Spain:
Universidad Politécnica de Catalunya
Facultat Informática de Barcelona

Belgium:
Universiteit Gent
Toegepaste Wetenschappen

Improvement of Weka, a datamining tool

by

Joachim Naudts

Spanish Promoter: Gavaldà Mestre, Ricard
Belgian Promoter: Prof. dr.ir. G. Hoffman

year: 2003–2004
Copyright notice

"The author grants the permission to make this thesis available for consultation and to copy parts of it for personal use. All other use is subjected to copyright laws, specifically to the obligation to explicitly mention the source of quoted material."

Joachim Naudts, June 2004
Preface

First of all, I would like to thank Ricard for the assistance and the tremendous amount of work he did to guide this project to what it has become. Without his aid the result wouldn’t be nearly as 'finished' as it is now. Language barriers were non-existent and I enjoyed the collaboration a lot.

Second I would like to thank all my friends and family, both in Barcelona and in Belgium. They were always ready for the essential relaxations during this thesis. Especially I want to mention Raf and Bruno, for the help and occasional discussions about this project.

Without my parents this thesis, but also this Erasmus year, would have been impossible. I would like to thank them with all my heart for this wonderful opportunity and experience, which probably changed me for the rest of my life.

Last but not least, I would like to thank Stefanie, for her great support. Even in difficult times, she was always ready to listen or help in any possible way.

Joachim Naudts, June 2004
Improvement of Weka, a datamining tool

by

Joachim Naudts

Year 2003–2004

Promoter: Gavaldà Mestre, Ricard
Faculty: FIB
University: Universidad Politécnica de Catalunya
Research group: LSI

Overview

Weka (Waikato Environment for Knowledge Analysis) is a Machine Learning tool written in Java. It has a few hundred algorithms to perform all kinds of Data Mining tasks such as Classification, Clustering and Association. Weka is developed at the University of Waikato in New Zealand. It was first mentioned in "Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations" [1].

However, Weka has one disadvantage: it can only handle small datasets. Whenever a set is bigger than a few megabytes an OutOfMemory error occurs. The object of this thesis is to alter Weka in such a way that it can handle "all" datasets, up until a few gigabytes.

The first part of this thesis consists of designing and implementing some new classes that permit a dataset to remain on disk. Of course this will have some drawbacks. The main, but inevitable, problem will be the decrease in performance.

The only solution for this problem is to use more intelligent algorithms. Those algorithms will be based on sampling: a sample of the dataset is used so that the final result approximates the result that would be obtained by running the non-sampling algorithm.

The second part will consist of implementing two of those sampling algorithms. The design of these algorithms is the responsibility of the director of this thesis (R. Gavaldà). Implementations are given for Sample K-Means, which is a clustering algorithm, and Sample Naïve Bayes, a classifier algorithm (see Appendix A and B respectively).

Keywords

Java, Weka, Data Mining, Machine Learning, Sampling algorithms, K-Means, Naïve Bayes.
Contents

1 Introduction

1.1 Context .. 1
 1.1.1 Data Mining in general 1
 1.1.2 Data Mining specifics 2
 1.1.3 Weka .. 3

1.2 Initial description 4

1.3 Requirements for Kiwi 5
 1.3.1 Testing Weka ... 5
 1.3.2 Solution proposal 6

1.4 Requirements for the sampling algorithms 7

1.5 Planning and Cost Estimation 7
 1.5.1 Planning ... 7
 1.5.2 Cost Estimation .. 7

2 Weka for large datasets (aka Kiwi) 11

2.1 Design .. 11
 2.1.1 Arff to Arffn conversion 11
 2.1.2 The Core classes 17
 2.1.3 The `DataSet` class 19
 2.1.4 Adaptation of the other classes 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Implementation</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Java.nio</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2</td>
<td>MappedByteBuffer vs RandomAccessFile</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>ByteBuffer vs Byte array</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Materialization</td>
<td>33</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Object Finalization</td>
<td>34</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Conclusions</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>Performance</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Testing Weka</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Testing Kiwi</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Sampling algorithms</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample K-Means</td>
<td>41</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Design</td>
<td>41</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Implementation</td>
<td>42</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Performance</td>
<td>46</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Weka vs Kiwi</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Sample Na"ive Bayes</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Design</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Implementation</td>
<td>53</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Performance</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Conclusions</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>General conclusions</td>
<td>60</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Typical execution flow in Kiwi</td>
<td>60</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Major differences between Weka and Kiwi</td>
<td>61</td>
</tr>
</tbody>
</table>
4.2 Planning and economical conclusions .. 62
 4.2.1 Planning ... 62
 4.2.2 Economical conclusions ... 62

A Sample K-Means .. 64

B Sample Naïve Bayes .. 70

Bibliography ... 75
Chapter 1

Introduction

1.1 Context

1.1.1 Data Mining in general

Data Mining has numerous definitions. One is given by William J Frawley, Gregory Piatetsky-Shapiro and Christopher J Matheus as follows:

"Data Mining, or Knowledge Discovery in Databases (KDD) as it is also known, is the non-trivial extraction of implicit, previously unknown, and potentially useful information from data. This encompasses a number of different technical approaches, such as clustering, data summarization, learning classification rules, finding dependency networks, analyzing changes, and detecting anomalies."

Today’s businesses have the possibility to store large amounts of information, since memory and connectivity has become really inexpensive. But having the data isn’t enough, an in depth analysis should be performed also. Information is at the heart of business operations and should be used to gain valuable insight into the business and, as a consequence, define correct business strategies. Analyzing data can reveal information that was previously unknown. This is where Data Mining or Knowledge Discovery in Databases (KDD) has obvious benefits for any enterprise.

For more general information about Data Mining, see [2].
1.1.2 Data Mining specifics

In this section some of the basic concepts of Data Mining in general and Data Mining tools will be discussed.

To be able to do a Data Mining task, a dataset is required. This set will contain records (or instances). Each record is defined by a number of values for some specific attributes.

For example, a dataset could consist of records representing different persons that are the customers of a specific company. For each person some values will be stored in the dataset: the name, address, inscription date, ... These are the values of the different attributes. Attributes have a type: numeric, nominal, date, string, etc. The above examples are all strings, except the 'inscription date'.

For a person however we could also include the amount of money he has spent (a numeric attribute), or whether he is married or not (nominal attribute: discrete amount of possible values)

It could be seen as a table, where the rows represent the records (persons) and the columns represent the attributes.

The idea of Data Mining is to build models of these datasets that help to retrieve valuable information from the set. The ways to come to such models can be divided in different groups of basic tasks:

- **prediction**: Assume an attribute is partially defined by others. It could be possible to predict the value of that attribute for a new record, that does not contain this attribute. For example, a prediction could be made of the average balance of a new customer if only some basic attributes are known about him.

- **classification**: Almost the same as prediction, but with that difference that the value we want to predict is nominal. With classification it could be possible (for example) to determine whether a new customer will refund money if it is lent to him.

- **clustering**: Grouping records in groups of "similar" records. ('similar' in the values of their attributes)

- **association**: Grouping attributes that seem to have similar values for their values of the records.
Also some related tasks can be specified:

- Loading datasets from databases, text files, spreadsheets, Internet or other types of sources.
- Preprocessing datasets: Modifying, adding or deleting values and attributes, filtering records that are not interesting for the evaluation, etc.
- Testing accuracy or predictive value of a model that has been built.
- Visualizing the records or the model, according to different criteria.

1.1.3 Weka

To perform Data Mining tasks, secondary tools that work on top (or with) some existing database should be used. Weka is such a tool. It was first mentioned in the book: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations [1].

An extract from that book:

Weka is developed at the University of Waikato in New Zealand and stands for the Waikato Environment for Knowledge Analysis. The system is written in Java, an object oriented programming language. Java allows us to provide a uniform interface to many different learning algorithms, along with methods for pre- and postprocessing and for evaluating the result of learning schemes on any given dataset.”

Weka is free software and distributed under the terms of the GNU General Public License. It has a variety of options and algorithms. All the possibilities are mentioned below:

- Pre-processing
- Classifiers
- Clustering
- Associators
- Attribute evaluators
- Visualizations
Weka is an open source project, so in the course of a few years, it has developed into a very complete Data Mining tool. An enormous amount of algorithms are included and new ones are added quite frequently. It was initially designed for the University of Waikato as a research and experimentation tool, but was quickly noticed by others that saw its huge benefits. In fact, according to a recent poll of the Knudggets KDD mailing list, about 11% of Data Mining users perform their analysis using Weka. [3]

Some of Weka’s advantages:

- Contains a lot of algorithms
- Free (most other Data Mining tools are very expensive)
- Open source, so adapting it to your own needs is possible
- Constantly under development (not only by the original designers)

However Weka has some major drawbacks, that might convince some businesses to choose for more expensive alternatives:

- Lack of possibilities to interface with other software
- Performance is often sacrificed in favor of portability, design transparency, etc.
- Memory limitation, because the data has to be loaded into main memory completely

This last disadvantage will be the topic of a big part of the thesis.

1.2 Initial description

The initial description of this thesis was as follows:

"Weka is a public domain software tool for analyzing data. We propose to improve Weka in 2 ways. One is allowing the analysis of large datasets by keeping it on hard disk. The other is to design learning algorithms that work faster by using only a random subset of the data."

The solution for the first part is Kiwi, which stands for "Kiwi is Weka Improved". Kiwi can handle datasets that are unlimited in size. It keeps the complete dataset on disk and will load a small part of it in main memory, if this is requested. One of the big disadvantages of Weka is solved with this.
In the second part sampling algorithms are implemented that deliver a result that is approximately equal to a non-sampling algorithm and they come to that result by looking only at a sample of the entire dataset.

1.3 Requirements for Kiwi

1.3.1 Testing Weka

First of all, the real flaws of Weka need to be examined. As stated in the overview, Weka has problems to handle large datasets. Some test results are shown in table 1.1. The problems start when the dataset size exceeds 35 MiB.

<table>
<thead>
<tr>
<th>Dataset size (MiB)</th>
<th>Loading time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36</td>
<td>390</td>
</tr>
<tr>
<td>3.56</td>
<td>2188</td>
</tr>
<tr>
<td>17.8</td>
<td>9531</td>
</tr>
<tr>
<td>35.6</td>
<td>31360</td>
</tr>
<tr>
<td>53.5</td>
<td>OutOfMemory Error</td>
</tr>
<tr>
<td>71.3</td>
<td>OutOfMemory Error</td>
</tr>
<tr>
<td>89.1</td>
<td>OutOfMemory Error</td>
</tr>
</tbody>
</table>

Table 1.1: Testing Weka’s capability to handle large datasets

However, the real limit will be a lot less. These results give the ‘loading time’ of a dataset, without including the time used by the GUI or any preprocessing which would happen in a real work situation.

With respect to the actual Data Mining tasks (classification, clustering, association), of course the real limit depends on a lot of factors, the main factor is the type of algorithm used. Some of them only iterate through the dataset in a sequential way, but others copy the dataset several times, make other datasets which hold results, etc. To demonstrate this, table 1.2 shows the results of some of the existing algorithms that are implemented in Weka.

It should be clear that this isn’t very efficient: some algorithms copy the dataset (or make a new one with the same amount of records) up to 26 times. These datasets won’t all be in memory at the same time, but some of them will. At some times, around 6 datasets can be in memory.
1.3 Requirements for Kiwi

<table>
<thead>
<tr>
<th>Test</th>
<th># copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter: discretize</td>
<td>2</td>
</tr>
<tr>
<td>Filter: standardize</td>
<td>2</td>
</tr>
<tr>
<td>Classify: zeroR</td>
<td>12</td>
</tr>
<tr>
<td>Classify: OneR</td>
<td>23</td>
</tr>
<tr>
<td>Classify: lazy IBk</td>
<td>23</td>
</tr>
<tr>
<td>Cluster: K-Means</td>
<td>8</td>
</tr>
<tr>
<td>Cluster: EM</td>
<td>26</td>
</tr>
<tr>
<td>Cluster: Farthest-First</td>
<td>6</td>
</tr>
<tr>
<td>All Associate algorithms</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1.2: Testing number of datasets created during algorithm execution

simultaneously, which means that the previous limit (35 MiB) is in fact 6 times less, or around 6 MiB.

Of course another factor for this result is the machine configuration itself. So, with some computers these results will be more negative then they really are. Also, it is possible to change the amount of memory the Java Virtual Machine can use. However this will not perform miracles. The maximum result with this technique may be the double as what is obtained here.

1.3.2 Solution proposal

Kiwi (Kiwi is Weka Improved) will be designed to keep a dataset on disk so the memory usage is reduced drastically. In order to do this, some of the core classes of Weka need to be changed. Because disk access is slow, clever buffer and prefetch techniques should be used. The choice as to which technique should be implemented and which one shouldn’t will be based on the typical usage of Weka. Data Mining algorithms have a straightforward access pattern, that is quite different from number-intensive computations, or operating system tasks. If a particular operation will be used continuously, that operation should function as efficiently as possible. For other, less frequent, operations these optimizations should be handled with care, because they will only increase the complexity and no (substantial) gain in performance will be accomplished.

All this has to be done in a transparent way, so that all other classes and packages of Weka continue to work without any (or as little as possible) changes in the code.
1.4 Requirements for the sampling algorithms

To design sampling algorithms, two different approaches are possible: One is to design completely new algorithms, the other is to adapt existing non-sampling algorithms. This is the approach that is used in this thesis. The theoretical algorithm design is the responsibility of the director of this thesis (R. Gavaldà) and his collaborators (C. Domingo and O. Watanabe). Together they published a series of papers from 1999 to 2003 [4].

These algorithms (or at least 2 of them), will be implemented in an efficient way and will be tuned in collaboration with the designer in order to come to a complete and efficient implementation of a theoretical algorithm. In the end some empirical evaluations will be performed, in order to come to a complete conclusion about those algorithms.

The 2 algorithms chosen for this thesis are quite different from one another:

- Sample K-Means: a clustering algorithm
- Sample Naïve Bayes: a classifier

They will be implemented in a similar way to the K-Means and Naïve Bayes algorithms that already exist in Weka.

1.5 Planning and Cost Estimation

1.5.1 Planning

The planning that was formulated in the preliminary report is repeated in table 1.3.

1.5.2 Cost Estimation

For this thesis, a cost estimation can be made focusing on the following three issues:

The amount of working hours

The tasks can be divided in some typical tasks, that could be performed by different persons, with different specialties and different hourly wages (see table 1.4).
1.5 Planning and Cost Estimation

<table>
<thead>
<tr>
<th>Dates</th>
<th>Work</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/02/2004</td>
<td>Studying the structure of Weka</td>
<td>25</td>
</tr>
<tr>
<td>16/02/2004</td>
<td>Looking at possibilities to handle large datasets</td>
<td>20</td>
</tr>
<tr>
<td>23/02/2004</td>
<td>Searching for solutions for paging</td>
<td>50</td>
</tr>
<tr>
<td>06/03/2004</td>
<td>Design of the paging system</td>
<td>40</td>
</tr>
<tr>
<td>13/03/2004</td>
<td>Starting implementation of the paging system</td>
<td>40</td>
</tr>
<tr>
<td>20/03/2004</td>
<td>Writing a short review for tribunal</td>
<td>15</td>
</tr>
<tr>
<td>22/03/2004</td>
<td>Finishing implementation of the paging system</td>
<td>60</td>
</tr>
<tr>
<td>10/04/2004</td>
<td>Adapting Weka to the new implementation</td>
<td>60</td>
</tr>
<tr>
<td>24/04/2004</td>
<td>Testing and evaluating the paging system</td>
<td>20</td>
</tr>
<tr>
<td>27/04/2004</td>
<td>Studying random sampling techniques</td>
<td>25</td>
</tr>
<tr>
<td>31/04/2004</td>
<td>Implementing sampling in K-Means</td>
<td>40</td>
</tr>
<tr>
<td>12/05/2004</td>
<td>Implementing sampling in Naïve Bayes</td>
<td>40</td>
</tr>
<tr>
<td>21/05/2004</td>
<td>Experiments and evaluation of the algorithms</td>
<td>40</td>
</tr>
<tr>
<td>31/05/2004</td>
<td>Exams, so 2 weeks of inactivity</td>
<td>0</td>
</tr>
<tr>
<td>17/06/2004</td>
<td>Finishing the final report</td>
<td>100</td>
</tr>
</tbody>
</table>

| Total amount of hours | 575 |
| Amount of credits (1 ECTS credit = 25-30 hours) | 20 |

Table 1.3: Planning of the project

However to be able to present a real end-product which is ready to be commercialized (or brought into public), some serious beta testing should be performed, preferably by a large amount of people. This could be done by releasing a beta-version. During one month of testing, somebody should be responsible for debugging. This would imply an extra (on average) 80 hours of work for a programmer (€30/hour), or a total of €2400.

Software

The software programs that are needed for the project basically consist of:

- Weka itself of course. Weka is an open source project and licensed under the terms of the GNU General Public License, so it can be freely redistributed and modified.
Table 1.4: Estimated cost for the working hours

<table>
<thead>
<tr>
<th>Task</th>
<th>Hours</th>
<th>Hourly wage</th>
<th>Cost of task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>65</td>
<td>€40</td>
<td>€2600</td>
</tr>
<tr>
<td>Software Design</td>
<td>90</td>
<td>€40</td>
<td>€3600</td>
</tr>
<tr>
<td>Implementation</td>
<td>240</td>
<td>€30</td>
<td>€7200</td>
</tr>
<tr>
<td>Performance tests</td>
<td>60</td>
<td>€30</td>
<td>€1800</td>
</tr>
<tr>
<td>Documentation</td>
<td>115</td>
<td>€20</td>
<td>€2300</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>€17500</td>
</tr>
</tbody>
</table>

- Visual Paradigm will be used for the design (in UML). It has a free ‘Community edition’, which is not for commercial use.
- Eclipse, a Java-IDE, will be used for implementing new or modifying old Weka classes. Eclipse is free and licensed under the IBM Common Public License (CPL).
- \LaTeX{} will be used for writing the final report for the project. \LaTeX{} is free and licensed under The \LaTeX{} Project Public License (LPPL).
- OpenOffice.org Drawing tool will be used to make some explanatory figures. OpenOffice.org is free to use and licensed under the GNU Lesser General Public License (LGPL).
- Java is of course inevitable for this project because Weka is written with it. Java is free to use and licensed under the Sun Community Source Licensing (SCSL).

So, if the project is not to be commercialized, this part of the cost estimation will be free. Otherwise the only program that would have to be acquired is Visual Paradigm.

Hardware

The hardware configuration that was required for this project consisted of 1 PC. Any PC (with minimum requirements) would suffice of course, but for this project an AMD 1800 Ghz, with 512 MiB Ram and Windows 2k was used. An average cost for this configuration would be around €750.

Total Cost

The total cost for this project is summarized in table 1.5.
1.5 Planning and Cost Estimation

<table>
<thead>
<tr>
<th>Parts</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Hours</td>
<td>€17500</td>
</tr>
<tr>
<td>Software</td>
<td>€0</td>
</tr>
<tr>
<td>Hardware</td>
<td>€750</td>
</tr>
<tr>
<td>Total</td>
<td>€18250</td>
</tr>
</tbody>
</table>

Table 1.5: Total cost estimation

Again it should be noted that if this project is to be commercialized, a license for Visual Paradigm will have to be purchased.
Chapter 2

Weka for large datasets (aka Kiwi)

Introduction

In this chapter we discuss how to handle large datasets, with the ideas sketched in chapter one. First the Design will be given (including all possible optimizations). Then the implementation will be discussed, keeping closely focused on efficiency. And at last the performance of the given implementation will be shown.

2.1 Design

2.1.1 Arff to Arffn conversion

Why a new format?

Weka works with arff datasets (arff stands for Attribute Relation File Format) [5]. An arff file consist of a textual (readable) representation of a dataset. This implies that every record has a different length on disk. But if the dataset is to be kept on disk, every record should be easily locatable, which means that its exact location on disk has to be known. However if every record has a different length, this isn’t possible (assuming not only sequential access is required).

For example: to be able to access record x, the exact location (on disk) of that record has to be calculated. This can be done in different ways:

- A table containing the positions (on disk) of every record could be generated. Then, if
record \(x \) is to be retrieved, the position of that record can be found in that table (on the place with index \(x \)).

- The dataset could be rewritten to a binary format, where every record has the same length. Then, to retrieve record \(x \), the position could be calculated by multiplying \(x \) with the (fixed) length of a record.

Both options would generate a delay during the loading of the dataset: or we have to iterate the complete dataset to build up a table of positions, or we would have to iterate through the dataset to reconstruct it in a binary way. The delay of the second option will be bigger, because we’d probably want to put that new dataset on disk (disk access is time-consuming). However the first option might be impossible, because this implies creating a table in memory, which would limit the maximum number of records. This could be solved by putting that table in secondary storage also, but then we would have 2 disk accesses every time we want to retrieve a record: one to determine it’s position on disk, and another to actually retrieve it.

So, considering these remarks, the second option is followed in this thesis. The new format will be “\textit{arffn}” (which stands for: arff New), which gives each record a fixed length on disk.

\textbf{Example of the old format (arff)}

\begin{verbatim}
% 1. Title: Iris Plants Database
%
% 2. Sources:
% (a) Creator: R.A. Fisher
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
% (c) Date: July, 1988
%
% The Header Information:
%
@RELATION iris

@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC

\end{verbatim}
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

% The Data Information

@DATA
5.12,3.5,1.14,0.2,Iris-setosa
4,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-versicolor
4.6,3.1,1.51,0.11,Iris-versicolor
5.0,3.6,1.4,0.2,Iris-virginica
5.4,3.21,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.13,Iris-setosa
5.32,3.4,1.5,0.2,Iris-virginica
4.65,2.9,1.4,0.21,Iris-setosa
4.9,3,1.5,0.1,Iris-versicolor

Some information about this format:

- '% is the token that precedes commentary lines.
- @DATA, @RELATION, ... are keywords that are followed by their values.
- NUMERIC is one of the types a value can have. Others are dates, strings or nominal values.
- Every line in the data part represents one record. Their attribute values are separated by commas.
- Lines in the data part have different lengths, so on disk they will start at positions that are difficult to calculate.

For more information about the specification of the arff format see [5]

Overview of the new format (arffn)

The specifications that are stated here are only the differences between the two formats.
ARFF files have two distinct sections. The first section is the Header information, which is followed by the Data information. The Header information is in standard readable text format, but the Data information is in binary format, so not readable nor editable.

An example of the standard IRIS dataset would look like this:

```
@ARFFN

% 1. Title: Iris Plants Database
%
% 2. Sources:
%     (a) Creator: R.A. Fisher
%     (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
%     (c) Date: July, 1988
%
% The Header Information:
%
@RELATION iris

@ATTRIBUTE sepal_length NUMERIC @SIZE 8
@ATTRIBUTE sepal_width NUMERIC @SIZE 8
@ATTRIBUTE petal_length NUMERIC @SIZE 8
@ATTRIBUTE petal_width NUMERIC @SIZE 8
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica} @SIZE 4

% The Data Information

@DATA ????
```

Changes:
2.1 Design

- The first line (exactly the first!) should contain the '@arffn' keyword, specifying that this file is a arffn file.

- After every attribute specification, there has to be a size specification (with the @size keyword), which contains the exact size of the attribute value on disk (in bytes).

- The data part starts with the old @data-keyword, but is directly (not on a new line) followed by the data information (in binary format).

There are two important remarks that can be made concerning this new format:

The @size-keyword specifies a fixed size of an attribute. Also of string attributes and this might give some implications. Most likely strings have different lengths, so a maximum length should be chosen. If a string is shorter it should be filled with 'dummy' values (null characters).

This design choice has the disadvantage that datasets with some long strings may increase in size unnecessarily. But in actual Data Mining tasks, string attributes are rarely relevant and very often the only string attributes appearing in datasets are short ones, such as record identifiers.

The binary representation is completely defined by the Java Specification and shouldn’t be altered in any way. In the conversion between arff and arffn, the values will be written in the default, standard way specified in the Java Specification. Neither the class designers nor the Kiwi end users will be aware of how values are represented on disk. For example the conversion of the dataset mentioned above, will write a sequence of 4 double values and 1 integer value to the file, for every record in the dataset. The amount of bytes, little or big endian, etc. will all be dependent on the Java Specification. A binary representation of numerical values has the benefit that it might be less space consuming than a textual representation. This neutralizes more or less the disadvantage of filling strings with dummy values, as is mentioned in the previous paragraph. For more information about Java I/O: see [6] (Dutch) and [7] (English).

The conversion algorithm

Figure 2.1 shows the typical usage of the conversion algorithm (which is located in the Convert class). When an Instances object is created, the arff file will be converted to an arffn file and that file will then be forwarded to the DataSet class.

Basically what the algorithm has to do is the following:
2.1 Design

Figure 2.1: Sequence diagram explaining how an Instances object is created

- Read the header information from the arff file.
- Calculate the length of each attribute.
- Write the header information in arffn format to the target file.
- Write the data information in arffn format (binary) to the target file.

All these steps are quite straightforward, except for the second one: calculating the length of each attribute. Difficulties arise when a string attribute is found. To be able to calculate the maximum length for the string attribute, an iteration through the complete dataset is necessary.
2.1 Design

2.1.2 The Core classes

In order to alter Weka to be able to handle large datasets, some of its core classes need to be changed. In particular the \texttt{Instances} class which represents a dataset. This class is one of the most important ones, because it contains all the information about a dataset. The two main features it has are:

- A vector that contains the attribute information of the dataset
- A vector that contains all the records of the dataset

In the further design of Kiwi the assumption is made that this first vector can remain in memory. This will be true for almost all datasets, because it is rather rare for a dataset to have a few millions of attributes. The second vector however is the one that needs to be changed. It should be changed with a structure that allows all the records to remain on disk and loaded to memory whenever this is requested. This structure will be a file on disk, so retrieving a record from the dataset will result in a disk access. The design of this change has to be as clear as possible in order to do complex optimizations without sacrificing the readability of the code. Considering these requirements, the following options are possible:

- Keeping everything in the \texttt{Instances} object and make all the changes in that class.
- Keeping the attribute vector in the \texttt{Instances} object, but making a new class which handles operations on the dataset.
- Making a new class that handles operations on the dataset and including the attribute vector in that class.

The first approach is clearly the most unfavorable one, however the reason for this is not performance, but code complexity. The \texttt{Instances} class already is very complex (>2000 lines), so adding the very complex task of keeping the dataset on disk to that class is really too much. The third approach seems very clean and transparent: the \texttt{Instances} class would redirect all requests to that new class, without altering them too much.

But in the end the second approach seems the best because of the following two reasons:

The first is \textit{simplicity}: all the necessary operations on attributes were already implemented in the \texttt{Instances} class. Attributes don’t have to be put on disk, so their manipulation can stay
in the Instances class. The second is *clarity*: by putting the code for the manipulation of attributes in the Instances class, we can keep the DataSet class a lot clearer. Instances handles the attributes, DataSet the records.

Figure 2.2 shows the separation of the Instances class. Instead of a dictionary containing all the Instances\(^1\), just one single object is used in Kiwi: a DataSet. (See the Weka API [8] for more information about the Weka class structure) This object will act as an intermediate layer between the Instances object and the dataset on disk.

![Diagram](image)

Figure 2.2: (a) Part of Weka’s class diagram, (b) Part of Kiwi’s class diagram.

By doing it this way, all public methods of the Instances class will stay the same and for the class user this change will remain invisible.

\(^{1}\)It’s important to note that Weka uses *Instance* objects and *Instances* objects. This can be confusing. To make things clear, most of the times the term ‘record’ is used for an Instance. Sometimes however, if we talk about the real class that is implemented in Weka (like now), the term *Instance* is used.
2.1 Design

2.1.3 The Dataset class

Introduction

In this section the design of the Dataset class is given. First the basic functionality is explained and later on all optimizations such as prefetching, buffering, etc. are discussed. The pros and cons of each optimization are carefully weighed against each other in order to reduce the complexity, without sacrificing too much efficiency.

Basic functionality of the Dataset class

The basic functionalities the Dataset should have are:

- Retrieving of a random Instance (record) from the dataset.
- Adding an Instance to the end of the dataset.
- Removing a random Instance from the dataset.
- Removing an Attribute (column) from the dataset.
- Inserting an Attribute at an arbitrary location in the dataset.

Note that there is no insert operation for records. They can only be added to the end of the dataset. This is an important advantage for the design.

In Weka all those functionalities were implemented by the Instances class. This class will act as a transparent layer to the dataset on disk and will redirect all the requests to the Dataset class. This class will then do the specific operation and will return the result to the Instances class, which eventually passes the desired result on to whoever requested it. The sequence diagram of one of those operations, namely the retrieval of an Instance, is given in figure 2.3. The sequence diagrams of all other operations are quite similar.

The retrieve and add operation can be implemented quite efficiently (and straightforward). But the other operations present some problems. In Weka, the records are saved in a vector. If a record is deleted, all the records after that are shifted in the vector, which implies changing their indexes. If the same thing is to be done on disk, that operation can be extremely slow. In the worst case the entire dataset will have to be rewritten. Some proper enhancements will be needed to make these operations feasible.
2.1 Design

These enhancements are discussed in the next few sections.

Materializing vs. Calculating

’Materialization’ is a term used for the immediate execution of a process, without thinking of the possible consequences. A delete operation of one record would result, as is explained previously, in rewriting almost the entire dataset.

’Calculation’ on the other hand, means that we would ’remember’ which record was deleted, without actually removing it from the dataset on disk. In Kiwi, the latter option is used for some of the basic functionalities mentioned above. It is used for removing records and attributes. However it is not used for inserting attributes, for a reason which is explained later.

Note: It could also be used to insert records into the dataset at an arbitrary location, but this functionality didn’t exist in Weka, so it isn’t introduced here.

For each of those 2 operations a table is kept with the indexes of the removed records or attributes. Once the maximum size of those tables is reached, they will be *materialized* on disk. This means rewriting the complete dataset, but without the deleted records or attributes. But, for retrieving records (or deleting others), the exact location on disk should be *calculated* using those ’remove’ tables. This increases the code complexity a little, but is justified by the increase in performance. See figure 2.4 for the sequence diagram of the operation that deletes a record.

![Sequence diagram explaining how to get an Instance from the dataset.](image-url)
and figure 2.5 for an example of a remove table.

Note that the remove table contains the indexes of the records on disk, not the indexes that the user requested to be deleted.

If the user has deleted the first record (number 9, as can be seen in the 'User delete sequence') and then requests to remove record 11. The actual record that will be marked for deletion will be number 12. Logically this is number 11, but physically on disk, this is still number 12.

Buffers

A second optimization that is included in Kiwi is the use of buffers. If the way Weka handles datasets is examined in detail, one would notice that a lot of algorithms build up new datasets starting from an empty one and performing add operations, without deleting any records until the dataset is complete. This is the case, for example, when copying a dataset, a very frequent operation in Weka. This has been one of the reasons why an add-buffer has been introduced to Kiwi. The records that are consequently added to the dataset will be stored temporarily in an add-buffer (or record-buffer). If that buffer is full it will be written to the dataset. By doing this the amount of disk accesses are limited, which results in a big increase in speed.
2.1 Design

Records on disk:

<table>
<thead>
<tr>
<th>index</th>
<th>record-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
</tr>
<tr>
<td>9</td>
<td>J</td>
</tr>
<tr>
<td>10</td>
<td>K</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
</tr>
<tr>
<td>13</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
</tr>
</tbody>
</table>

Remove table:

<table>
<thead>
<tr>
<th>Removed indexes (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

User delete sequence: 9 11 5 3 11 4

Figure 2.5: Example of a remove table

When another operation is requested, it will also result in a materialization of the buffer. The buffer is always written to disk right before the execution of another operation. It is most unlikely that add-operations are mixed with others, so keeping the add-buffer as it is (in memory), isn’t really necessary and would only increase the complexity a lot.

See figure 2.6 for the sequence diagram of the add operation.

Additionally the inserting of attributes (the columns of the dataset) could be done with a buffer. This isn’t done in Kiwi, again: to reduce the complexity, but also (and mainly) because algorithms that add an attribute are quite rare. In those few cases where it does happen, maximum one attribute is added, for example to include a summary attribute that summarizes a record. Immediately after that operation all the values of the new attribute will be added, so if a buffer was used, this would have meant materializing it directly after its creation.

Instead of including a buffer, the operation to add an attribute will be done immediately, which implies that the complete dataset needs to be rewritten (because the length of a record has changed).
2.1 Design

Prefetching

Prefetching is the act of retrieving records before they are requested. This approach is based on caching, but is simplified a lot. Instead of using multiple pages, just one page is used. (see [9], section 2.2.5 for information about caching). Caching techniques are based on two common phenomena: spatial locality of reference and temporal locality of reference.

Spatial locality of reference observes that a resource is more likely to be referenced if it is near another resource that was recently referenced.

Temporal locality of reference says a resource is more likely to be accessed if it was recently accessed.

Data Mining algorithms in general have an enormous spatial locality (almost all records will be read in a sequential way), but have no temporal locality at all (records that have been read won’t be read again in the near future). Because of that, we can simplify the caching system a lot. Multiple pages are useless, because we don’t need to keep records that we read in the past. So, in the end a 1 page caching mechanism is used, or 1 prefetch buffer as it is called here. If a record is to be retrieved the prefetch buffer is examined. If the record isn’t located in the buffer, the buffer will be refilled with sequential records, starting from the record that was requested. By prefetching records, we will limit the disk accesses a lot. Considering the very high cost of disk access, this optimization will proof to be very useful.
But there is one problem with prefetching. What if an algorithm retrieves instances in a non-sequential way? Then every time a record is retrieved, the prefetch buffer will be refilled with new records. So, instead of consequently reading records, Kiwi would consequently read groups of records. This will reduce the efficiency a lot for non-sequential algorithms. An easy solution is to let the algorithm decide if it wants to prefetch the next records or not. However this has an important drawback, which will be discussed (together with a solution) in the next section. As the default option, prefetching is set, because it is most likely that an algorithm will need it. See figure 2.7 for the sequence diagram of the retrieve (or 'get') operation.

Figure 2.7: Sequence diagram explaining how to retrieve an Instance with prefetching

Prefetch prediction

As mentioned in the previous section, prefetching has an important disadvantage. If records are read in a non-sequential way and the algorithm has used the standard option for prefetching (which is: prefetching enabled), then this will be very inefficient. But what can be done against this misuse of prefetching? The answer is to dynamically predict whether prefetching is required or not. This prediction should decide whether to refill the buffer if a record is requested that
isn’t located in the buffer yet, or not.

If this problem is examined in more detail, again the analogy with a computer architecture technique can be made. This time with a 2-bit instruction branch predictor. This predictor will base its prediction on the two previous times the branch-conditions were evaluated. If the branch was taken those two times, it will be predicted to take it again. If it wasn’t taken the last two times, it won’t be taken again. To make the predictor more accurate, wrong predictions will only be taken into account if they occurred more than 1 time.

To use this technique in Kiwi, almost the exact same thing will be done. There is just one difference: with a branch predictor, the location where to jump to is known in both cases (taking the branch, or not taking it). But with prefetching we can’t predict which record has to be read if it isn’t the next. We can only predict that it’s not possible to use prefetching in that case. So, the prediction will give an answer to the question: ”Is prefetching useful or not?” If the answer is yes, the prefetch buffer will be refilled if necessary, if the answer is no, the requested record will be retrieved from the dataset on disk directly, without any buffering.

A 2-bit dynamical prefetch predictor will be updated every time a decision has to be taken. It’s functionality is described in figure 2.8. See [9], section 4.5.2 for more information about branch predictors.

A 2-bit dynamical prefetch predictor will be updated every time a decision has to be taken. It’s functionality is described in figure 2.8. See [9], section 4.5.2 for more information about branch predictors.

![Diagram](image-url)

Figure 2.8: Functionality of a 2-bit dynamical prefetch predictor
Small improvements

Of course a lot of less important improvements are also possible. Whether they are useful or not, largely depends on their theoretical frequency of occurrence in Weka. Most of these possible improvements came to the surface while implementing the sample algorithms in the second part of this thesis. By studying the way Weka launches and handles algorithms, some request patterns to the dataset become clear.

In the remainder of this section, those small improvements that were implemented in Kiwi will be discussed.

Empty prototype datasets are often used in algorithms. These are datasets without any records in them, that are just used for a representation of the structure of a dataset. The attributes are saved, together with some other information, but no records are kept at all. Of course creating a file on disk (even if it just contains the header information and no records) is time consuming. That’s why a file should only be created if instances are added to it. All the necessary information is kept in memory.

Add-deleteLast sequences are used quite frequently while filtering a dataset in Weka. A filter algorithm will read instances sequentially and will put each filtered one in a FIFO-queue. But most of the time that queue does not consist of more then one instance. The pushed instance is popped immediately. A FIFO queue is often implemented using an Instances object. Adding a record, writing it to disk and immediately afterwards removing it again isn’t very efficient. That’s why the record shouldn’t be written to file, but instead be kept in the add buffer and be removed from that buffer directly. This way a time consuming disk access is avoided.

Small datasets should be kept in memory all the time, without doing any disk accesses. Small datasets occur in numerous occasions: sometimes Weka is used to analyze a small dataset, sometimes large datasets are being evaluated but the evaluation algorithm makes some small datasets (for example datasets containing one cluster during a clustering operation), etc. To keep those datasets in memory, it is possible to use the add buffer more extensively. Until that buffer is exhausted we can keep all the records in it. Once it’s limit is exceeded the buffer has to be materialized (written to disk). Again, this optimization will limit disk accesses a lot.

Buffer sizes. One remark has to be made about the size of the prefetch buffer and the add buffer. This size might affect the final performance results a lot. There are two requirements for the size:
They shouldn’t be ‘too small’. At least a few times the disk-block-size.

They should be a multiple of that block-size.

If they would be made too small, it would be a lot less efficient, because writing complete blocks to disk is a lot more efficient than writing just parts. A block-size is typically 4 KiB (but might vary from configuration to configuration). The higher that ‘multiple’ of the block-size the better, because that way the amount of complete blocks that will be written to disk will be bigger. However making it too big will increase the memory usage and is therefore also unfavorable. While doing some basic tests, the above remarks were proven to be correct and a buffer size of 256 KiB was proposed.
2.1 Design

2.1.4 Adaptation of the other classes

As mentioned in 2.1.2 all these changes have to be made as transparent as possible to the other (non-core) classes and packages in Weka. However, doing this in a complete transparent way is not possible. The algorithms and the GUI have been programmed with the knowledge that the datasets fit in memory and they use that knowledge occasionally. So, in order to function correctly, Weka will need more adaptations then previously thought of. What follows are the main changes that were needed.

Dataset history

A dataset history (or better known as the possibility to do an 'undo' operation) is kept for every dataset in Weka. Each time an algorithm is executed on the dataset, an entry in the 'history table' is made. That entry consist of a copy of the complete dataset, which is of course impossible in Kiwi, because datasets probably don’t fit in memory.

There are two solutions to this problem. One is to copy the entire dataset (on disk) to another file and use the filename as the entry in that history table. But this has 2 major disadvantages: it would be very slow, because we have to copy the entire dataset every time we execute an algorithm, and it would be very space-consuming for secondary storage. A second option is to not save the dataset history, but only the first original dataset file. If an undo-operation is requested, the original dataset will be reloaded. With this solution all the problems are solved: the history table would only contain the filename of the dataset, the dataset does not need to be duplicated so no time is wasted and the dataset is not copied every time again, so we don’t waste space on secondary storage. Of course the undo operation becomes quite basic with this, but the disadvantages of having a full-operable undo option are far too big to make it justifiable.

Queues

Queues are, as mentioned in 2.1.3, often used while preprocessing datasets. A filtered record is put on a FIFO-queue and can be retrieved a lot later. In Weka those queues are represented by a kind of linked list of records that remains completely in memory. But sometimes all the processed records from the dataset are pushed one by one, before a pop operation occurs. This means that the entire dataset will be stored in that linked list in memory, which is of course impossible.
Again there are two possible solutions: one, alter the linked list so that it keeps its nodes on
disk instead of memory; another, to use a disk-based `Instances` object instead of a list. Since
the second data structure is already implemented, it was the obvious choice. A queue will then
be represented by an `Instances` object, the push operation is equal to an add operation and a
pop operation is equal to a `deleteLast` operation.

The queue belongs to an abstract class that is used as a prototype for every preprocess algorithm.
This class has some standard operations that have to be implemented in every subclass and has
some other operations (and variables) that are equal for every subclass (for example the queue).
This demonstrates the clever object oriented design of Weka and has facilitated the adaptation
of the preprocess algorithms to allow them to work with a queue on disk instead of memory. In
chapter 3 these object oriented techniques are discussed in more detail, because they are also
used for Clustering, Classifying, etc.

Visualization

The Visualization of a dataset results in some serious problems if large datasets are to be treated.
If a dataset is loaded in Weka, it will be read entirely to determine some basic statistics about it
such as the mean value, the standard deviation and the minimum and maximum values of each
attribute. A graph will be constructed that shows the values of a particular attribute. For this
graph an array is constructed containing all the values of that attribute.

These properties have as a consequence that the visualization of the dataset will be very slow
(iterating the entire dataset) and might even be impossible. It will be impossible if an array
containing all the values of one attribute is too big to be kept in memory. A logical solution
is to limit the amount of records that are visualized. For visualizing the values it really isn’t
necessary to get the information of every possible record. Visualizing millions of records is
useless, because neither the computer screen nor the human eye or mind can handle this much
information. That’s why in Kiwi only a random sample (500 records) of the dataset will be used
for visualization.
2.2 Implementation

Introduction

In this part the implementation of Kiwi is going to be discussed. The implementation will follow the design that was proposed in the previous part. The specialized techniques that are used are discussed in depth, focusing mainly on the efficiency. However this part will not go into too much code details, because they are of minor importance to the final result. For more detailed information about the implementation, see the generated API information or the code itself, which are both located on the CD-ROM that is included with this thesis.

2.2.1 Java.nio

One of the disadvantages of Java is that its IO performance is inferior to that of other programming languages. At least, that was a disadvantage in the past. Since Java 1.4 this has changed with the introduction of the New I/O API (NIO). NIO concentrates on providing consistent, portable APIs to access all sorts of I/O services with minimum overhead and maximum efficiency. NIO eliminates many of those performance issues, allowing Java to compete on an equal footing with natively compiled languages. It includes many critical things to write high-performance, large-scale applications. The buffer management, scalable network and file I/O all have improved a lot. That is why this new API is used as much as possible in this thesis. In Kiwi a lot of data is transferred or copied from disk to disk, from memory to disk or from disk to memory and of course it is this I/O that produces the main bottleneck. More information about the Java.nio package can be found on [10] (Dutch) and [11] (English).

One thing that is particularly fast in NIO is writing huge amounts of sequentially located data from one place on disk to another. This is done with two basic structures of NIO: Buffers and Channels. A typical sequence would be something like this: (details are omitted)

```java
FileChannel chanIn = new FileInputStream(...).getChannel();
FileChannel chanOut = new FileOutputStream (...).getChannel();
ByteBuffer buf = ByteBuffer.allocateDirect(4*1024);
while (chanIn.read(buf) != -1){
    manipulate(buf);
    chanOut.write(buf);
```
This example uses a buffer of 4 KiB to read data from a file, manipulate it and write it to another file. Because NIO is used, this will be faster than with the classical I/O API.

Sequences like the above one will be frequently used in Kiwi. They will be used for the following operations:

- Conversion between arff and arffn format: the entire dataset needs to be read, manipulated and written to another file.
- Materialization of the add buffer: every time this buffer is full, it will be written to the dataset.
- To make an exact copy of the dataset: used for saving a dataset for future usage.

2.2.2 MappedByteBuffer vs RandomAccessFile

However to access a particular record (or a number of sequential records), the above method can’t be used. A random access to the file is necessary. This is supported in the classical I/O API by a RandomAccessFile. The equivalent in NIO is a MappedByteBuffer. Both structures are a mapping to the file on disk. A file pointer exists which can be positioned on an arbitrary location on the file. A read operation will then get an amount of bytes from that location. However a MappedByteBuffer will do this more efficient and will take virtual memory techniques into account.

There is one small particularity that makes this MappedByteBuffer useless however. This particularity is stated in the Java API (see [12]):

"Many of the details of memory-mapped files are inherently dependent upon the underlying operating system and are therefore unspecified. Whether changes made to the content or size of the underlying file, by this program or another, are propagated to the buffer is unspecified."

This makes it impossible (for example) to know what would happen if we try to enlarge the buffer. This operation is necessary in Kiwi if we want to add records to the end of the dataset. So, enlarging the file is impossible (sometimes it would succeed, sometimes not). Another possibility is to close the file, enlarging it, and reopen it afterwards. However this isn’t possible...
because aMappedByteBuffer is automatically closed when it is garbage collected. It does not
have its own close operation. Closing the underlying RandomAccessFile isn’t allowed either.
All together the use of a MappedByteBuffer is not possible, so the classical Java I/O API will
be used for ’position-based’ retrieval of records. With position-based retrieval is meant the
retrieval of records starting at a random position in the dataset. The operations mentioned
in the Java.nio section read the complete dataset (or read a complete buffer), but don’t need
positioning in it.

A RandomAccessFile will be used for the following operations:

- Filling the prefetch buffer: starting at the position of the requested record, until the buffer
 is full (or the end of the dataset is reached).
- Retrieving a record without prefetching.
- Inserting an attribute: positioning is necessary if the dataset is not to be copied but
 overwritten (more information in section 2.2.4).
- Swapping of two random records.
- Materialization of the remove tables: if copying of the dataset is to be avoided (overwriting
 the dataset is wanted instead), positioning will be necessary (more information on section
 2.2.4).

2.2.3 ByteBuffer vs Byte array

For the prefetch buffer and the add buffer some kind of data structure is necessary that holds
records in binary format. Again there is a solution with the NIO API (a ByteBuffer), which can
be compared to a more usual structure. (a simple Byte array). Both solutions can be used in
the same way, so the first implementation of Kiwi contained a ByteBuffer (because of the better
performance of NIO). But after testing, a major drawback was encountered.

ByteBuffers are a lot more memory consuming then simple Byte arrays. Most likely they are
garbage collected a lot later then Byte arrays. In a preliminary version of Kiwi a ByteBuffer
was created, used and overwritten with another one, quite frequently. With this sequence the
memory usage kept increasing. By replacing the ByteBuffer with a Byte array and keeping
the exact same sequence, the memory usage did not increase at all. That’s why in the current
version of Kiwi ByteBuffers aren’t used as a prefetch buffer or an add buffer.
2.2 Implementation

2.2.4 Materialization

Recall that there are three operations on datasets that, if done naively, imply rewriting the entire dataset: deleting records, deleting attributes, and inserting attributes. The first two of those operations will be 'saved' temporarily and materialized when necessary to limit the amount of disk accesses. The third one however will be executed immediately on disk.

The desired way to perform those operations is by overwriting the original dataset and not duplicating it. Of course records can only be overwritten if they won’t be needed afterwards. NIO facilitates this process remarkably: a buffer of data is loaded, a transformation is made to it and then it is written to the appropriate position (see the pseudo code in section 2.2.1).

For the first two operations (deleting records and attributes), this can be done quite straightforward: (details are omitted)

```java
int readPosition = 0;
int writePosition = 0;
while (readPosition < dataset.length())
{
    file.read (buffer, readPosition);
    readPosition += buffer.length();
    discardDeletedRecords(buffer);
    discardDeletedAttributes(buffer);
    write(buffer, writePosition);
    writePosition += buffer.length();
}
```

This can be done with the knowledge that the buffer will not be expanded before writing it to the dataset. If it would have expanded, some records that have not yet been read could be overwritten.

However this will not work for the last operation (inserting an attribute), because here the buffer will expand. One solution would be to write the dataset to a new file, but this is of course a useless waste of resources. Another solution, and that is the one that is used in Kiwi, is to rewrite the dataset backwards. The final size of the dataset can be predicted (because the new attribute has a fixed size), so the updated dataset can be written backwards starting at the end of the file.
In pseudo code (without details) it could be stated as follows:

```java
int readPosition = (numberOfRecords * oldRecordSize) - oldBufferLength;
int writePosition = (numberOfRecords * (oldRecordSize + attributeSize)) - newBufferLength;
while (readPosition >= 0)
{
    file.read (buffer, readPosition);
    readPosition -= oldBufferLength;
    addNewAttribute(buffer);
    write(buffer, writePosition);
    writePosition -= newBufferLength;
}
```

2.2.5 Object Finalization

In order not to waste any valuable resources, the temporary files that are created to store a dataset need to be "garbage collected" also. Garbage collection is a java technique in which the memory resources will be released after an object goes out of scope. This won’t be done immediately, but "somewhere in the near future" (when exactly is implementation dependent of the virtual machine). However, not only the memory resources need to be released, but also the disk resources. This can be done with a Java feature called Object Finalization, which is explained in detail in [13].

Basically, what has to be done is redefining an inherited operation from the Object class:

```java
protected void finalize() throws Throwable {
    file.delete();
    super.finalize();
}
```

This will have as a consequence that the temporary file will be deleted once the dataset goes out of scope.
2.2.6 Conclusions

Although for some purposes the Java.nio API is a big improvement on the classical I/O in Java, it has some serious disadvantages concerning memory management and flexibility. But, it isn’t a substitute for that classical I/O API, it’s more of an addition to it. Some of the problems mentioned here will probably be solved in future Java releases, but for now a combination of the two different API’s seemed a good solution and proved to be quite efficient (as will be seen in the next section).
2.3 Performance

2.3.1 Introduction

The following performance tests were run on an AMD 1800 Ghz, with 512 MiB RAM and Windows 2k running. The test datasets are sets with records that consist of 2 numerical attributes, which means that each record will be 16 bytes long in arffn format. Having 2 attributes of 8 bytes or 1 of 16 or something else, doesn’t really matter, because to read a record a byte-stream of 16 bytes will be read. Splitting this stream to the different attributes is done in main memory which won’t affect performance.

The results are given in milliseconds (ms).

Tests are run with datasets of different sizes, ranging from 160 KB (10.000 instances) to 40 MB (2.500.000 instances)

Five different tests are performed: (x is the amount of instances that are handled, or the amount of times a particular sequence is performed.

- Loading a dataset of x records into Weka/Kiwi
- Sequentially reading all records of a dataset containing x records
- Non-sequential reading all records of a dataset containing x records (between record n and n+1 there will be at least x/2 records.)
- Adding x records to a new dataset
- Doing an add-deleteLast sequence x times

These tests represent the most common tasks in Weka/Kiwi and were also the basis of the design of Kiwi. Some types of tests are missing (for example inserting an attribute, deleting random records, ...), but they really aren’t that important for the overall performance.

The tests are done directly on the Instances class, without loading the GUI etc. This means that a better performance will be measured for Weka then what is actually the case. This has been done to keep the results clear enough for evaluation. The time for loading a dataset for example, really is the time for loading the dataset. No other interfering operations are performed (such as determining some statistical values, visualizing the attributes, etc.).
2.3 Performance

2.3.2 Testing Weka

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>Loading</th>
<th>seq. read</th>
<th>non seq. read</th>
<th>add</th>
<th>add-delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.000</td>
<td></td>
<td>390</td>
<td>16</td>
<td>< 1</td>
<td>< 1</td>
<td>16</td>
</tr>
<tr>
<td>100.000</td>
<td></td>
<td>2188</td>
<td>31</td>
<td>31</td>
<td>203</td>
<td>31</td>
</tr>
<tr>
<td>400.000</td>
<td></td>
<td>7953</td>
<td>32</td>
<td>32</td>
<td>859</td>
<td>62</td>
</tr>
<tr>
<td>500.000</td>
<td></td>
<td>9531</td>
<td>52</td>
<td>47</td>
<td>844</td>
<td>83</td>
</tr>
<tr>
<td>1.000.000</td>
<td></td>
<td>31360</td>
<td>63</td>
<td>78</td>
<td>1578</td>
<td>161</td>
</tr>
<tr>
<td>1.500.000</td>
<td></td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>2328</td>
<td>250</td>
</tr>
<tr>
<td>2.000.000</td>
<td></td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>2703</td>
<td>297</td>
</tr>
<tr>
<td>2.500.000</td>
<td></td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>O.O.M.</td>
<td>359</td>
</tr>
<tr>
<td>minimum (MB/s)</td>
<td></td>
<td>0.39</td>
<td>9.54</td>
<td>49.22</td>
<td>7.11</td>
<td>9.54</td>
</tr>
<tr>
<td>maximum (MB/s)</td>
<td></td>
<td>0.80</td>
<td>508.63</td>
<td>195.63</td>
<td>11.29</td>
<td>106.26</td>
</tr>
<tr>
<td>average (MB/s)</td>
<td></td>
<td>0.63</td>
<td>200.06</td>
<td>149.48</td>
<td>9.08</td>
<td>50.56</td>
</tr>
</tbody>
</table>

Table 2.1: Performance tests for Weka

O.O.M. stands for an OutOfMemory Error.

As is seen in table 2.1 once an instance is to be loaded of more then 16 MB, an OutOfMemory error occurs. Again it should be stressed that this is not the actual performance of Weka when running with a GUI etc.

Furthermore it should be noted that loading a dataset in Weka is one of the slowest operations (between 10 and 100 times slower than the others). This is to be expected since the dataset is loaded from disk and the other operations are all memory based. With the biggest dataset that still fits in memory a sudden rise can be seen, this is because the memory is close to exhaustion and it will become a lot more difficult to find free memory (this is known as memory fragmentation). The average speeds that are given are of course a few magnitudes higher then with Kiwi, because Weka is memory based and Kiwi is disk based. It will never be possible to get the same speeds using a version of Weka that keeps the dataset on disk. The difference between the sequential and the non-sequential retrieval of records is almost non-existent. This is normal because the difference between sequential and non-sequential reading doesn’t exist in main memory, because there isn’t such a thing as a ‘moving arm’ like there is in a hard disk.
2.3 Performance

2.3.3 Testing Kiwi

<table>
<thead>
<tr>
<th>x</th>
<th>Loading</th>
<th>seq. read</th>
<th>non seq. read</th>
<th>add</th>
<th>add-delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.000</td>
<td>359</td>
<td>32</td>
<td>2141</td>
<td>47</td>
<td>78</td>
</tr>
<tr>
<td>100.000</td>
<td>1797</td>
<td>140</td>
<td>21250</td>
<td>171</td>
<td>125</td>
</tr>
<tr>
<td>400.000</td>
<td>6969</td>
<td>563</td>
<td>84578</td>
<td>968</td>
<td>515</td>
</tr>
<tr>
<td>500.000</td>
<td>8484</td>
<td>640</td>
<td>106125</td>
<td>1375</td>
<td>610</td>
</tr>
<tr>
<td>1.000.000</td>
<td>17531</td>
<td>1281</td>
<td>211469</td>
<td>2453</td>
<td>1250</td>
</tr>
<tr>
<td>1.500.000</td>
<td>27641</td>
<td>2000</td>
<td>336953</td>
<td>3203</td>
<td>1844</td>
</tr>
<tr>
<td>2.000.000</td>
<td>36047</td>
<td>2688</td>
<td>447312</td>
<td>5234</td>
<td>2468</td>
</tr>
<tr>
<td>2.500.000</td>
<td>49875</td>
<td>3250</td>
<td>564781</td>
<td>6078</td>
<td>3078</td>
</tr>
</tbody>
</table>

minimum (MB/s)	0.43	4.77	0.07	3.25	1.96
maximum (MB/s)	0.90	11.92	0.07	8.92	12.51
average (MB/s)	0.79	10.61	0.07	6.19	10.99

Table 2.2: Performance tests for Kiwi

The first and most important conclusion that can be taken is that Kiwi keeps working, even for large datasets. But also the performance is quite good. Loading the dataset (including a conversion to arff which implies that the dataset is rewritten) is as fast as with Weka. The main reason for this is the use of Java.nio, which makes reading data from disk faster than with the classical I/O API. The sequential retrieval and the add operation have remarkable performances: 10 MB/s, resp. 6 MB/s, on average. This is close to the maximum that could have been expected. This, in comparison with non-sequential retrieval, proves the correct and efficient use of the prefetching and buffering. Also in Kiwi the difference of performance for the sequential retrieval compared to the non-sequential one is quite high. In Weka however these operations have the same performance. This can be explained by noting that main memory has no seek-delay, while that delay is quite big when secondary storage is used.

Of course these values are influenced by a lot of things:

- The fragmentation of the hard disk: running these tests on a very fragmented or on a recently de-fragmented disk might give very different results.

- Amount of space left on the hard disk: when a large dataset is put on disk, it will hardly ever be put in sequential blocks. The more space is available, the more likely it is that the
blocks will be closer together.

- Memory fragmentation: if the available memory becomes limited it will be slower to put something on memory (because an empty block has to be found).

- The disk usage on the time of the performance tests: some swapping might occur, some other programs might be running in the background, etc.

As a final conclusion of the performance the following points can be noted:

- Kiwi works for all sizes of datasets, without limitations or OutOfMemory errors.

- Prefetching works, which can be seen with the performance of the sequential retrieving. This operation is very fast compared to non sequential, and 'only' 20 times slower than in Weka.

- Add buffers work, which is noted in the performance of the add operation. This operation is only two times slower than in Weka.

- Loading works very fast. This is due to the use of NIO, but also to the fact that the records aren’t loaded at all. They stay on disk until they are retrieved.

- The only down side is the non-sequential retrieval of records. This is about 100 times slower than the sequential retrieval. This result is however quite normal because it is always the case with secondary storage. Luckily most Data Mining algorithms retrieve records in a sequential way. This will prove to be a problem with the sampling algorithms that are discussed next.
Chapter 3

Sampling algorithms

3.1 Introduction

This chapter describes the second part of this thesis. It consists of the implementation of some theoretical sampling algorithms. These algorithms are designed by the director of this thesis (Gavaldà Mestre, Ricard), who has written, together with others, some papers about random sampling in Data Mining. For this thesis, two well-known data mining algorithms were chosen and sampling versions of these were developed using the techniques in [4]. An implementation will be given of a clusterer: Sample K-Means and a classifier: Sample Naïve Bayes.

Random Sampling algorithms in general are used as an alternative to the normal 'sequential' Data Mining algorithms. They will look at some random records from a dataset until they decide that enough records have been read to get to a final result. This final result will approximate the 'correct' result that would be obtained if a non-sampling algorithm was used. Sampling algorithms are useful when datasets are too big to be used with non-sampling algorithms. These algorithms slow down a lot if the datasets get bigger. Typical, they iterate through the entire dataset a few times before delivering a result.

The two sampling algorithms will be based on their non-sampling counterparts, which both have some existing implementations in Weka. These implementations will be used as a basis for the new ones.

As a last point in this introduction it should be stated that these algorithms and their implementations are purely for scientific research. A theoretical design was made and together with the implementation, some conclusions will be made on the performance, the correctness, etc.
The implementation will be based on that basic assumption, so further optimizations will be discussed, but not implemented, in order to come to correct conclusions of the original proposed theoretical algorithms.

3.2 Sample K-Means

3.2.1 Design

The algorithm

Sample K-Means is a sampling algorithm based on the well known K-Means clustering algorithm. The goal of this algorithm is to find K clusters in a dataset. A cluster can be defined as a set of points (or records) that have very close values. Finding clusters in a dataset can be a way to retrieve some valuable information from a dataset. For example a clustering algorithm could be executed on a dataset containing characteristics of stars: spectrum, color, distance, age, brightness, etc. Clustering could be used to automatically find structural groups in them (blue ones, red ones, novas, supernovas, quasars, giant and dwarfs of different types).

However a dataset like this could be updated constantly by gathering information from radio telescopes that constantly scan the sky. Many new stars are found every day, so in the end the dataset would become enormous. Clustering those records with a non-sample algorithm would be very time consuming, because all records will be sequentially read, probably more than once.

This is one of the many examples where sequential clustering is not desirable. A sampling clustering algorithm will incorporate a stopping condition that evaluates to true the moment that the resulting clusters are 'likely' (in a statistical way) to be the correct ones. The proposal for the Sample K-Means clustering algorithm can be found in Appendix A.

For more information about the normal K-Means clustering algorithm, the book where Weka was first introduced could be consulted [1]. This algorithm has been introduced several times, by different independent persons, so J.H. Ward [14] and J.C. Gower [15] should be mentioned also.
Clustering algorithms in Weka/Kiwi

Weka is programmed in Java, an object oriented programming language, which facilitates the software design a lot. In Weka a lot of design techniques are used to obtain an easily readable and maintainable program. It also offers a clear and transparent structure for future extension and new algorithm implementations.

The structure of the clusterer package is given in figure 3.1, which shows the Sample K-Means class that is to be implemented, together with an example of one of the other algorithms in that package (Simple K-Means). To implement a new algorithm, the prototype clustering class should be extended. This class ("Clusterer") has some abstract operations that need to be implemented. That way a totally transparent handling of new algorithms is possible. To add a new clusterer algorithm, the implementation class (which extends the prototype) should be put in that package and an entry should be made in the property file of Weka. This file contains a list of all the different algorithms. Note also that an OptionHandler interface should be implemented, if user input is required in the algorithm (the number of wanted clusters for example).

3.2.2 Implementation

The basis

In pseudo code the algorithm looks as follows: (for a more complete design see Appendix A)

take k random centroids (k = the number of desired clusters)
while (not stable){
 while (stopping condition not true){
 r = random record from dataset
 j = closest cluster for r
 accumulate r to the total sum of cluster j
 if (smallness condition true){
 mark small clusters
 }
 update statistics needed for the stopping condition
 }
 change centroids to the average of their cluster values
}

Basically the algorithm will retrieve random records from the dataset until the stopping condition is true. This stopping condition is based on some statistics that are used to compute the probability that with the records read so far, a good approximation already is found or not. These statistical values will be updated at each iteration of the inner loop. Clusters will be marked 'small' only one time at each iteration of the outer loop, if the smallness condition evaluates to true. This is the case if enough records have been read to be able to discard the clusters that are too small to take into account. After that inner loop (if the stopping condition became true), the centroids (average value of the clusters) will be updated with the average of the points (or records) that have been assigned to it. This last step is the same as in the non Sampling algorithm.

Both of the conditions (stopping and smallness) depend on some user input values. They are defined as follows:

- ϵ: The margin that is allowed for a point to be put into the wrong cluster. If a point is a fraction of ϵ (relative) away from the border of two clusters, it will be put into the correct cluster. If it is ϵ (relative) close to the border of two clusters, it may be put in the wrong one. (standard value is 0.5)

- θ: A cluster is θ-large if it contains a fraction $\geq \theta/k$ of the total amount of records. Note that in average a cluster contains a fraction of $1/k$ of points. Only clusters that are θ-large are guaranteed to be well approximated by the algorithm. Clusters with fewer points are
too expensive to approximate well, so the algorithm will not spend extra time waiting for these. These clusters will not be dropped, the algorithm will just not wait for them to be very well approximated, as given by ϵ. (standard value is 0.5)

- δ: The failure probability. In all sampling algorithms, there is a chance that the randomly chosen points are very a-typical (for example, that by pure chance no point is found from a fairly large cluster). The claims that are made about ϵ and θ will occur with probability at least $1 - \delta$. (standard value is 0.1)

The details

To be able to give an implementation of a theoretical algorithm design, some topics will need to be dealt with, that aren’t yet discussed in the design. Some of them, especially the statistical problems, are solved in co-operation with the director of this thesis, who is responsible for the theoretical design of the algorithm.

Calculating the maximum and minimum values is needed for some various tasks: for choosing k random centroids, for evaluating the stopping condition and to perform a normalization of the values. The problem is that it is not desirable to iterate through the entire dataset to determine these values, because this is exactly what is tried to be avoided with sampling. The maximum and minimum values should be determined with a statistically correct approximation. To determine such an approximation, the maximum and minimum value of a sample of the entire dataset will be taken instead. The size of that sample will be computed with the following formula:

$$\frac{2d}{\delta} \ln \left(\frac{2d}{\delta} \right)$$

Where ’d’ is the number of attributes in the dataset.

This formula is correct for a fraction $1 - \delta$ of the points. If $\delta = 1$ at least 90% of the points will have all their values between the maximum and minimum that is computed. The (at most) 10% remaining records may be discarded because some of their values are too ‘strange’.

This step could be avoided if the maximum and minimum value of a dataset was known beforehand. For example a Data Mining tool (such as Weka or Kiwi) could have retrieved some basic statistics of a dataset when loading it.
3.2 Sample K-Means

Testing for empty clusters was missing in the original design, but is quite important. It can occur that the stopping condition evaluates to true but that there is one cluster that does not contain points. For this cluster the centroids can’t be updated (because there are no values to calculate the average). But, if this centroid is kept, then in the next round again values will be looked for that cluster. This will slow down the algorithm, because there are (most likely) almost no points that belong to that centroid. That’s why this cluster will be ‘dropped’. As a consequence the final result will not contain the requested amount of clusters. However the result will be delivered faster and without a big sacrifice. Very small clusters probably represent erroneous values that can be discarded.

Nominal values. The algorithm has been designed to deal with numeric attributes only, not nominal ones. The problem is the updating of the statistical values that are used for the stopping condition. This stopping condition has to evaluate to true if enough points have been seen to be sure of an approximately correct clustering. After this stopping condition the centroids will be recalculated using the average of the values assigned to a particular cluster. However calculating the average of nominal attributes might lead to erroneous results. What if the average is almost in the middle of 2 nominal values? For example: if the average of a nominal value (which has as possible values 0 and 1) is 0.499, then '0' would be taken as the average. Of course this isn’t very meaningful.

Another reason for not including nominal values is that clustering is based on the notion of ”distance” between points. Distance among nominal attributes is a complicated notion.

Random generating of records is one of the topics that the algorithm leaves open for discussion. The algorithm proposes a (theoretical) infinite array of records. This array will be read more then 1 time, so the records (or their indexes) that are read will have to be stored. A possibility for this is using a random generator with a fixed seed. If this generator is created a second time (with the same seed), it will generate exactly the same sequence of numbers. Doing it this way, the generated numbers can be used as the index in the dataset. This means we do not have to store the records (or their indexes) that were read.

The seed will be a user input variable.
Other details are ignored here, because they don’t really have anything to do with the ‘sampling’ part of this algorithm. For these problems the implementation of other algorithms, that were already implemented in Weka, is used as a reference. For example the way values are normalized, the way the distance between points is calculated, etc.

3.2.3 Performance

First test: Synthetic Control

In order to measure the correct performance of Sample K-Means a well known dataset is used: The Synthetic Control Chart Series. This dataset contains 600 examples of control charts synthetically generated by the process in Alcock and Manolopoulos (1999). It was taken from the "UCI repository of machine learning databases" [16].

However, it’s extremely difficult to evaluate the accuracy of a clustering result. The only meaningful measure would be to measure the intra and intercluster distances, but these are not supported by Weka. Even with those methods different results can be labeled as correct. This is because K-Means is an unsupervised learning algorithm. There is no way of knowing how correct the result is.

K-Means is known to be unstable, because taking different random centroids in the beginning of the algorithm, can lead to different clusterings. So even without sampling, it is difficult to evaluate K-Means and the evaluation will only depend on the subjective interpretation that somebody could give to the clusters, based upon his or her knowledge of the problem and its domain. An explanation of this instability can be found at [17]. The best that can be done is comparing the resulting centroids with the results obtained with a sequential algorithm.

With this Synthetic Control dataset the difference between the Sampling algorithm and a normal K-Means algorithm will be evaluated. The most important measurement is the amount of records that have to be read in order to come to a result.

Figure 3.2 shows the relationship between the two algorithms for different ϵ values. To repeat: ϵ is the margin that is allowed for misclassified points.

It should be noted that the smaller ϵ becomes, the more records will be read using Sample K-Means. But with a value of 0.5 (or even 0.3 for a small amount of clusters), Sample K-Means will read a lot less records than K-Means. In table 3.1 the exact values are shown.
With these exact values it should be noted that for $\epsilon = 0.5$ and a small amount of clusters, Sample K-Means will read a lot less records and produce more or less the same result. If the dataset size would be a lot bigger (multiplied by 10 for example), this positive result could even be expanded: The 3 horizontal lines representing the normal K-Means algorithm will be placed 10 times higher, but the graphs for the sampling algorithm would remain the same. This is because the sampling algorithm reads as much data as necessary to reach a safe conclusion, but not more.

Second test: an obvious dataset

To be able to decide a little more clear that the clustering really works, another dataset was constructed. This dataset was deliberately made very obvious. Records containing two (nu-

1Note that we use this subjective term, because (as explained before) comparing clustering results is rather subjective.
Table 3.1: Comparison between sampling and non-sampling K-Means with the Synthetic Control dataset

Numerical values were used, in order to construct a dataset of four clear clusters, without overlap between them. All the values are in the range [0,15] and the 4 centroids are: (2.5,2.5), (12.5,2.5), (2.5,12.5) and (12.5,12.5). Values are randomly generated, but will always be close to one of those four centroids. The dataset consists of 500000 records. To cluster the four clusters in it, Simple K-Means will need to read 2000000 records (each record 4 times).

Another purpose of using this dataset, is to demonstrate the impact of the user input variables (\(\epsilon\), \(\delta\) and \(\theta\)).

The results are given in figure 3.3 and in table 3.2.

Some notes and observations:

- When altering one user input value, the others are kept on their standard value (\(\epsilon = 0.5\), \(\delta = 0.1\), \(\theta = 0.5\)).

- These standard values seem to be quite good, because while using them, the amount of records that will be read is limited and the results are (approximately) correct.

- With this dataset the correctness of the clusters can be easily seen by looking at the values for the centroids. The centroids were always close to the centroids that were given by Simple K-Means. Only for the highest values (close to 1) some errors occurred.
3.2 Sample K-Means

The smaller ϵ gets, the more records have to be read. This is normal because a small ϵ means that very little misclassified points are allowed.

Also the θ value seems very important. This is because it controls the size that determines when a cluster is to be marked ‘small’. Small θ values mean that only the very smallest clusters will be ignored, which of course results in more retrievals of records to determine the ‘large’ clusters with a good probability.

One thing that hasn’t been discussed before is the relevance of these results. A lot less records are read as would have been the case with a sequential K-Means algorithm. For example: in the standard case (with the standard user input values), with the dataset described above, about 7000 read operations are necessary. Compared to the sequential algorithm, this is almost 300 times better.

Figure 3.3: Demonstration chart for the user input variables in Sample K-Means.
3.2 Sample K-Means

<table>
<thead>
<tr>
<th>$\epsilon/\delta/\theta$ values</th>
<th>#records when altering ϵ</th>
<th>#records when altering δ</th>
<th>#records when altering θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>167953</td>
<td>8950</td>
<td>152402</td>
</tr>
<tr>
<td>0.2</td>
<td>70931</td>
<td>6516</td>
<td>20876</td>
</tr>
<tr>
<td>0.3</td>
<td>12351</td>
<td>3494</td>
<td>15645</td>
</tr>
<tr>
<td>0.4</td>
<td>7171</td>
<td>2262</td>
<td>8243</td>
</tr>
<tr>
<td>0.5</td>
<td>7085</td>
<td>1886</td>
<td>6540</td>
</tr>
<tr>
<td>0.6</td>
<td>3201</td>
<td>1617</td>
<td>5842</td>
</tr>
<tr>
<td>0.7</td>
<td>3553</td>
<td>1698</td>
<td>4232</td>
</tr>
<tr>
<td>0.8</td>
<td>3252</td>
<td>1785</td>
<td>2762</td>
</tr>
<tr>
<td>0.9</td>
<td>1451</td>
<td>1808</td>
<td>2392</td>
</tr>
<tr>
<td>1.0</td>
<td>1302</td>
<td>1184</td>
<td>2360</td>
</tr>
</tbody>
</table>

Table 3.2: Demonstration for the user input variables in Sample K-Means.

3.2.4 Weka vs Kiwi

If Kiwi is used with this algorithm instead of Weka, the above results should be rescaled. Sample K-Means will retrieve the records in a non-sequential way. This kind of retrieval is a lot slower than sequential retrieval in Kiwi. In Weka however, they are almost equal. This is one important conclusion, because in principle a heavy price (concerning time complexity) is paid for using both sampling and disk accesses at the same time. Sampling may seem redundant because of this, but it isn’t. A sampling algorithm (or at least its ideas) could be used in a sequential way if the data is received completely disordered. If this is the case, reading the next record is the same as reading the next random record. The dataset will be read sequentially as in a normal K-Means algorithm and with the same speed, but because sampling is used, it won’t be read entirely.
3.3 Sample Naïve Bayes

3.3.1 Design

Classifiers in general

The goal of every classifier algorithm is to predict a nominal value, based on the values of the attributes (except that nominal value) of a record. This can be used to make a guess for this particular attribute when a new record is found, but with that data missing.

For example: classification could be useful to predict whether a new customer will refund a loan that will be granted to him. Predicting that the loan will not be refunded, could be used as a warning, but of course will not be 100% accurate. The prediction will be based on the other attribute values of the customer: marital status, bank balance, previous loans, ... But also on the data of the previous customers and whether they refunded the loan or not.

However, to give accurate results (or with an accurate representing error percentage), a big dataset is preferred. This brings us back to the reason why sampling will be introduced. A sequential classifier algorithm will typically read the entire dataset one time in a sequential way, which might be very time consuming.

Sampling will limit that amount by incorporating a stopping condition which evaluates to true, as soon as the resulting classification model is 'likely' (in a statistical way) to be correct.

In this thesis Sample Naïve Bayes, which is based on Naïve Bayes, will be implemented.

Naïve Bayes

Naïve Bayes algorithms try to estimate the conditional probability of each class, given that the record has some given values at the attributes. In symbols this is: \(\text{Prob}[\text{class} = c | \text{attribute values}] \). By some derivation that is omitted, this probability can be estimated with the conditional probabilities \(\text{Prob} [A = v | \text{class} = c] \) (for every individual attribute A and every one of their possible values v). These probabilities, in turn, can be estimated also. For this estimation the following two things are needed:

- The number of instances in the dataset having class c, which is denoted by classcount[c].
- The number of instances in the dataset having class c and value v in A, which is denoted by count [c,a,v].
The main loop of the algorithm will iterate over the dataset in order to compute these classcount and count values.

The idea of sampling, is to avoid running over the dataset if, from the instances seen so far, good enough approximations to all the count and classcount values can be deduced. This ‘good enough approximation’ will be controlled by a parameter (this will be ϵ_1 in Sample Naïve Bayes). If some of these values are too small, it will be difficult to approximate them correctly with sampling. These values will be ignored so no valuable time is spent approximating them further. To determine when a value is small a second parameter is introduced: ϵ_2.

One could make the analogy with Sample K-Means of course. There ‘clusters’ will be discarded if they are too small, here those clusters will be the ‘values’.

The proposal for the Sample Naïve Bayes algorithm can be found in Appendix B.

For more information about the normal Naïve Bayes algorithm the Weka book [1] can be consulted. Again (as with K-Means) this algorithm has been ‘rediscovered’ by several different independent persons, of which [18] and [19] should be mentioned.

Classifier algorithms in Weka/Kiwi

Figure 3.4 explains the design structure for classifiers.

![Class diagram explaining the design structure for classifiers.](image)

This structure is almost identical to the structure for clustering. The same reasons and benefits can be noted here. For more information see the description in the section about Sample K-Means (3.2.1).
3.3 Sample Naïve Bayes

3.3.2 Implementation

The basis

In pseudo code the algorithm looks as follows: (for a more complete design see Appendix B)

/* compute counts: */
while (stopping condition not true){
 r = random record from dataset
 increment the counts and the classcounts
 update statistical values used for the stopping condition
 mark the class c, or the value c,a,v small if necessary
}

/* compute prior class probabilities and conditional probabilities: */
for (all classes c){
 for (all nominal attributes a){
 for (all values v of the attributes){
 cond[c][a][v] = compute probability of the v to the class c
 }
 }
 prior[c] = compute the prior class probability
}

Basically the algorithm will first retrieve random records from the dataset until the stopping condition is true. The class values of these records will be examined and the appropriate counters will be incremented for each time they occur. The stopping condition takes the small (class) values into account, because these values can be ignored.

In the second step the probabilities for the classes and the values will be calculated, using those counters of the first step.

The stopping condition (and marking values ‘small’ or not) depends on some user input values. They are defined as follows:

- \(\epsilon_1 \): The difference between the sampling and the non-sampling models is at most (multiplicatively) \(\epsilon_1 \). However, this is an absolute maximum. The probabilities predicted for
any individual record can vary from $1 - \epsilon_1$ to $1 + \epsilon_1$ from the value that would be given by the non-sampling algorithm. But there will almost never be records where this extreme deviation occurs: on most of the records, the predictions will be a lot closer. (standard value is 0.5)

- ϵ_2 is introduced to prevent an unnecessary delay for small classes or counts. (standard value is 0.5)

- δ The failure probability. (standard value is 0.1)

The details

During the implementation, of course some topics will need to be dealt with, that aren’t yet discussed in the design part. However, compared to Sample K-Means, this algorithm was easier to implement. Naïve Bayes algorithms tend to be quite straightforward and even with sampling introduced, this doesn’t change a lot. There was however one important point that needed extra fine-tuning.

The performance of the algorithm was rather slow. The amount of records that were read to come to a result was too much, even to perform some basic tests. The algorithm was based on the assumption that the datasets were really big, not just a few thousands or tens of thousands records. To solve this a heuristic was proposed, without a complete mathematical justification, but one that is inspired on the same hypothesis as Naïve Bayes.

The heuristic was to replace

$$\theta = \frac{\ln(2)}{\epsilon_1(A + 1)}$$

by

$$\theta = \frac{1}{2} \frac{\ln(2)}{\epsilon_1 \ln(A + 1)}$$

(with A = the number of attributes there are in the dataset)

(formulas taken from Appendix B)

This change will limit the amount of records that will be read, because this amount was determined by A^2, which will now be limited to $(\ln(A))^2$

With these parameters the algorithm will read a lot less records, without the accuracy being sacrificed.
3.3 Sample Naïve Bayes

3.3.3 Performance

First test: Adult dataset

As with Sample K-Means, also for this algorithm a well known dataset is used: *The Adult dataset.* This dataset contains 45222 records which are particularly suitable to perform classification tests with. The test is described as follows: "*The task is to predict if an individual’s annual income exceeds $50,000 based on census data.*" The records represent persons with some of their properties, such as age, education, gender, race, occupation, marital-status, etc. This dataset was also taken from the "UCI repository of machine learning databases" [16].

Compared to clustering, the accuracy of classification problems can be measured on an objective basis. Tests can be done with records from that same dataset, to see if they give an accurate result if classified with the model. The accuracy can then be compared to that of a non-sampling algorithm (such as Naïve Bayes Simple).

Figure 3.5 shows the relationship between the two algorithms for different ϵ_1 values. To repeat: the difference between the sampling and the non-sampling models is at most (multiplicatively) ϵ_1.

As with the ϵ value in Sample K-Means, which was very important for the overall performance, the same applies to the ϵ_1 value in this algorithm. This is to be expected since that value represents the difference between the sampling and the non-sampling algorithm. If a very high accuracy is wanted, all records should be read, so a low ϵ_1 value is needed, but if an approximation is enough, a higher ϵ_1 will be necessary.

Note that a with low ϵ_1 value, it is possible that with Sample Naïve Bayes more records are read then with the non-sampling algorithm. This can be easily solved by introducing a 'check' in the code, which checks the amount of instances read so far. If 50% of the records have been read with the sampling method, sampling will be stopped and the non-sampling algorithm will be executed. Doing it this way, the combination of the algorithms will never read more than $3/2$ of the dataset size. However in this thesis this approach is not taken in order not to influence the theoretical results.

In table 3.3 the exact values of this test are shown, together with the relationship between the sampling and the non-sampling algorithm.

It should be noted that with this example dataset, the resulting classification model always had
Figure 3.5: Comparison chart between sampling and non-sampling Naïve Bayes with the Adult dataset

the (approximately) same accuracy as Naïve Bayes Simple.

Second test: Forest CoverType

To be able to say something about the real potential of this algorithm, another classical dataset is proposed: the "Forest CoverType", which is known to be a fairly difficult dataset for performing Data Mining algorithms. It’s also often used as a benchmark dataset for Machine Learning algorithms. The set gives the forest cover type for 30 x 30 meter cells obtained from US Forest Service (USFS) Region 2 Resource Information System (RIS) data. It has 581012 records and each record consists of 54 values, which makes an arff file of 71.6 MiB, which can’t be loaded into Weka. More information can be found on the "UCI repository of machine learning databases" [16], where the dataset was taken from.

The purpose of using this dataset, is to demonstrate the impact of the user input variables (ɛ₁,
3.3 Sample Naïve Bayes

Table 3.3: Comparison between sampling and non-sampling Naïve Bayes with the Adult dataset

<table>
<thead>
<tr>
<th>ϵ_1</th>
<th>#records with Sampling</th>
<th>#records without Sampling</th>
<th>#records with Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>691050</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>170847</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>74842</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>41028</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>26456</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>17176</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>13566</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>10380</td>
<td>4.36</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>8149</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>6613</td>
<td>6.84</td>
<td></td>
</tr>
</tbody>
</table>

Values obtained with a non-sampling algorithm are also included in the graph. They were obtained using Naïve Bayes Simple. With this algorithm, each record will be read exactly once, so 581,012 sequential read operations will be performed.

Table 3.4: Results of Sample Naïve Bayes with the Forest CoverType dataset.

<table>
<thead>
<tr>
<th>$\delta/\epsilon_1/\epsilon_2$ values</th>
<th>#records when altering δ</th>
<th>#records when altering ϵ_1</th>
<th>#records when altering ϵ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>114475</td>
<td>> 500000</td>
<td>> 500000</td>
</tr>
<tr>
<td>0.2</td>
<td>106839</td>
<td>> 500000</td>
<td>> 500000</td>
</tr>
<tr>
<td>0.3</td>
<td>103370</td>
<td>318970</td>
<td>1093333</td>
</tr>
<tr>
<td>0.4</td>
<td>99880</td>
<td>179448</td>
<td>155122</td>
</tr>
<tr>
<td>0.5</td>
<td>97879</td>
<td>114475</td>
<td>114475</td>
</tr>
<tr>
<td>0.6</td>
<td>95353</td>
<td>78599</td>
<td>85973</td>
</tr>
<tr>
<td>0.7</td>
<td>94101</td>
<td>59058</td>
<td>72395</td>
</tr>
<tr>
<td>0.8</td>
<td>92749</td>
<td>44251</td>
<td>71371</td>
</tr>
<tr>
<td>0.9</td>
<td>91748</td>
<td>34677</td>
<td>69415</td>
</tr>
<tr>
<td>1.0</td>
<td>91052</td>
<td>27967</td>
<td>53543</td>
</tr>
</tbody>
</table>

Some notes and observations:

- When altering one user input value, the others are kept on their standard value ($\epsilon_1 = 0.5$, $\epsilon_2 = 0.5$). The results are given in figure 3.6 and in table 3.4.
Figure 3.6: Comparison between sampling and non-sampling Naïve Bayes with the Forest Cover-Type dataset.

\[\epsilon_2 = 0.5, \delta = 0.1 \].

- The results obtained with these tests were all (approximately) the same as with the non-sampling algorithm. The amount of correctly classified records was always between 67.44% and 69.1%, while the non-sampling algorithm got results between 67.3% and 68.94%. So, even for very high values for the parameters (\(\epsilon_1 = 1.0 \) for example), the same results are obtained using the sampling version of Naïve Bayes.

- The standard values for these user input values are chosen like this, because that way they will deliver a fast result, with a good accuracy.

Again the relevance of these results can be discussed, because reading records sequential or not sequential is a big difference in Kiwi. 114,475 Records are needed with the standard user input values, compared to 581,012 with a sequential algorithm. However reading non-sequential records in Kiwi is a lot slower than reading sequential records, so in the end the Naïve Bayes Sim-
3.3 Sample Naïve Bayes

ple algorithm performs better. At least with this dataset. If it would be bigger, the conclusion would be different, because the amount of records read with the non-sampling algorithm will rise, while that amount will stay the same for the sampling algorithm.

As a final conclusion about Sample Naïve Bayes, it should be mentioned that even with the introduced heuristics (see Appendix B), the formulas are probably overestimated, because even with 'wrong' values for ϵ_1, ϵ_2 and δ, the results are still correct. This leads to a conclusion that a theoretical task would be to develop new formulas, with less overestimation. These would give a positive increase in performance. However this was not the purpose of this thesis and developing these formulas would be a difficult mathematical task.
Chapter 4

Conclusions

4.1 General conclusions

4.1.1 Typical execution flow in Kiwi

As a conclusion, a normal flow of actions in Kiwi will be discussed, complete with execution
details such as speed, disk usage, amount of records read, etc. Such a normal flow could be:

- Loading a dataset in Kiwi
- Preprocessing this dataset in order to obtain a structure suitable for further Data Mining
tasks
- Saving this preprocessed dataset to disk for future usage
- Performing non-sampling tasks on the dataset if it is small enough
- Performing sampling tasks on the dataset if non-sampling algorithms would result in a big
delay.

As an example, the well-known dataset: ”Forest CoverType”, which was used to test Sample
Naïve Bayes will be used again. This is a dataset of 71.6 MiB (in arff format). With this dataset
a clear view of the performance of Kiwi and Sampling will be given. More information can be
found on the ”UCI repository of machine learning databases” [16], where the dataset was taken
from, or at section 3.3.3.
4.1 General conclusions

<table>
<thead>
<tr>
<th>Task</th>
<th>Time (seconds)</th>
<th>Disk usage (MiB)</th>
<th>#records read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arff loading and converting to Arffn</td>
<td>38.609</td>
<td>144</td>
<td>581012</td>
</tr>
<tr>
<td>Discretize to all nominal values</td>
<td>170.657</td>
<td>121</td>
<td>581012</td>
</tr>
<tr>
<td>Saving Arffn file</td>
<td>4.523</td>
<td>121</td>
<td>581012</td>
</tr>
<tr>
<td>Simple Naïve Bayes classifier</td>
<td>25.297</td>
<td>121</td>
<td>581012</td>
</tr>
<tr>
<td>Arffn loading</td>
<td>19.562</td>
<td>121</td>
<td>581012</td>
</tr>
<tr>
<td>Sample Naïve Bayes classifier</td>
<td>88.204</td>
<td>121</td>
<td>114175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>Time (seconds)</th>
<th>Disk usage (MiB)</th>
<th>#records read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arffn loading</td>
<td>19.562</td>
<td>121</td>
<td>581012</td>
</tr>
<tr>
<td>Sample Naïve Bayes classifier</td>
<td>88.204</td>
<td>121</td>
<td>114175</td>
</tr>
</tbody>
</table>

Table 4.1: Demonstration of a typical execution flow in Kiwi.

The results\(^1\) are summarized in table 4.2.

Some remarks and observations:

- The values demonstrate that with Kiwi large datasets can be evaluated without a lot of problems or delays
- Running a classifier on the Forest CoverType dataset is relatively fast.
- Sample Naïve Bayes reads 5 times less records than Simple Naïve Bayes. This shows again that Sampling can be very useful, for example if it is known that the data is stored in a random fashion and the data could be retrieved in a sequential way.
- Values have to be discretized to nominal values to be able to run a classifier
- The fifth step loads the previously saved Arffn file. This is to demonstrate that loading doesn’t always means converting an arff file
- The disk usage represents the size of the dataset on disk. As can be seen this size is bigger than the original arff dataset. This is normal because the original dataset contained a lot of nominal attributes of which the values consisted of just one character. One character (1 byte) will be transformed in a numerical value in arffn (probably 4 bytes)

4.1.2 Major differences between Weka and Kiwi

Note that the fact that Sample K-Means and Sample Naïve Bayes are included in Kiwi, has nothing to do with Kiwi itself. They could also be easily included in Weka. Neither Sample

\(^{1}\)Tests are run on an AMD 1800 Ghz, 512 MiB RAM and Windows 2k running.
K-Means, nor Sample Naïve Bayes use operations that don’t exist in Weka. However the benefits of Sampling algorithms increase a lot if larger datasets are being used. Sample K-Means and Sample Naïve Bayes will therefore be more interesting in combination with Kiwi than in combination with Weka.

4.2 Planning and economical conclusions

4.2.1 Planning

In the end the planning of this thesis was quite accurate. The difference is 65 hours, which is 11% of the original planning. This difference is basically because of the improvements of the ‘paging’ system. In order to make it efficiently enough, a lot of different techniques had to be introduced. Also the implementation of K-Means took longer than was expected.

A recapitulate of the planning, but with the adjustments, is given in table 4.3.

4.2.2 Economical conclusions

The only difference with the initial Cost Estimation will be the amount of working hours. This has changed (only 11%) to the following:

This makes a final difference of €1900.
Table 4.3: Adjusted planning of the project

<table>
<thead>
<tr>
<th>Dates</th>
<th>Work</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/02/2004</td>
<td>Studying the structure of Weka</td>
<td>25</td>
</tr>
<tr>
<td>16/02/2004</td>
<td>Looking at possibilities to handle large datasets</td>
<td>20</td>
</tr>
<tr>
<td>23/02/2004</td>
<td>Searching for solutions for paging</td>
<td>50</td>
</tr>
<tr>
<td>06/03/2004</td>
<td>Design of the paging system</td>
<td>40</td>
</tr>
<tr>
<td>13/03/2004</td>
<td>Starting implementation of the paging system</td>
<td>40</td>
</tr>
<tr>
<td>20/03/2004</td>
<td>Writing a short review for tribunal</td>
<td>15</td>
</tr>
<tr>
<td>22/03/2004</td>
<td>Finishing implementation of the paging system</td>
<td>70</td>
</tr>
<tr>
<td>10/04/2004</td>
<td>Adapting Weka to the new implementation</td>
<td>70</td>
</tr>
<tr>
<td>24/04/2004</td>
<td>Testing and evaluating the paging system</td>
<td>30</td>
</tr>
<tr>
<td>27/04/2004</td>
<td>Studying random sampling techniques</td>
<td>20</td>
</tr>
<tr>
<td>03/05/2004</td>
<td>Implementing of sampling in K-Means</td>
<td>70</td>
</tr>
<tr>
<td>12/05/2004</td>
<td>Implementing sampling in Naïve Bayes</td>
<td>30</td>
</tr>
<tr>
<td>21/05/2004</td>
<td>Experiments and evaluation of the algorithms</td>
<td>40</td>
</tr>
<tr>
<td>31/05/2004</td>
<td>Exams, so 2 weeks of inactivity</td>
<td>0</td>
</tr>
<tr>
<td>17/06/2004</td>
<td>Finishing the final report (including some extra experiments)</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Total amount of hours</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Amount of credits (1 ECTS credit = 25-30 hours)</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4.4: Amount of working hours

<table>
<thead>
<tr>
<th>Task</th>
<th>Hours</th>
<th>Hourly wage</th>
<th>Cost of task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>65</td>
<td>€40</td>
<td>€2600</td>
</tr>
<tr>
<td>Software Design</td>
<td>90</td>
<td>€40</td>
<td>€3600</td>
</tr>
<tr>
<td>Implementation</td>
<td>280</td>
<td>€30</td>
<td>€8400</td>
</tr>
<tr>
<td>Performance tests</td>
<td>70</td>
<td>€30</td>
<td>€2100</td>
</tr>
<tr>
<td>Documentation</td>
<td>135</td>
<td>€20</td>
<td>€2700</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>€19400</td>
</tr>
</tbody>
</table>
Appendix A

Sample K-Means

Title: A version of k-means using sequential sampling - Version 2

From: Ricard G.

To: Joachim N.

Date: May 13th, 2004

We describe a version of the k-means algorithm for grouping a set of points in (at most) k clusters, each one identified by a centroid. The algorithm does not necessarily read all available points, but just the necessary ones to reach a partition in clusters that approximates the partition that would be obtained by running all over points.

We can write the standard k-means algorithm as follows:

1. k-means, version 1:
2. input:
3. a number $k > 0$,
4. a set of N points in R^d, given as an array $x[1..N]$;
5. choose k centroids at random and place them in array $c[1..k]$;
6. repeat
7. /* assign each $x[i]$ to a cluster */
8. for $i := 1$ to N do
9. \quad cluster[i] := j such that $c[j]$ is closest to $x[i]$;
An iteration of the outer (repeat) loop is called a round. Predicate \texttt{stable} is true when the cluster array has not changed since the previous round. This means that the assignment of points to cluster has stabilized, and so array \texttt{c} has not changed from the previous round, either.

Computing \texttt{stable} needs an \texttt{if} around lines 8-9, which I omit.

For the choice of initial points, determine for for each coordinate $i \in \{1..d\}$ a value such that $x[1], x[2], \ldots, x[N]$ are all in $[-B_i, B_i]$; then and choose the k initial points in $[-B_1, B_1] \times [-B_2, B_2] \times \ldots \times [-B_d, B_d]$ by picking each coordinate independently at random in $[-B_i, B_i]$.

To be more efficient and clear, we rewrite lines 11-14 this way:

1. **k-means, version 2:**
2. input:
3. a number $k > 0$,
4. a set of N points in \mathbb{R}^d, given as an array $x[1..N]$;
5. choose k centroids at random and place them in array $c[1..k]$;
6. repeat
7. create arrays sum[1..k] of points in \mathbb{R}^d and integer num[1..k];
8. /* initially, sum and num are all 0 */
9. for $i := 1$ to N do
10. \hspace{1em} $\text{cluster}[i] := j$ such that $c[j]$ is closest to $x[i]$;
11. /* accumulate $x[i]$ to the average for cluster j */
12. \hspace{1em} $\text{sum}[j] += x[i]$; /* this is vector sum in \mathbb{R}^d */
13. \hspace{1em} $\text{num}[j]++$;
14. endfor;
15. for $j := 1$ to k do
16. \hspace{1em} $c[j] := \text{sum}[j] / \text{num}[j]$;
17. endfor
18. until stable

Versions 1 and 2 of the algorithm should give exactly the same results.

The sampling algorithm given next may give different results, but we will claim that it will give results that are almost as good. The idea is to replace the for loop in line 9 with a while loop that (1) picks up points from \(x \) at random, and (2) does not wait to see \(N \) of them; rather, it waits until enough points have been seen so that \(\text{sum} \) and \(\text{num} \) are sufficiently well approximated from the points seen, with high probability.

The sampling algorithm receives three additional parameters, \(\epsilon, \theta, \) and \(\delta \), which are real numbers in \((0,1) \) and have the following meaning:

- \(\epsilon \): measures the degree approximation we want for new centroids, or the “margin” that we allow for misclassified points. The smaller the \(\epsilon \), the better approximation we will get.

- \(\theta \): a cluster is “\(\theta \)-large” if it contains a fraction \(\geq \theta/k \) of the points in \(x \). Note that in average a cluster contains a fraction of \(1/k \) of points. Only clusters that are \(\theta \)-large are guaranteed to be well approximated by the algorithm. Clusters with fewer points are too expensive to approximate well, so the algorithm will not spend extra time waiting for these.

- \(\delta \): The failure probability. In all sampling algorithm, there is a chance that the randomly chosen points are very atypical (for example, that by pure chance we see no point from a fairly large cluster). The claims we made about \(\epsilon \) and \(\theta \) will occur with probability at least \(1 - \delta \).

The algorithm will take more time as \(\epsilon, \theta, \) and \(\delta \) become smaller. Actually, some analysis shows that the running time will be roughly proportional to \(\frac{k}{\theta e^2} \cdot \ln \frac{k}{\delta} \) (ignoring some small factors).

The algorithm is:

1. \(k \)-means, version 3:
2. input:
3. a number \(k > 0 \),
4. a set of \(N \) points in \(R^d \), given as an array \(x[1..N] \),
5. numbers \(\epsilon, \theta, \delta \);
6. \(T := 0 \); /* number of times stopping-condition has been evaluated */
7. choose \(k \) centroids at random and place them in array \(c[1..k] \);
8. repeat
9. create arrays \(\text{sum}[1..k] \) of points in \(\mathbb{R}^d \) and integer \(\text{num}[1..k] \);
10. /* initially, sum and num are all 0 */
11. let \(r \) be an infinite array of random integer numbers in \([1..N]\);
12. declare all clusters \([1..k]\) non-large for the moment;
13. \(t := 0 \); /* number of points visited in this round */
14. while not stopping_condition do
15. \(i := r[t] \); /* that is, \(x[i] \) is randomly chosen from \(x \) */;
16. \(t++; T++; \)
17. \(\text{cluster}[i] := j \) such that \(c[j] \) is closest to \(x[i] \);
18. /* accumulate \(x[i] \) to the average for cluster \(j \) */
19. \(\text{sum}[j] +:= X; \) /* this is vector sum in \(\mathbb{R}^d \) */;
20. \(\text{num}[j]++; \)
21. if smallness_condition then mark_small_clusters;
22. endfor;
23. for \(j := 1 \) to \(k \) do
24. \(c[j] := \text{sum}[j] / \text{num}[j]; \)
25. endfor;
26. until stable

An implementation detail: of course, one does not create the infinite array \(r[\] \). Rather, as \(t \) grows larger than in all previous rounds, a new component is generated. This is in order to be able to compute \(\text{stable} \); if the points read in different rounds are different, there is no way to know whether the clusters have stabilized, that is, to know \(\text{stable} \). There may be other ways to do this: think about it.

Observe also: \(\text{smallness}_\text{condition} \) will be true only once. At that moment, each clusters is declared either “small” or “large”. With probability \(1 - \delta \), all clusters that are \(\theta \)-large are declared large. Some clusters that are not \(\theta \)-large may be declared large too (incorrectly), but if those that are are \(\theta' \)-small (for some \(\theta' \) a bit smaller than \(\theta \)) will be declared small. That is, some \(\theta \)-small sets may survive, but then they cannot be much smaller than \(\theta \).

Formulas in \(\text{smallness}_\text{condition} \), \(\text{mark}_\text{small}_\text{clusters} \), and \(\text{stopping}_\text{condition} \)
will guarantee the following:

Fact: With probability at least $1 - \delta$, at the end of any round:

- All clusters that are θ-large (with respect to the set of points in x) have been declared “large”.

- For every a, b such that clusters a and b have been marked “large”, if any point x whatsoever is assigned to cluster a, then

$$\text{distance}(x, a^*) \leq (1 + \epsilon) \cdot \text{distance}(x, b^*),$$

where a^* and b^* are the centroids that we would get for clusters a and b if we were not using sampling and running over all x to compute the new centroids.

That is, some points may be classified into different clusters by both the sampling and non-sampling algorithms. But if a point x is put in cluster a by one and by cluster b by the other, then x has to be close to the border between a and b, so in some sense the misclassification is not that bad.

Note that a single misplaced point at one round can change the centroids computed at the next round. So we do not claim that the solutions computed by the sampling and non-sampling algorithm look similar in any way, at the end. We just claim that the decisions (assignments) of the sampling algorithm are almost as good with respect to distances as those taken by the non-sampling algorithm.

To compute smallness condition:

1. $\theta' := \theta/3$; /* any value $\theta' < \theta$ will do */
2. $\alpha := 1 - \theta'/\theta$;
3. $t_{max} := 12k \cdot \ln(\ln(T)/\delta)/(\theta \alpha^2)$;
4. smallness_condition := $(t \geq t_{max}) \text{ but } (t - 1 < t_{max})$;

Then mark_small_clusters is as follows: For each cluster j, declare it “small” if

$$n_j < \frac{\theta + \theta'}{2k} \cdot t,$$

otherwise declare it “large”.

And stopping_condition is a bit more complicated:
1. For each cluster \(j \in \{1..k\} \) and each coordinate \(\ell \in \{1..d\} \) we keep a value \(\epsilon_{j,\ell} \) which is updated at each iteration of the inner loop as follows:

\[
\epsilon_{j,\ell} := \sqrt{\frac{2 + 2B/3}{s[j][\ell]} \cdot \ln(Tk/\delta)}
\]

This definition has the property that with probability \(\delta \), all \(s[j][\ell] \) are within \(\epsilon_{j,\ell} \) of the value they should have if we added over all points in \(x \), instead of a sample. Let \(\epsilon_j \) stand for the vector \((\epsilon_{j,1}, \ldots, \epsilon_{j,d}) \).

2. For each \(i, j \), compute \(\text{farthest}(c[i], c[j]) \), which is the point which is farthest from \(c[j] \) but still within \(\epsilon_j \) of \(c[i] \): for each \(\ell \), set \(\text{farthest}(c[i], c[j])[\ell] \) to \(c[i][\ell] + \epsilon_{i,\ell} \) if \(c[i][\ell] > c[j][\ell] \), and to \(c[i][\ell] - \epsilon_{i,\ell} \) otherwise.

3. Similarly, for each \(i, j \) compute \(\text{closest}(c[i], c[j]) \), which is the point which is closest to \(c[j] \) but still within \(\epsilon_j \) of \(c[i] \): for each \(\ell \), set \(\text{closest}(c[i], c[j])[\ell] \) to \(\max\{c[j][\ell], c[i][\ell] - \epsilon_{i,\ell}\} \) if \(c[i][\ell] > c[j][\ell] \), and to \(\min\{c[j][\ell], c[i][\ell] + \epsilon_{i,\ell}\} \) otherwise.

4. Finally, \textbf{stopping condition} is true if

4.1 \textbf{smallness condition} has already occurred (so each cluster is already marked as “large” or “small”), and

4.2 for every \(i, j \in \{1..k\} \), such that both clusters \(i \) and \(j \) have been declared “large”,

\[
\text{distance}(\text{farthest}(c[i], c[j]), (c[i] + c[j])/2) \\
\leq (1 + \epsilon) \cdot \text{distance}(\text{closest}(c[i], c[j]), (c[i] + c[j])/2).
\]

Computing this condition directly takes time \(O(k^2 \cdot t) \) every iteration of the inner loop. Do it this way for the moment. But I believe there may be more efficient ways to compute it. For example, at each iteration only one cluster has changed (because only one point is assigned to it. So maybe we only have to check distances from / to that cluster.
Appendix B

Sample Naïve Bayes

Title: A version of Simple Naïve Bayes using sequential sampling - Version 2

From: Ricard G.

To: Joachim N.

Date: June 10th, 2004

Note: We deal with discrete attributes only! No numeric attributes!!

The Simple Naïve Bayes algorithm can be written as follows:

1. SimpleNaiveBayes, version 1:
2. /* define some numbers */
3. \(N \) = number of instances
4. \(A \) = number of attributes
5. \(\text{val}(a) \) = number of values of attribute \(a \)
6. \(C \) = number of classes (= values of the target attribute)
7. \(V = \text{val}(1)+\text{val}(2)+...+\text{val}(N)+C \), total number of values
8. /* create tables for temporary counts, initially all 0 */
9. create integer classcount[\(C \)], a table for holding class counts;
10. create integer count[\(C \)][\(A \)][\(\text{val}(a) \)]; /* hope the meaning is clear */
11. /* count[\(c \)][\(a \)][\(v \)] will hold the number of instances where */
12. /* class is \(c \) and attribute \(a \) has value \(v \) */
13. /* compute counts */
14. for i = 1 to N do
15. get i-th instance, call it x;
16. classcount[class(x)] ++;
17. for a := 1 to A do
18. count[class(x)][a][value of a in x] ++;
19. endfor
20. endfor
21. /* compute prior class probabilities and */
22. /* conditional probabilities of values to classes */
23. create float prior[C];
24. create float cond[C][A][val(a)]
25. for c = 1 to C do
26. for a = 1 to A do
27. for v = 1 to val(a) do
28. cond[c][a][v] := (count[c][a][v]+1) / (classcount[c]+val(a));
29. endfor;
30. endfor;
31. prior[c] := (classcount[c]+1) / (N+C);
32. endfor;
33. output the model (prior,cond);

Observe that intuitively, in line 28 we compute Prob(attribute a = v | class = c). That is (number of instances with a=v and class=c) / (number of instances with class = c). It can be justified that, because we do not have the true number (over the whole population), but just a sample, it is convenient to “fake” that we have seen at least one instance with each value of each attribute. That is why the +1 in the numerator and the +val(a) in the denominator. This is called “Laplace correction”. In particular, it makes sure that all conditional probabilities computed are nonzero.

Similarly for the prior probabilities of each class: we must fake that we’ve seen at least one instance from each class.

The sampling version is similar, except that instead of necessarily going through all the N in-
stances, we pick instances at random from the dataset and stop when some stopping condition holds. To compute this condition, it is convenient to start “faking” these extra instances from the start, i.e., when count is created.

The algorithm has three parameters: \(\delta, \epsilon_1 \) and \(\epsilon_2 \). Their meaning is as follows.

For an instance \(x \) and a class \(c \), let \(M(x, c) \) be the value assigned to \(\Pr[c|x] \) by the model obtained by the sampling algorithm. Let \(M^*(x, c) \) be the value assigned to \(\Pr[c|x] \) by the model built on all data (that is, without sampling). Then, for all \(c \), with probability \(1 - \delta \) (over the choice of \(x \)) we have

\[
(1 - \epsilon_1) \cdot M^*(x, c) \leq M(x, c) \leq (1 + \epsilon_1) \cdot M^*(x, c)
\]

That is, the difference between the sampling and non-sampling models is at most (multiplicatively) \(\epsilon_1 \).

However, since there may be very small classes and very small conditional probabilities \(\Pr[class = c \land attribute = v] \) it could take a very very long time to achieve estimations that actually satisfied this. We introduce \(\epsilon_2 \) to prevent the algorithm to take a ridiculously long time because of such very small probabilities.

Formally, we will wait only to make sure that :

1. We have good estimations of \(\Pr[class = c] \) which are at least as large as \(\epsilon_2/C \). Note that the average \(\Pr[class = c] \) is \(1/C \).

2. We have good estimations of \(\Pr[class = c \land attribute = v] \) which are at least as large as \(\epsilon_2/val(a) \). Note that the average value of these is \(1/val(a) \). Also, we do not wait to have good approximations of these probabilities for classes \(c \) which do not pass the test above.

Classes that do not satisfy (1) (resp., counts that do not satisfy (2)) will be called “small”).

So for small classes \(c \) or instances with some “small” value \(attribute = v \), we do not claim the approximation above. There is no formal guarantee that this will not change the classification error of the newly built model a lot. The hope is that there are few instances where the “winner” class is really determined by low conditional probabilities.

1. SimpleNaiveBayes, sampling version:
2. inputs \(\epsilon_1, \epsilon_2, \) and \(\delta \);
3. /* define some numbers */
4. \(N = \) number of instances
5. \(A = \) number of attributes
6. \(\text{val}(a) = \) number of values of attribute \(a \)
7. \(C = \) number of classes (= values of the target attribute)
8. \(V = \text{val}(1)+\text{val}(2)+\ldots+\text{val}(N)+C \), total number of values
9. /* create tables for temporary counts, initially all 0 */
10. create integer classcount\[C\], a table for holding class counts;
11. create integer count\[C\][A][\text{val}(a)]; /* hope the meaning is clear */
12. /* count\[c\][a][v] will hold the number of instances where */
13. /* class is c and attribute a has value v */
14. IMPORTANT: initialize all entries of count and classcount to 1,
15. /* compute counts */
16. \(t := 0; /* number of iterations */
17. while not stopping condition do
18. \(t++; \)
19. get an instance at random, call it \(x; \)
20. classcount[\text{class}(x)]++;
21. for \(a := 1 \) to \(A \) do
22. \(\text{count}[\text{class}(x)][a][\text{value of } a \text{ in } x] ++; \)
23. endfor
24. endfor
25. /* compute prior class probabilities and */
26. /* conditional probabilities of values to classes */
27. create float prior\[C\];
28. create float cond\[C\][A][\text{val}(a)]
29. for \(c = 1 \) to \(C \) do
30. for \(a = 1 \) to \(A \) do
31. for \(v = 1 \) to \(\text{val}(a) \) do
32. \(\text{cond}[c][a][v] := \text{count}[c][a][v] / (\text{classcount}[c]-1+\text{val}(a)); \)
33. endfor;
34. endfor;
35. prior\[c\] := classcount\[c\] / (\text{N+C});
To compute the stopping condition, like in k-means we try to determine that some of the numbers we try to estimate are “too small”, meaning that it would take too many samples to estimate accurately. Note that for fixed a and v, if we average $\text{Prob}[\text{attribute } a = v \mid c]$ over all classes c we get average $1/\text{val}(a)$. If an entry looks substantially smaller than that then we will not wait to have it very well estimated. But we still keep its count. Similarly for class counts.

The algorithm for computing the stopping condition is then:

1. Let δ' be $\delta/(3 \cdot V \cdot \ln t)$
2. for every c, a, v compute
 $$
 \epsilon_{c, a, v} := \sqrt{\frac{3 \cdot \text{count}[c, a, v]}{\ln 1/\delta'}}
 $$
 and for each c compute
 $$
 \epsilon_c := \sqrt{\frac{3 \cdot \text{classcount}[c]}{\ln 1/\delta'}}
 $$
 Idea: these computations make sure that with high probability, the $\text{cond}[c, a, v]$ and $\text{prior}[c]$ we would compute out of these count and classcount are within $\epsilon_{c, a, v}$ and ϵ_c of the ones we would get without sampling.
3. for each c which is so far not small: if
 $$
 (1 + \epsilon_c) \cdot \text{classcount}[c] \leq t \cdot \frac{\epsilon_c^2}{C}
 $$
 then declare class c “small”.
4. for each c, a, v which is so far not small: if c is small or
 $$
 (1 + \epsilon_{c, a, v}) \cdot \text{count}[c, a, v] \leq (1 - \epsilon_c) \cdot \text{classcount}[c] \cdot \frac{\epsilon_c^2}{\text{val}(a)}
 $$
 then declare (c, a, v) “small”.
5. Define $\theta = (\ln 2) \cdot \epsilon_1/(A + 1)$.
6. Stop if for all classes c which are not small we have (6.1) $\theta^2 \cdot \text{classcount}[c] \geq 3 \ln(1/\delta')$ and (6.2) for all counts c, a, v which are not small we have $\theta^2 \cdot \text{count}[c, a, v] \geq 3 \ln(1/\delta')$.

Points 5 and 6 make sure that the value of the resulting model on an instance x will be within ϵ_1 of the value we would get without sampling, except if some of the conditional probabilities
used to compute the value on x are small, in which case we don’t know. But the idea is that if class c is winner for x, that is, if the model predicts c as the class with highest probability, no “small counts” should be used for x and c.

Keeping track of which counts and classcounts are small can be done:

(a) by keeping a separate matrix with boolean entries, of the same sizes as count and classcount

(b) or changing its sign, so a negative count means “small”, and adding an “if” in the algorithm to do – instead of ++ when computing counts.

(c) other ideas?
Bibliography

 http://java.sun.com/j2se/1.4.2/docs/api/ (June 23, 2004).

[17] k-means critique.

List of Figures

2.1 Sequence diagram explaining how an Instances object is created 16
2.2 (a) Part of Weka’s class diagram, (b) Part of Kiwi’s class diagram. 18
2.3 Sequence diagram explaining how to get an Instance from the dataset. 20
2.4 Sequence diagram explaining how to remove an Instance from the dataset. .. 21
2.5 Example of a remove table ... 22
2.6 Sequence diagram explaining how to add an Instance to the dataset. 23
2.7 Sequence diagram explaining how to retrieve an Instance with prefetching ... 24
2.8 Functionality of a 2-bit dynamical prefetch predictor 25

3.1 Class diagram explaining the design structure for clusterers. 42
3.2 Comparison chart between sampling and non-sampling K-Means with the Synthetic Control dataset .. 47
3.3 Demonstration chart for the user input variables in Sample K-Means. 49
3.4 Class diagram explaining the design structure for classifiers. 52
3.5 Comparison chart between sampling and non-sampling Naïve Bayes with the Adult dataset .. 56
3.6 Comparison between sampling and non-sampling Naïve Bayes with the Forest CoverType dataset .. 58
List of Tables

1.1 Testing Weka’s capability to handle large datasets 5
1.2 Testing number of datasets created during algorithm execution 6
1.3 Planning of the project ... 8
1.4 Estimated cost for the working hours ... 9
1.5 Total cost estimation ... 10

2.1 Performance tests for Weka ... 37
2.2 Performance tests for Kiwi ... 38

3.1 Comparison between sampling and non-sampling K-Means with the Synthetic Control dataset .. 48
3.2 Demonstration for the user input variables in Sample K-Means. 50
3.3 Comparison between sampling and non-sampling Naïve Bayes with the Adult dataset .. 57
3.4 Results of Sample Naïve Bayes with the Forest CoverType dataset. 57

4.1 Demonstration of a typical execution flow in Kiwi. 61
4.2 Major differences between Weka and Kiwi 62
4.3 Adjusted planning of the project .. 63
4.4 Amount of working hours .. 63