl and Rex. Together with respect. W124 and W112 (equivalent to W132 in CelA) these residues would seriously impede access of D-glucose to subsite –1. In effect, inspection of the GH-8 sequences indicates that the presence of R or K at this position is xylanase-specific (15).

Unfavourable ‘bowsprit’ interactions and the requirement for strong compensatory protein-carbohydrate interactions are major barriers to the formation of a ground state D-glucoside $^{2,5}B$ conformation and may be one of the reasons behind the observation of a 4C_1 form in family 12 cellulases whereas the closely related family 11 xylanases adapt a $^{2,5}B$ conformation (55–57). Indeed, the $^{2,5}B$ form of the CelA Michaelis complex is distorted towards the 2S_0 form, which more likely represents a local conformational minimum (58) and, furthermore, is located next to $^{2,5}B$ in the pseudo-rotational itinerary (PSI; 59). In the next section we present elements in support of the proposal that family 8 cellulases and xylanases are committed to a conformational change towards a 2S_0 like conformation.

A mechanistic itinerary for substrate hydrolysis by family 8 enzymes

It has been generally accepted that, as a consequence of the antiperiplanar lone pair hypothesis (ALPH), the hydrolysis of β-glycosides should be preceded by a conformational change, away from the ground state chair to a high-energy skew-boat conformation in which the leaving-group has an axial position and thus enables an essential set-up with an antiperiplanar orbital of the ring oxygen lone pair (60–63). According to these stereoelectronic considerations, the 1S_3, 1S_5 and 2S_0 forms are the most likely candidates for the pre-TS local minimum. Given that GH-8 consists of β-glycoside hydrolyases, at least one of these conformations should be stabilized by its members. This finding agrees well with the presence of a 2S_0 like conformation in the Michaelis complex of CelA. To determine the conformational preference of pXyl in relation to these three potential pre-TS conformations, we have performed docking studies with the program AUTODOCK. Xylotriose ligands differing only in the puckering conformation of the central D-xylosyl moiety were docked into the crystal structure of the E78Q-X3 complex because, as discussed above, this is proposed to best resemble the conformation of the active site of the wild type enzyme in complex with substrate (especially in relation to the proton donor E78). The 1S_3, 1S_5 and 2S_0 conformations were used for the central D-xylosyl moiety, as a control-ligand, the all-β4C_1 xylotriose was also docked.

The results of the dockings show a clear preference for 4C_1 and 2S_0 over 1S_5 and 1S_3, with the first two conformations giving the best fit to the crystallographic complex (Table 3). Considering the fact that the energetic penalty for a $^4C_1 \rightarrow S$ change is not paid for by AUTODOCK, a preference for 2S_0 instead of 4C_1 might even be expected based on the release of strain imposed by the binding cleft on an all-4C_1 form. Docking runs performed with larger substrates to confirm this potential effect, however, were unsuccessful. Despite of this, the docking experiments with xylotriose clearly demonstrate that the 1S_5 and 1S_3 forms are not complementary to the shape of the binding cleft. In addition, a $^4C_1 \rightarrow 1S_{3/5}$ conformational change from the ground state would be disruptive to hydrogen bonds involving the OH2 and OH3 groups at subsite –1, leading to a destabilizing effect, whereas a $^4C_1 \rightarrow ^2S_0$ conformational reorganization would leave most of the ground state interactions unaltered. Consequently, taking the strongly conserved binding cleft of GH-8 members into account, the conformational route $^2C_1 \rightarrow ^2S_0 \rightarrow TS \rightarrow \alpha^-C_1$ can be put forth as a reasonable, yet incomplete, mechanistic itinerary for the substrate hydrolysis catalyzed by this family. This raises the question if the observation of a distorted $^{2,5}B$ conformation in the CelA-Michaelis complex should be explained as resulting from the stabilization of an ALPH-compliant pre-TS local minimum 2S_0 conformation, rather than a high-energy $^{2,5}B$ like TS as proposed by Guérin et al. (18) and if the E_3 and 4H_5 forms should not be considered as TS candidates. Indeed their
C5, O5, C1 and C2 atoms are coplanar (as in the oxocarbenium-ion-like TS) and only a minor repositioning is required when coming from a 2S_0 form. However, in contrast to a $^{2,5}B$ form, they avoid the unfavourable flagpole interaction of the hydroxymethyl group, axial on the C5 bowsprit, with the C2 hydrogen atom, which inter alia would be present in a pre-TS $^{2,5}B$ just as well as in a $^{2,5}B$ TS. Moreover, a (borderline) S_N2-type nucleophilic attack of a water molecule on an anomeric center should proceed in-line from the other side of the leaving group, which can occur when the leaving group is axially positioned (as in the ALPH-compliant 1S_3, 1S_5 and 2S_0 conformations), but is problematic on a $^{2,5}B$ pre-TS since here the leaving group occupies an equatorial position for which the region for nucleophilic attack is occupied by the hydrogen atom on C3 and is as such sterically inaccessible. A strict $^{2,5}B$ conformation of a classical β-substituted glycopyranoside is therefore not a productive situation and should be avoided by the enzyme.

Conclusions

Our analysis of the crystal structures of the pXyl mutants D144A and E78Q in complex with substrate and product, respectively, indicates that substrate specificity in GH-8 xylanases is determined by structural features at subsites +2, –1 and –2. At subsite +2, an alternative orientation of the aromatic stacking system provides an optimized topography for xylan binding and, furthermore, would impose steric repulsion on a D-glucosyl moiety. Subtle differences in backbone conformation impede binding of D-glucose at subsite –2 and steric hindrance may also hamper binding of D-glucose at subsite –1.

This work further delineates the function of several active site residues and follows up on a previous study on pXyl in which we have determined the identity of the general acid and general base catalysts and of the nucleophilic water (15). Comparison of the complexes with the wild-type and mutant structures in their unliganded form has allowed for the demonstration of an induced fit mechanism taking place upon ligand binding. The global conformational changes are in agreement with the high conformational flexibility previously reported for this cold-adapted enzyme (11). Among local changes, the repositioning of the proton donor in a more catalytically competent position is the most notable event.

The structure of the –1/+1 subsite spanning complex reveals that the enzyme imposes ‘strain’ on the substrate, which, along the reaction path, may be alleviated by a conformational change of the sugar residue at subsite –1, bringing the scissile glycosidic linkage into a pseudoaxial position. This is consistent with stereoelectronic expectations (as dictated by ALPH), while simultaneously allowing unrestricted nucleophilic attack at the opposite face of the anomic carbon. According to our study, a 2S_0 form most likely fulfils this role in family 8 enzymes.

Acknowledgement

We gratefully acknowledge access to beamline BW7A at the EMBL/DESY Hamburg Outstation and thank N. Gerardin, A. Dernier and R. Marchand for their skillful technical assistance.
References

Table 1: Diffraction data processing and refinement statistics for the xylopentaose and xylotriose complexes

<table>
<thead>
<tr>
<th></th>
<th>D144A-X5</th>
<th>E78Q-X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Diffraction data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20-1.95 (2.01-1.95)</td>
<td>50-1.88 (1.92-1.88)</td>
</tr>
<tr>
<td>Space group</td>
<td>$P_2_1_2_1_2_1$</td>
<td>$P_2_1_2_1_2_1$</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>$a = 50.7$</td>
<td>$a = 51.0$</td>
</tr>
<tr>
<td></td>
<td>$b = 91.1$</td>
<td>$b = 90.8$</td>
</tr>
<tr>
<td></td>
<td>$c = 99.6$</td>
<td>$c = 98.1$</td>
</tr>
<tr>
<td>No. Reflections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>174,379</td>
<td>94,091</td>
</tr>
<tr>
<td>Unique</td>
<td>34,436</td>
<td>34,526</td>
</tr>
<tr>
<td>R_{merge} (%)</td>
<td>6.0 (28.6)</td>
<td>8.5 (40.0)</td>
</tr>
<tr>
<td>$I/\sigma(I)$</td>
<td>26.6 (3.5)</td>
<td>10.3 (2.0)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (100)</td>
<td>90.3 (82.4)</td>
</tr>
<tr>
<td>B. Refinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{work}/R_{free} (%)</td>
<td>14.6/17.9</td>
<td>16.0/18.7</td>
</tr>
<tr>
<td>Rms bond length deviations (Å)</td>
<td>0.011</td>
<td>0.008</td>
</tr>
<tr>
<td>Rms bond angle deviations (°)</td>
<td>1.29</td>
<td>1.02</td>
</tr>
<tr>
<td>No. atoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>3263</td>
<td>3256</td>
</tr>
<tr>
<td>Solvent</td>
<td>448</td>
<td>431</td>
</tr>
<tr>
<td>Ligand</td>
<td>46/46 b</td>
<td>29</td>
</tr>
<tr>
<td>Average B-factor (Å2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main chain</td>
<td>18.0</td>
<td>13.4</td>
</tr>
<tr>
<td>Side chain</td>
<td>18.9</td>
<td>14.1</td>
</tr>
<tr>
<td>Solvent</td>
<td>32.8</td>
<td>26.6</td>
</tr>
<tr>
<td>Ligand</td>
<td>34.8/36.7 b</td>
<td>28.4</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% most favoured regions</td>
<td>92.1</td>
<td>92.1</td>
</tr>
<tr>
<td>% additional allowed</td>
<td>7.9</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Values between parentheses reflect the data in the highest resolution shell.

$R_{merge} = \Sigma_h \Sigma_i |I(h,i)|-<I(h)>/\Sigma_h \Sigma_i |I(h,i)|$, where $I(h,i)$ is the intensity of the ith measurement of reflection h and $<I(h)>$ is the average value from multiple measurements.

b The second value is for the ligand at the non-catalytic binding site.
Table 2: Sugar conformation parameters for the D144A-X5 and E78Q-X3 complexes

<table>
<thead>
<tr>
<th>Sugar site</th>
<th>Ring puckering parameters</th>
<th>Form</th>
<th>Dihedral angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Φ_2 (°)</td>
<td>Θ (°)</td>
<td>Q (Å)</td>
</tr>
<tr>
<td>D144A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalytic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>272</td>
<td>4</td>
<td>0.57</td>
</tr>
<tr>
<td>-2</td>
<td>320</td>
<td>14</td>
<td>0.50</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>14</td>
<td>0.55</td>
</tr>
<tr>
<td>+1</td>
<td>283</td>
<td>9</td>
<td>0.56</td>
</tr>
<tr>
<td>+2</td>
<td>347</td>
<td>6</td>
<td>0.56</td>
</tr>
<tr>
<td>Non-catalytic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>186</td>
<td>6</td>
<td>0.54</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>6</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>296</td>
<td>4</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>21</td>
<td>0.55</td>
</tr>
<tr>
<td>E78Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>326</td>
<td>8</td>
<td>0.54</td>
</tr>
<tr>
<td>+2</td>
<td>241</td>
<td>4</td>
<td>0.54</td>
</tr>
<tr>
<td>+3</td>
<td>71</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>Xylanc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulosed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The puckering parameters (Φ_2, Θ, Q) were calculated with PLATON (26).

b The dihedral angles are defined as: ϕ (O5$_i$-C1$_i$-O4$_{i+1}$-C4$_{i+1}$) and ψ (C1$_i$-O4$_{i+1}$-C4$_{i+1}$-C3$_{i+1}$).

c,d Values for xylan and cellulose are shown for comparison (41, 42).
Table 3: Xylotriose-docking statistics

<table>
<thead>
<tr>
<th>Conformation of the central xylopyranose</th>
<th>Number of members in the lowest-energy cluster</th>
<th>Rmsd(^a) from the substrate complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{S}_5)</td>
<td>22/50</td>
<td>4.20</td>
</tr>
<tr>
<td>(^1\text{S}_3)</td>
<td>4/50</td>
<td>4.50</td>
</tr>
<tr>
<td>(^2\text{S}_0)</td>
<td>17/50</td>
<td>2.17</td>
</tr>
<tr>
<td>(^4\text{C}_1)</td>
<td>12/50</td>
<td>1.53</td>
</tr>
</tbody>
</table>

\(^a\) Based on the best-docked member of the lowest-energy cluster.
Figure 1. (A, left) $2F_o-F_c$ electron density maps contoured at 1.0σ for the substrate (top), product (middle) and xylopentaose at the non-catalytic binding site (bottom). (B, right) Superposition of the pXyl (in pink) and CelA (in yellow) substrate (top), and product (middle) complexes. For the product complex the xyloside at the alternative subsite $+3$ is shown in grey and the xylosyls at the reducing end are both shown as a combination of α- and β-configured models. Side chains involved in important hydrophobic interactions are shown for pXyl. At the bottom right is shown a view of the major protein-carbohydrate interactions of the non-catalytic binding site. The reducing end of the xylopentaose chain is located at the right. Main chain interactions are indicated by a ‘**’.
Figure 2. Superposition of the main active site residues (sticks) and the proposed nucleophilic water (spheres) of wild-type pXyl (grey) with those of the D144A-X5 (A), and E78Q-X3 (B) complexes (color-coded according to atom type). The hydrogen bonds and nucleophilic water in the complexes are indicated by dashed lines and a red sphere, respectively, while the nucleophilic water in the wild-type is indicated by a grey sphere.
Figure 3. (A) Superposition of different ligands onto the surface of pXyl E78Q-X3. Xylopentaose at the catalytic site is shown in pink, xylotriose in cyan, the xylosyl of the pXyl-xylobiose complex described previously (10) is shown in purple and xylopentaose at the non-catalytic binding site is depicted in yellow. The region of the molecular surface involved in lattice contacts (270s region) is in yellow and the approximate location of the hydrophilic cavity is in red. (B) Details of the molecular surface at the hydrophilic cavity conserved in GH-8 members. Residues lining the cavity of pXyl mutant E78Q in complex with xylotriose (in cyan) and the superposed equivalent residues of CelA, ChoK and Rex (in yellow) are depicted as sticks. The cluster of residues at the left correspond to the catalytic proton donor. The side chain (in grey) that perforates the molecular surface is that of the catalytic proton donor of the unliganded wild-type pXyl. The cluster of residues in the middle and on the right correspond to G145 (and equivalent residues) and A142 (and equivalent residues) respectively.
Figure 4. Schematic presentation of the potential water mediated and direct protein-carbohydrate H bonding interactions (in Å) of the D144A-X5 (left) and E78Q-X3 (right) complexes.
Figure 5. Detailed presentation of the superposed subsites +2 (A), –2 (B) and –1 (C) of GH-8 members. Amino acids are shown as sticks, sugar residues as ball-and-stick and nucleophilic water molecules as spheres. pXyl residues are colored cyan, CelA residues yellow, ChoK residues orange and Rex residues purple. In (B), the repulsive interactions between the glucose of CelA and the pXyl and Rex backbone carbonyl groups are indicated by curved lines. In (C), hydrogen bonds specific to the pXyl D144A- and CelA E95Q-substrate complexes are shown as dashed lines.
Overall conclusions and future prospects

This work represents a contribution to the understanding of enzymes from extremophiles through the study of the aspartate carbamoyltransferases from the hyperthermophilic archaeon *Sulfolobus acidocaldarius* and from the psychrophilic deep-sea bacterium *Moritella profunda*, as well as a glycoside hydrolase family 8 xylanase from the psychrophilic bacterium *Pseudoalteromonas haloplanktis*.

Sulfolobus acidocaldarius ATCase

E. coli aspartate carbamoyltransferase has become a model system for cooperativity and allosteric behaviour of which its dodecameric architecture is an essential component. The crystal structure of the unliganded ATCase of *S. acidocaldarius*, determined by X-ray crystallography to 2.6 Å resolution, represents the first structure of a holoenzyme of the same structural class. Comparison with the *E. coli* ATCase revealed differences in tertiary and quaternary structure. Conformational differences in the 240s loop region of the catalytic chain and in the C-terminal region of the regulatory chain affect intersubunit and interdomain interfaces implicated previously in the *E. coli* ATCase allosteric behaviour. These structural rearrangements may well promote the thermostability of the hyperthermophilic enzyme. The changes at the interfaces may also explain the importance of the regulatory subunits in stabilizing the holoenzyme and furthermore why the catalytic trimers are intrinsically unstable.

Several elements from the crystal structure indicate that the unliganded *S. acidocaldarius* enzyme is in a structural T state, yet one that is shifted towards the *E. coli* R state. Our preliminary analysis of sedimentation velocity experiments with the bisubstrate analogue PALA seem to confirm that the unliganded enzyme is indeed in a structural T state and that a conformational transition takes place, similar in amplitude to that of *E. coli* ATCase. A first analysis of the *S. acidocaldarius* ATCase in complex with CTP indicates very similar modes of binding, which confirms the expectation that the differences in regulatory behaviour are caused by differences in the interfaces that are thought to be involved in effector-signal transmission. Interestingly, a global conformational shift has not been observed, yet small local differences are present.

Future work should be primarily directed towards obtaining crystals of the allosteric R state to obtain a more solid ground for explaining homotropic and heterotropic effects. Several attempts have been made, including direct soaking as well as cocrystallization with different substrates and inhibitors. Direct soakings of crystals obtained in low salt conditions (avoiding weakened substrate affinity) have not yet been performed. However, this should become possible in the near future as we have found a crystallization condition with an uncharged precipitant. If still unsuccessful, site-directed mutagenesis (targeted at potential T state specific interactions) may be used to engineer a version of the enzyme ‘locked’ in the R state. The complementary ATP complex is expected to be more easily obtained and would clarify if activation by CTP and ATP are caused by the same mechanism. Several mutants can be proposed based on our identification of potentially thermostabilizing features, e.g. a mutant carrying a truncated C terminus at the regulatory chain or mutants with disrupted ion pair networks such as the extensive ion pair network involving the novel C1-R2 type interface.
Still relatively few psychrophilic protein structures have been solved by X-ray crystallography and few enzymes are characterized across the whole physiological temperature range. The crystal structure of the *M. profunda* ATCase (at 2.85 Å) thus provides a rare insight into the adaptation to cold of this family of enzymes, even more so because the ATCase is a model for allosteric regulation. The functional characterization (to our knowledge the first one performed on a purified cold-adapted ATCase) reveals similar homotropic behaviour, yet differences in heterotropic regulation. The structure can be described as an extreme T state compared to the *E. coli* T state ATCase. Structural features were identified that may explain the decreased stability and increased cold activity: weakened interfaces, the loss of conformational restraints at the 240s loop region and allosteric-zinc interdomain interface, and an increase in net negative surface charge (contrasting with the hyperthermophilic ATCases).

As for the *S. acidocaldarius* enzyme, analysis of sedimentation velocity experiments with the bisubstrate analogue PALA seems to confirm that the unliganded enzyme is indeed in a structural T state and that a conformational transition takes place similar in amplitude to *E. coli* ATCase. A first analysis of the ATCase in complex with ATP (at 3.1 Å resolution) indicates rather similar modes of binding (resembling the ATP binding mode of *E. coli* R state ATCase) and the absence of a global structural change.

Clearly, the crystal structure of the *M. profunda* ATCase R state would provide a wealth of information on the catalytic and allosteric properties of the enzyme. However, the crystallization condition of the *M. profunda* ATCase also uses ammonium sulphate as a precipitant, which may explain why direct soaking and cocrystallization with PALA at different experimental settings have been unsuccessful to date. No alternative crystal forms in the presence of PALA could be obtained, yet a low-salt condition that yielded small needles was found in the absence of PALA and could potentially be optimized for soaking experiments. A higher quality and higher resolution data set for the ATP complex and a crystal structure of the CTP complex would give more insight into the aberrant heterotropic regulation. More conclusive kinetic studies are required to discriminate between competitive and heterotropic ATP inhibition and to investigate the influence of pressure on activity, stability and regulation. Studies (preferably including calorimetry) on site-specific mutants (e.g. mutating glycine 246 of the 240s loop region back to glutamine), selected on basis of the crystal structure, furthermore would allow confirmation of essential adaptive features.

Pseudoalteromonas haloplanktis xylanase

Xylanases are usually grouped into glycoside hydrolase families 10 and 11. The *P. haloplanktis* family 8 xylanase pXyl is novel among xylanases, displaying a novel mechanism of xylan hydrolysis and a novel three-dimensional structure. The number of studies of the catalytic mechanism and catalytic residues of family 8 enzymes is minimal. By the use of site-directed mutagenesis and a comparative characterization of the kinetic parameters, pH dependency of activity and thermal stability of mutant and wild-type enzymes in association with crystallographic analysis, we have been able to delineate the functions of several active site residues in this enzyme (e.g. the general acid and general base catalyst). Determination of the crystal structures of inactive mutants in complex with substrate and product has allowed for the demarcation of subsites −3 to +3 and has given insight into the basis of xylose/glucose discrimination in family 8 enzymes. Furthermore, we have demonstrated the existence of an induced fit mechanism upon ligand binding whereby a number of conformational changes (possibly linked to the increased flexibility of the cold enzyme), and in particular a
repositioning of the catalytic proton donor occurs. Finally, based on these novel data we have presented an elaboration on the conformational itinerary of family 8 enzymes.

Future work should include characterization of the enzyme mutated at Arg 284, a strictly conserved residue in family 8 with a largely unappreciated role. Our analysis indicates a potential role in transition state stabilization and in mediating structural rearrangements during the catalytic cycle. The relevance of the repositioning of the general acid (Glu 78) during catalysis could be investigated by preventing its movement, e.g. replacing residue Ala 142 (or Gly 145) with a bulkier side chain. It should also be verified whether Asp 144 is able to stabilize the substrate xylose at subsite –1 in a boat conformation, by solving the crystal structure of the substrate complex of pXyl mutated at a different position, e.g. at residue 284. Finally, X-ray crystallography could be used to study the structural basis for binding mixed linkage xylan (seaweed is expected to be the main source of xylan in its natural environment) or decorated substrates.
References

acid interactions at an interface between regulatory and catalytic subunits. J. Mol. Biol. 246, 132-143.

Gouaux, J. E., Stevens, R. C. and Lipscomb, W. N. (1990) Crystal structures of aspartate carbamoyltransferase ligated with phosphonoacetamide, malonate, and CTP or ATP at 2.8 Å resolution and neutral pH. *Biochemistry*, 29, 7702-7715.

Ichikawa, J. K. and Clarke, S. (1998) A highly active protein repair enzyme from an extreme
thermophile: the L-isoaspartyl methyltransferase from *Thermotoga maritima*. *Arch. Biochem.
Biophys.* 358, 222-231.

Ishikawa, K., Okumura, M., Katayanagi, K., Kimura, S., Kanaya, S., Nakamura, H. and
Morikawa, K. (1993) Crystal structure of ribonuclease H from *Thermus thermophilus* HB8

10, 1-67.

Biochem.* 202, 715-728.

Jaenicke R. (2000) Do ultrastable proteins from hyperthermophiles have high or low

193-203.

Struct. Biol.* 8, 738-748.

Escherichia coli aspartate transcarbamylases isolated from a series of suppressed pyrB nonsense

Sci. USA*, 102, 6679-6685.

essentially do not differ in packing. *Protein Eng.* 11, 867-872.

depth, at a depth of 11,000 meters. *Appl. Environ. Microbiol.* 64, 1510-1513.

Chem.* 14, 1-63.

Structural insights into extremozymes

Publications

* both authors contributed equally to this work